[go: up one dir, main page]

DE19957505A1 - Reinigungsmittelkomponente mit feinteiligen Feststoffen - Google Patents

Reinigungsmittelkomponente mit feinteiligen Feststoffen

Info

Publication number
DE19957505A1
DE19957505A1 DE19957505A DE19957505A DE19957505A1 DE 19957505 A1 DE19957505 A1 DE 19957505A1 DE 19957505 A DE19957505 A DE 19957505A DE 19957505 A DE19957505 A DE 19957505A DE 19957505 A1 DE19957505 A1 DE 19957505A1
Authority
DE
Germany
Prior art keywords
weight
detergent
ingredient
particulate
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19957505A
Other languages
English (en)
Inventor
Peter Schmiedel
Arnd Kessler
Thomas Gassenmeier
Juergen Haerer
Rolf Bayersdoerfer
Matthias Sunder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE19957505A priority Critical patent/DE19957505A1/de
Priority to EP00964095A priority patent/EP1210404B1/de
Priority to AU75135/00A priority patent/AU7513500A/en
Priority to DE50011646T priority patent/DE50011646D1/de
Priority to AT00964095T priority patent/ATE310075T1/de
Priority to PCT/EP2000/008582 priority patent/WO2001019950A1/de
Priority to ES00964095T priority patent/ES2253253T3/es
Priority to CA002318000A priority patent/CA2318000A1/en
Publication of DE19957505A1 publication Critical patent/DE19957505A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Langzeitstabile Mischungen (Dispersionen/Emulsionen) mit geringer Neigung zur Auftrennung, die wirksame und stabile Reinigungsmittelkomponenten liefern, enthalten 10 bis 89,9 Gew.-% Tensid(e), 10 bis 89,9 Gew.-% schmelzbare(r) Substanz(en) mit einem Schmelzpunkt oberhalb von 30 C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20 C, 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe, dessen/deren Partikel zu mindestens 90 Gew.-% Teilchengrößen unter 300 _m aufweisen sowie optional 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe.

Description

Die vorliegende Erfindung liegt auf dem Gebiet der maschinellen Geschirrspülmittel für haushaltsübliche Geschirrspülmaschinen. Sie betrifft Reinigungsmittelkomponenten für den Einsatz in maschinellen Geschirrspülmitteln (MGSM) sowie Reinigungsmittelzusammen­ setzungen und Reinigungsmitteltabletten, die solche Komponenten enthalten.
Das maschinelle Reinigen von Geschirr in Haushaltsgeschirrspülmaschinen umfaßt üblicherweise einen Vorspülgang, einen Hauptspülgang und einen Klarspülgang, die von Zwischenspülgängen unterbrochen werden. Bei den meisten Maschinen ist der Vorspülgang für stark verschmutztes Geschirr zuschaltbar, wird aber nur in Ausnahmefällen vom Verbraucher gewählt, so daß in den meisten Maschinen ein Hauptspülgang, ein Zwischenspülgang mit reinem Wasser und ein Klarspülgang durchgeführt werden. Die Temperatur des Hauptspülgangs variiert dabei je nach Maschinentyp und Programmstufenwahl zwischen 40 und 65°C. Im Klarspülgang werden aus einem Dosiertank in der Maschine Klarspülmittel zugegeben, die üblicherweise als Hauptbestandteil nichtionische Tenside enthalten. Solche Klarspüler liegen in flüssiger Form vor und sind im Stand der Technik breit beschrieben. Ihre Aufgabe besteht vornehmlich darin, Kalkflecken und Beläge auf dem gereinigten Geschirr zu verhindern. Neben Wasser und schwachschäumenden Niotensiden enthalten diese Klarspüler oft auch Hydrotope, pH-Stellmittel wie Citronensäure oder belagsinhibierende Polymere.
Der Vorratstank in der Geschirrspülmaschine muß in regelmäßigen Abständen mit Klarspüler aufgefüllt werden, wobei eine Füllung je nach Maschinentyp für 10 bis 50 Spülgänge ausreicht. Wird das Auffüllen des Tanks vergessen, so werden insbesondere Gläser durch Kalkflecken und Beläge unansehnlich. Im Stand der Technik existieren daher einige Lösungsvorschläge, einen Klarspüler in das Reinigungsmittel für das maschinelle Geschirrspülen zu integrieren.
So beschreibt die europäische Patentanmeldung EP-A-0 851 024 (Unilever) zweischichtige Reinigungsmitteltabletten, deren erste Schicht Peroxy-Bleichmittel, Builder und Enzym enthält, während die zweite Schicht Acidifizierungsmittel und ein kontinuierliches Medium mit einem Schmelzpunkt zwischen 55 und 70°C sowie Belagsinhibitoren enthält. Durch das hochschmelzende kontinuierliche Medium sollen die Säure(n) und Belagsinhibitor(en) verzögert freigesetzt werden und einen Klarspüleffekt bewirken. Pulverförmige maschinelle Geschirrspülmittel oder tensidhaltige Klarspülsysteme werden in dieser Schrift nicht erwähnt.
Die ältere deutsche Patentanmeldung DE 198 51 426.3 (Henkel KGaA) beschreibt ein Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper, bei dem ein teilchenförmiges Vorgemisch zu Formkörpern verpreßt wird, welche eine Mulde aufweisen, die später mit einer separat hergestellten Schmelze aus einer schmelzbaren Substanz und einem oder mehreren in ihr dispergierten oder suspendierten Aktivstoff(en) befüllt wird. Auch die Lehre dieser Schrift ist an die Angebotsform "Tablette" gebunden.
Die in der letztgenannten Schrift offenbarten Schmelzsuspensionen oder -emulsionen weisen allerdings insbesondere bei der Einarbeitung von Tensiden als Aktivsubstanz eine verbesserungsbedürftige Langzeitstabilität auf. Die schmelzbaren Substanzen sollen nach Abkühlung der Emulsion die Aktivsubstanz einschließen und vor vorzeitiger Freisetzung schützen. ist die Emulsion unzureichend stabil, so trennt sie sich im geschmolzenen Zustand vor der Dosierung anteilsweise, was zu Dosierungsgenauigkeiten führt. Geringfügig stabilere Emulsionen lassen sich zwar dosieren, trennen sich aber vor dem Erstarren teilweise auf, so daß die Aktivsubstanz im Reinigungsgang frühzeitig freigesetzt wird. Als Lösungsvorschlag offenbart diese Schrift den Einsatz diverser Hilfsmittel bzw. Stabilisatoren. Sofern Feststoffe erwähnt werden, werden allerdings keine Aussagen über deren physikalische Eigenschaften gemacht.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, die Lehre der älteren deutschen Patentanmeldung DE 198 51 426.3 weiterzuentwickeln und langzeitstabile Mischungen bereitzustellen, die bei der Dosierung und Abkühlung nicht zur Auftrennung neigen und so wirksame und stabile Reinigungsmittelkomponenten liefern. Diese langzeitstabilen Mischungen und die aus ihnen hergestellten Reinigungsmittelkomponenten sollten dabei alle bekannten Vorteile der kontrollierten Freisetzung von Inhaltsstoffen, insbesondere einen Klarspüleffekt, sowohl für pulverförmige Reinigungsmittel als auch für Reinigungsmitteltabletten nutzbar machen.
Es wurde nun gefunden, daß sich trennstabile Schmelzen aus schmelzbaren hydrophoben Substanzen mit Schmelzpunkten oberhalb von 30°C, Tensid(en) und optional weiteren Inhaltsstoffen wie Farb- und Duftstoffen usw. herstellen lassen, wenn diese Mischungen mindestens 0,1 Gew.-% feinteiliger Feststoff(e) enthalten.
Der Schmelzpunkt solcher Mischungen läßt sich dabei durch Art und Menge der einzelnen Inhaltsstoffe, insbesondere über die Schmelzpunkte und Mengen an schmelzbare(r/n) Substanz(en) und Tensid(en) gezielt auf den gewünschten Wert einstellen. Oberhalb des Schmelzpunktes liegen trennstabile Mischungen vor, unterhalb des Schmelzpunkts erstarrte Mischungen in beliebiger Formgebung, die im Rahmen der vorliegenden Anmeldung als Reinigungsmittelkomponenten bezeichnet werden.
Gegenstand der vorliegenden Erfindung ist eine Reinigungsmittelkomponente, die
  • a) 10 bis 89,9 Gew.-% Tensid(e),
  • b) 10 bis 89,9 Gew.-% schmelzbare Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
enthält, mit der Maßgabe, daß mindestens 90 Gew.-% der Partikel c) Teilchengrößen unter 300 µm aufweisen.
Der Begriff "Reinigungsmittelkomponente" kennzeichnet dabei im Rahmen der vorliegenden Anmeldung erstarrte Schmelzen aus den Inhaltsstoffen a) bis d), unabhängig von ihrer Formgebung. "Reinigungsmittelkomponente" im Sinne der vorliegenden Anmeldung sind daher beispielsweise Schuppen, Prills, Pastillen, Formkörperbereiche, Formkörper an sich usw. Um zu einer möglichst feinen Verteilung des Inhaltsstoffs a) in einer Matrix des Inhaltsstoffs b) zu gelangen, werden beide Inhaltsstoffe getrennt oder in Mischung miteinander aufgeschmolzen, ggf. vereinigt und unter Zusatz von c) sowie optionalem Zusatz von d) verrührt. Die auf diese Weise hergestellte Schmelzsuspension bzw. -emulsion, die nachfolgend auch kurz als "Mischung" bezeichnet wird, läßt sich dann in die gewünschte Form überführen.
Bevorzugte Reinigungsmittelkomponenten enthalten als Inhaltsstoff a) 15 bis 80, vorzugsweise 20 bis 70, besonders bevorzugt 25 bis 60 und insbesondere 30 bis 50 Gew.-% Tensid(e). Dabei können sämtliche Tenside aus den Gruppen der anionischen, nichtionischen, kationischen oder amphoteren Tenside eingesetzt werden, wobei bevorzugte Reinigungsmittelkomponenten dadurch gekennzeichnet sind, daß sie als Inhaltsstoff a) anionische(s) und/oder nichtionische(s) Tensid(e), vorzugsweise nichtionische(s) Tensid(e), enthalten.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsul­ fonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende al­ kalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättig­ ten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die analog biologisch abbaubar sind wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, bei­ spielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobemsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18- Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccina­ te, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homolo­ genverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearin­ säure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die an­ gegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Bei­ spiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungs­ grad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxyl­ gruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N- Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten die erfindungsgemäßen Reinigungsmittelkomponenten für das maschinellen Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol einge­ setzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein kön­ nen. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Insbesondere bevorzugt sind erfindungsgemäße Reinigungsmittelkomponenten, die ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge sind bevorzugte Reinigungsmittelkomponenten dadurch gekennzeichnet, daß sie als Inhaltsstoff a) nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, enthalten.
Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperatur hochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)- Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tenside mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.
Demnach enthalten besonders bevorzugte erfindungsgemäße Reinigungsmittelkomponenten als Inhaltsstoff a) ethoxylierte(s) Niotensid(e), das/die aus C6-20-Monohydroxyalkanolen oder C6-20- Alkylphenolen oder C16-20-Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurde(n).
Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Reinigungsmittelkomponenten sind dadurch gekennzeichnet, daß sie als Inhaltsstoff a) ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, enthalten.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
Ein weiter bevorzugte erfindungsgemäße Reinigungsmittelkomponenten enthalten als Inhaltsstoff a) nichtionische Tenside der Formel
R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2],
in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstofftest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2,
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≧ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≧ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid-(R3 = CH3)Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x- Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Faßt man die letztgenannten Aussagen zusammen, sind erfindungsgemäße Reinigungsmittelkomponenten bevorzugt, die als Inhaltsstoff a) endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2
enthalten, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, wobei Tenside des Typs
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2
in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind.
Als Inhaltsstoff b) enthalten die erfindungsgemäßen Reinigungsmittelkomponenten eine oder mehrere schmelzbare Substanzen, die einen Schmelzpunkt oberhalb von 30°C aufweisen und wenig bis nicht wasserlöslich sind. Diese Substanzen bilden die "Matrix", in der der Inhaltsstoff a) der erfindungsgemäßen Reinigungsmittelkomponenten fein verteilt vorliegt, wobei diese Verteilung durch den besonderen Inhaltsstoff c) stabilisiert wird. Im Rahmen der vorliegenden Erfindung bevorzugte Reinigungsmittelkomponenten enthalten als Inhaltsstoff b) 15 bis 85, vorzugsweise 20 bis 80, besonders bevorzugt 25 bis 75 und insbesondere 30 bis 70 Gew.-% schmelzbare Substanz(en).
Durch die Wahl des Schmelzpunkts des Inhaltsstoffs b) läßt sich die Temperatur, bei der die erfindungsgemäßen Reinigungsmittelkomponenten die Inhaltsstoffe a) und optional d) freisetzen, in weiten Grenzen variieren. Unterhalb dieser Temperatur sind die übrigen Inhaltsstoffe vor Umgebungseinflüssen geschützt.
An die schmelzbaren Substanzen, die in den erfindungsgemäßen Reinigungsmittelkomponenten eingesetzt werden, werden verschiedene Anforderungen gestellt, die zum einen das Schmelz- beziehungsweise Erstarrungsverhalten, zum anderen jedoch auch die Materialeigenschaften der Umhüllung im erstarrten Zustand, d. h. in den erfindungsgemäßen Reinigungsmittelkomponenten betreffen. Da die Reinigungsmittelkomponente bei Transport oder Lagerung dauerhaft gegen Umgebungseinflüsse geschützt sein soll, muß die Schmelzbare Substanz eine hohe Stabilität gegen­ über beispielsweise bei Verpackung oder Transport auftretenden Stoßbelastungen aufweisen. Die Schmelzbare Substanz sollte also entweder zumindest teilweise elastische oder zumindest plastische Eigenschaften aufweisen, um auf eine auftretende Stoßbelastung durch elastische oder plastische Verformung zu reagieren und nicht zu zerbrechen. Die Schmelzbare Substanz sollte einen Schmelz­ bereich (Erstarrungsbereich) in einem solchen Temperaturbereich aufweisen, bei dem anderen Inhaltsstoffe der erfindungsgemäßen Reinigungsmittelkomponenten keiner zu hohen thermischen Belastung ausgesetzt werden. Andererseits muß der Schmelzbereich jedoch ausreichend hoch sein, um bei zumindest leicht erhöhter Temperatur noch einen wirksamen Schutz für die eingeschlossenen Aktivstoffe zu bieten. Erfindungsgemäß weisen die schmelzbaren Substanzen einen Schmelzpunkt über 30°C auf, wobei Reinigungsmittelkomponenten bevorzugt sind, die nur schmelzbare Substanzen mit Schmelzpunkten oberhalb von 40°C, vorzugsweise oberhalb von 45°C und insbesondere oberhalb von 50°C aufweisen. Besonders bevorzugte Reinigungsmittelkomponenten enthalten als Inhaltsstoff b) einen oder mehrere Stoffe mit einem Schmelzbereich zwischen 30 und 100°C, vorzugsweise zwischen 40 und 80°C und insbesondere zwischen 50 und 75°C.
Es hat sich als vorteilhaft erwiesen, wenn die schmelzbare Substanz keinen scharf definierten Schmelzpunkt zeigt, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius umfassenden Schmelzbereich aufweist.
Die schmelzbare Substanz weist vorzugsweise einen Schmelzbereich auf, der zwischen etwa 52,5°C und etwa 80°C liegt. Das heißt im vorliegenden Fall, daß der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1°C, vorzugsweise etwa 2 bis etwa 3°C.
Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachsen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 50°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperatur­ abhängige Konsistenz und Löslichkeit auf.
Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.
Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.
Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.
Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als Hüllinaterialien einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts und der Wasserlöslichkeit erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist.
Bevorzugt enthält die in den erfindungsgemäßen Reinigungsmittelkomponenten enthaltene Hüll­ substanz einen Anteil an Paraffinwachs. Das heißt, daß wenigstens 10 Gew.-% der insgesamt enthaltenen schmelzbaren Substanzen, vorzugsweise mehr, aus Paraffinwachs bestehen. Besonders geeignet sind Paraffinwachsgehalte (bezogen auf die Gesamtmenge an schmelzbarer Substanz) von etwa 12,5 Gew.-%, etwa 15 Gew.-% oder etwa 20 Gew.-%, wobei noch höhere Anteile von beispielsweise mehr als 30 Gew.-% besonders bevorzugt sein können. In einer besonderen Ausführungsform der Erfindung besteht die Gesamtmenge der eingesetzten schmelzbaren Substanz ausschließlich aus Paraffinwachs.
Paraffinwachse weisen gegenüber den anderen genannten, natürlichen Wachsen im Rahmen der vorliegenden Erfindung den Vorteil auf, daß in einer alkalischen Reinigungsmittelumgebung keine Hydrolyse der Wachse stattfindet (wie sie beispielsweise bei den Wachsestern zu erwarten ist), da Paraffinwachs keine hydrolisierbaren Gruppen enthält.
Paraffinwachse bestehen hauptsächlich aus Alkanen, sowie niedrigen Anteilen an Iso- und Cycloalkanen. Das erfindungsgemäß einzusetzende Paraffin weist bevorzugt im wesentlichen keine Bestandteile mit einem Schmelzpunkt von mehr als 70°C, besonders bevorzugt von mehr als 60°C auf. Anteile hochschmelzender Alkane im Paraffin können bei Unterschreitung dieser Schmelztemperatur in der Reinigungsmittelflotte nicht erwünschte Wachsrückstände auf den zu reinigenden Oberflächen oder dem zu reinigenden Gut hinterlassen. Solche Wachsrückstände führen in der Regel zu einem unschönen Aussehen der gereinigten Oberfläche und sollten daher vermieden werden.
Bevorzugte Reinigungsmittelkomponenten enthalten als Inhaltsstoff b) mindestens ein Paraffinwachs mit einem Schmelzbereich von 30°C bis 65°C.
Vorzugsweise ist der Gehalt des eingesetzten Paraffinwachses an bei Umgebungstemperatur (in der Regel etwa 10 bis etwa 30°C) festen Alkanen, Isoalkanen und Cycloalkanen möglichst hoch. Je mehr feste Wachsbestandteile in einem Wachs bei Raumtemperatur vorhanden sind, desto brauchbarer ist es im Rahmen der vorliegenden Erfindung. Mit zunehmenden Anteil an festen Wachsbestandteilen steigt die Belastbarkeit der Reinigungsmittelkomponente gegenüber Stößen oder Reibung an anderen Oberflächen an, was zu einem länger anhaltenden Schutz der Aktivstoffe führt. Hohe Anteile an Ölen oder flüssigen Wachsbestandteilen können zu einer Schwächung der Partikel führen, wodurch Poren geöffnet werden und die Aktivstoffe den eingangs genannten Umgebungseinflüssen ausgesetzt werden.
Die schmelzbare Substanz kann neben Paraffin noch eine oder mehrere der oben genannten Wachse oder wachsartigen Substanzen enthalten. Vorzugsweise sollte das die schmelzbare Substanz bildende Gemisch so beschaffen sein, daß die Reinigungsmittelkomponente wenigstens weitgehend wasserunlöslich sind. Die Löslichkeit in Wasser sollte bei einer Temperatur von etwa 30°C etwa 10 mg/l nicht übersteigen und vorzugsweise unterhalb 5 mg/l liegen.
In jedem Fall sollte die Umhüllung vorzugsweise jedoch eine möglichst geringe Wasser­ löslichkeit, auch in Wasser mit erhöhter Temperatur, aufweisen, um eine temperaturunabhängige Freisetzung der Aktivsubstanzen möglichst weitgehend zu vermeiden. Bevorzugte Reinigungsmittelkomponenten sind daher dadurch gekennzeichnet, daß die Wasserlöslichkeit des Inhaltsstoffs b) bei 20°C weniger als 15 g/l, vorzugsweise weniger als 10 g/l, besonders bevorzugt weniger als 5 g/l und insbesondere weniger als 2 g/l beträgt. Besonders bevorzugt ist es dabei, wenn die Wasserlöslichkeit des Inhaltsstoffs b) bei 20°C unterhalb der Meßgrenze liegt, Stoff b) also im landläufigen Sinne "wasserunlöslich" ist.
Als Inhaltsstoff c) enthalten die erfindungsgemäßen Reinigungsmittelkomponenten 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe, wobei mindestens 90 Gew.-% der Partikel von c) Teilchengrößen unter 300 µm aufweisen. In bevorzugten Reinigungsmittelkomponenten liegen die Mengen an c) innerhalb eines engeren Bereichs, und auch die Partikelgrößen sind vorzugsweise noch feiner. So sind einerseits Reinigungsmittelkomponenten bevorzugt, die den Inhaltsstoff c) in Mengen von 0,15 bis 12,5, vorzugsweise von 0,2 bis 10, besonders bevorzugt von 0,25 bis 7,5 und insbesondere von 0,3 bis 5 Gew.-% enthalten, andererseits weisen mindestens 90 Gew.-% der Partikel von c) in weiter bevorzugten Reinigungsmittelkomponenten Teilchengrößen unter 200 µm, vorzugsweise unter 190 µm, besonders bevorzugt unter 175 µm, insbesondere unter 150 µm und ganz besonders bevorzugt unter 100 µm auf.
Besonders bevorzugt ist es, wenn der Inhaltsstoff c) überhaupt keine Partikel besitzt, die eine Größe über 200 µm besitzen, wobei diese Teilchengrößengrenze vorzugsweise noch weiter unterschritten wird. In besonders bevorzugten Reinigungsmittelkomponenten besteht der Inhaltsstoff c) vollständig aus Partikeln mit Teilchengrößen unter 200 µm, vorzugsweise unter 175 µm, besonders bevorzugt unter 150 µm und insbesondere unter 100 µm.
Als Inhaltsstoff c) eignen sich sämtliche Stoffe, die fest sind und dem genannten Teilchengrößenkriterium genügen. Der Begriff "Feststoff" bedeutet dabei, daß der Inhaltsstoff c) auch bei den Verarbeitungstemperaturen der Inhaltsstoffe a) bis d) fest bleibt und nicht etwa bei der Herstellung von Schmelzen mit aufschmilzt oder in anderen Inhaltsstoffen gelöst wird. Vorzugsweise werden als Inhaltsstoff c) solche Stoffe eingesetzt, deren Schmelzpunkt deutlich über dem Schmelzpunkt der Reinigungsmittelkomponente liegt, beispielsweise mindestens 10°C darüber, vorzugsweise mindestens 25°C darüber und insbesondere mindestens 50°C darüber. Es kann auch bevorzugt sein, bei herkömmlichen Temperaturen unschmelzbare Substanzen als Inhaltsstoff c) einzusetzen.
Neben anorganischen Salzen, mineralischen Stoffen wie Silikaten, Kieselsäuren, Aluinosilkaten, organischen Feststoffen usw. haben sich insbesondere die Alkalimetallsalze organischer Säuren als Inhaltsstoff c) bewährt, wobei die Natrium- und Kaliumsalze bevorzugt sind. Als organische Säuren, deren Salze bevorzugte Inhaltsstoffe c) sind, eignen sich beispielsweise Ameisensäure, Essigsäure, Propionsäure, Bernsteinsäure, Citronensäure, Fumarsäure, Oxalsäure, Malonsäure, Weinsäure usw. Besonders bevorzugte Reinigungsmittelkomponenten sind dadurch gekennzeichnet, daß sie als Inhaltsstoff c) Alkalimetallsalze organischer Säuren, vorzugsweise Alkalimetallacetate und insbesondere Kaliumacetat, enthalten.
Eine weitere bevorzugte Stoffgruppe, die als Inhaltsstoff c) eingesetzt werden kann, sind Tonminerale. Hier können die natürlichen oder chemisch modifizierten Tonminerale eingesetzt werden. Besonders bevorzugte Tonminerale sind dabei die Bentonite, die im Rahmen der vorliegenden Erfindung sehr gut geeignete Inhaltsstoff c) sind.
Bentonite sind verunreinigte Tone, die durch Verwitterung vulkanischer Tuffe entstanden sind. Es ist dabei möglich, die Eigenschaften der Bentonite dem Verwendungszweck entsprechend zu modifizieren. Bentonite sind als Tonbestandteil in tropischen Böden häufig und werden als Natrium-Bentonit z. B. in Wyoming/USA abgebaut. Natrium-Bentonit weist die günstigsten anwendungstechnischen Eigenschaften auf, so daß seine Verwendung im Rahmen der vorliegenden Erfindung bevorzugt ist. Natürlich vorkommende Calcium-Bentonite stammen beispielsweise aus Mississippi/USA oder Texas/USA bzw. aus Landshut/D. Die natürlich gewonnenen Ca-Bentonite werden künstlich durch Austausch von Ca gegen Na in die quellfähigeren Na-Bentonite umgewandelt.
Den Hauptbestandteile der Bentonite bilden sogenannte Montmorillonite, die im Rahmen der vorliegenden Erfindung auch in reiner Form eingesetzt werden können. Montmorillonite sind zu den Phyllosilicaten und hier zu den dioktaedrischen Smektiten gehörende Tonminerale, die monoklin-pseudohexagonal kristallisieren. Montmorillonite bilden überwiegend weiße, grauweiße bis gelbliche, völlig amorph erscheinende, leicht zerreibliche, im Wasser quellende, aber nicht plastisch werdende Massen, die durch die allgemeinen Formeln
Al2[(OH)2/Si4O10].nH2O bzw.
Al2O3.4SiO2.H2O.nH2O bzw.
Al2[(OH)2/Si4O10] (bei 150° getrocknet)
beschrieben werden können.
Montmorillonite besitzen eine Dreischicht-Struktur, die aus zwei Tetraeder-Schichten besteht, die über die Kationen einer Oktaeder-Zwischenschicht elektrostatisch vernetzt sind. Die Schichten sind nicht starr verbunden, sondern können durch reversible Einlagerung von Wasser (in der 2-7fachen Menge) und anderen Substanzen wie z. B. Alkoholen, Glykolen, Pyridin, α- Picolin, Ammonium-Verbindungen, Hydroxy-Aluminosilicat-Ionen usw. aufquellen. Die oben angegebenen. Formeln stellen nur angenäherte Formeln dar, da Montmorillonite ein großes Ionenaustausch-Vermögen besitzen. So kann Al gegen Mg, Fe2+, Fe3+, Zn, Cr, Cu und andere Ionen ausgetauscht werden. Als Folge einer solchen Substitution resultiert eine negative Ladung der Schichten, die durch andere Kationen, bes. Na+ und Ca2+ ausgeglichen wird.
Die Struktur der Phyllosilikate, in der eine zentrale Schicht aus oktaedrisch koordinierten Kationen sandwichartig von 2 Schichten aus [(Si,Al)O4]-Tetraedern umgeben ist, kann durch zahlreiche Substitutionen in der Oktaederschicht breit variiert werden. So kann die Oktaederschicht neben meist überwiegendem Al3+ (Montmorillonit - dioktaedrisches Schichtsilikat) beispielsweise auch Mg2+ (Saponit - trioktaedrisches Schichtsilikat) oder Fe3+ (Nontronit - dioktaedrisches Schichtsilikat) enthalten. Zusätzlich ist auch ein Gehalt an Kationen wie Zn2+ (beim Sauconit - trioktaedrisches Schichtsilikat), Ni2+ (Nickel-Sauconit - trioktaedrisches Schichtsilikat) und Li+ (Hectorit - trioktaedrisches Schichtsilikat) enthalten. Auch in der Tetraederschicht können Substitutionen beobachtet werden, so kann Si4+ zum Teil durch Al3+ (bei Beidellit - dioktaedrisches Schichtsilikat) und auch durch Fe3+ (bei Nontronit - dioktaedrisches Schichtsilikat) ersetzt sein. Aus diesen Substitutionen resultiert ein Ungleichgewicht in der Ladungsbilanz, das durch austauschbare Kationen, gewöhnlich Natrium, Calcium und Kalium, auch Magnesium, zwischen den Schichtpaketen ausgeglichen wird.
Als allgemeine Formeln lassen sich für dioktaedrische Phyllosilikate somit
(K,Ca,Na,Mg)i+[Si4-x(Al,Fe3+)xO10][(Al,Fe3+)2-y(Mg,Fe2+)y+z(OH)2]
mit i = ca. 0,6 bis 0,2 pro O10(OH)2 und ferner i = x + y-2z und für trioktaedrische Phyllosilikate
(K,Ca,Na,Mg)i+[Si4-x(AlxO10][(Mg,Fe2+)3-y(Al,Fe3+)y-z(OH)2]
mit i = x - y + 3z und 0,6 < i < 0,2 angeben.
Vorzugsweise werden im Rahmen der vorliegenden Erfindung Bentonite im klassischen Sinne, also Tone mit hohem Montmorillonit-Gehalt, eingesetzt. Bevorzugte Inhaltsstoff c) sind Phyllosilikate mit einem Montmorillonit-Gehalt von mehr als 60 Gew.-%, vorzugsweise von mehr als 75 Gew.-% und insbesondere von mehr als 90 Gew.-%, jeweils bezogen auf das Gewicht des Phyllosilikates.
Sofern dies aus Kostengründen nicht unerwünscht ist, lassen sich mit Vorzug auch reine Montmorillonite einsetzen. Reinigungsmittelkomponenten, die als Bentonit reine Montmorillonite enthalten, sind erfindungsgemäß ebenfalls bevorzugt.
Der Schichtabstand von Phyllosilikaten läßt sich durch den Einbau bestimmter Verbindungen modifizieren, da diese - in Abhängigkeit von der Ladung der Elementarschichten und von den Zwischenschicht-Kationen - quellen können, d. h. den Basisabstand ihrer Dreischicht-Pakete durch Einlagerung von Wassermolekülen oder langkettigen organischen Molekülen auf über 15 Å vergrößern können. So können erfindungsgemäß auch chemisch modifizierte Bentonite als Inhaltsstoff c) eingesetzt werden, wobei Reinigungsmittelkomponenten bevorzugt sind, die durch quartäre Ammoniumverbindungen modifizierte Bentonite enthalten.
Im Rahmen der vorliegenden Erfindung bevorzugte Reinigungsmittelkomponenten enthalten als Inhaltsstoff c) Stoffe aus der Gruppe der Tonmineralien, vorzugsweise der chemisch modifizierten Tonminerale und insbesondere der hydrophobierten Bentonite.
Weitere, im Rahmen der vorliegende Erfindung bevorzugt als Inhaltsstoff c) einzusetzende Feststoffe sind ionische Tenside, sofern sie einen genügend hohen Schmelzpunkt aufweisen und auf den genannten Teilchengrößenbereich gebracht werden können. Diese Tenside wurden weiter oben ausführlich beschrieben. Insbesondere Fettalkoholsulfate sind dabei als Inhaltsstoff c) bevorzugt, so daß Reinigungsmittelkomponenten bevorzugt sind, die als Inhaltsstoff c) anionische(s) Tensid(e), vorzugsweise Fettalkoholsulfate und insbesondere C12-18- Fettalkoholsulfate, enthalten.
Die erfindungsgemäßen Reinigungsmittelkomponenten können vorzugsweise als Inhaltsstoff d) weitere Wirk- und/oder Hilfsstoffe aus den Gruppen der Farbstoffe, Duftstoffe, soil-release- Polymere, Korrosionsinhibitoren, Enzyme, Bleichmittel, Bleichaktivatoren und Komplexbildner in Mengen von 0 bis 10 Gew.-%, vorzugsweise von 0,25 bis 7,5 Gew.-%, besonders bevorzugt von 0,5 bis 5 Gew.-% und insbesondere von 0,75 bis 2,5 Gew.-%, enthalten. Farb- und Duftstoffe sowie die anderen genannten Substanzen sind übliche Inhaltsstoffe von Wasch- oder Reinigungsmitteln und werden weiter unten ausführlich beschrieben.
Wie bereits weiter oben erwähnt, lassen sich durch geeignete Wahl der Inhaltsstoffe a) bis d) die physikalischen und chemischen Eigenschaften der erfindungsgemäßen Reinigungsmittelkomponenten gezielt variieren. Werden beispielsweise lediglich Inhaltsstoffe eingesetzt, die bei der Schmelztemperatur der Emulsion flüssig sind, so lassen sich leicht einphasige Mischungen herstellen, die sich durch besondere Lagerstabilität auch im geschmolzenen Zustand auszeichnen. Der Zusatz von Feststoffen, wie beispielsweise Farbpigmenten oder Stoffen mit höheren Schmelzpunkten, führt automatisch zu zweiphasigen Mischungen, die aber ebenfalls eine ausgezeichnete Lagerstabilität und eine äußerst geringe Neigung zur Auftrennung aufweisen.
Unabhängig von der Zusammensetzung der erfindungsgemäßen Reinigungsmittelkomponenten sind solche Reinigungsmittelkomponenten bevorzugt, die durch einen Schmelzpunkt zwischen 50 und 80°C, vorzugsweise zwischen 52,5 und 75°C und insbesondere zwischen 55 und 65°C gekennzeichnet sind.
Bei Raumtemperatur stellen die erfindungsgemäßen Reinigungsmittelkomponenten erstarrte Mischungen aus den genannten Inhaltsstoffen dar, die jedwede äußere Form annehmen können. Es ist auch möglich, die Mischungen als Schmelze auf Trägerstoffe aufzubringen und so Trägermaterial-basierte Reinigungsmittelkomponenten bereitzustellen, die bei Raumtemperatur aus Trägermaterial(ien) und einer auf diesen Trägermaterialien erstarrten Schmelze bestehen. Als Trägermaterialien eignen sich sämtliche Feststoffe, die bei der Temperatur der Schmelze nicht erweichen und die darüber hinaus eine genügend große Absorptionskapazität für die Schmelze aufweisen. Besonders bevorzugte Trägermaterialien sind Gerüststoffe, die weiter unten ausführlich beschrieben werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung teilchenförmiger Reinigungsmittelkomponenten, bei dem man eine Schmelze aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
auf ein oder mehrere Trägermaterialien aufbringt und die Mischung formgebend verarbeitet.
Bei dieser Verfahrensvariante wird zunächst eine Schmelzsuspension bzw. -emulsion hergestellt, die weitere Wirk- und Hilfsstoffe enthalten kann. Diese wird auf ein Trägermaterial gegeben und in Mischung mit diesem Trägermaterial formgebend verarbeitet.
Bei dem genannten Herstellungsverfahren für die erfindungsgemäßen Reinigungsmittelkomponenten sind Verfahrensvarianten bevorzugt, bei denen die schmelzbare Substanz 25 bis 85 Gew.-%, vorzugsweise 30 bis 70 Gew.-% und insbesondere 40 bis 50 Gew.-% der Schmelze ausmacht.
Das Aufbringen der Schmelze auf das Trägermaterial kann in sämtlichen üblichen Mischvorrichtungen durchgeführt werden. Der formgebende Verarbeitungsschritt für das Gemisch aus Schmelze und Trägermaterial unterliegt ebenfalls keinen verfahrenstechnischen Beschränkungen, so daß der Fachmann auch hier aus den ihm geläufigen Verfahren auswählen kann. Bei Versuchen der Anmelderin haben sich Verfahren als bevorzugt herausgestellt, bei denen die formgebende Verarbeitung durch Granulieren, Kompaktieren, Pelletieren, Extrudieren oder Tablettieren erfolgt.
Das erfindungsgemäße Verfahren umfaßt das Aufbringen von Schmelzen aus den Inhaltsstoffen a) bis d) auf Trägermaterialien. Prinzipiell können Schmelze und Trägerstoff(e) in variierenden Mengen in den resultierenden Klarspülerpartikeln enthalten sein. Bevorzugte Verfahren sind dadurch gekennzeichnet, daß eine Mischung aus 5 bis 50 Gew.-%, vorzugsweise 10 bis 45 Gew.-%, besonders bevorzugt 15 bis 40 Gew.-% und insbesondere 20 bis 35 Gew.-% einer Schmelze aus den Inhaltsstoffen a) bis d) und 50 bis 95 Gew.-%, vorzugsweise 55 bis 90 Gew.-%, besonders bevorzugt 60 bis 85 Gew.-% und insbesondere 65 bis 80 Gew.-% Trägermaterial(ien) formgebend verarbeitet wird.
Bezüglich der Inhaltsstoffe, die im erfindungsgemäßen Verfahren eingesetzt und zu den erfindungsgemäßen Trägermaterial-basierten Reinigungsmittelkomponenten verarbeitet werden, gilt analog das weiter oben Ausgeführte.
Die erfindungsgemäßen Reinigungsmittelkomponenten können auch trägermaterialfrei formuliert werden, so daß sie lediglich aus den Inhaltsstoffen a) bis d) bestehen. Zur Herstellung teilchenförmiger erfindungsgemäßer Reinigungsmittelkomponenten haben sich dabei insbesondere das Verprillen, das Pastillieren und die Verschuppung mittels Kühlwalzen bewährt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher in einer ersten Ausführungsform ein Verfahren zur Herstellung verprillter Reinigungsmittelkomponenten, bei dem man eine Schmelze aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
in einen Kaltgasstrom eindüst.
Das erfindungsgemäße Verfahren, das kurz als Prillen bezeichnet wird, umfaßt die Herstellung körniger Körper aus schmelzbaren Stoffen, wobei die Schmelze aus den Inhaltsstoffen a) bis d) an der Spitze eines Turmes in definierter Tröpfchengröße eingesprüht wird, im freien Fall erstarrt und die Prills am Boden des Turmes als Granulat anfallen.
Als Kaltgasstrom können ganz allgemein sämtliche Gase eingesetzt werden, wobei die Temperatur des Gases unter der Schmelztemperatur der Schmelze liegt. Um lange Fallstrecken zu vermeiden, wird oft mit abgekühlten Gasen gearbeitet, beispielsweise mit tiefgekühlter Luft oder gar mit flüssigem Stickstoff, der in die Sprühtürme eingedüst wird.
Die Korngröße der entstehenden Prills kann über die Wahl der Tröpfchengröße variiert werden, wobei technisch einfach realisierbare Partikelgrößen im Bereich von 0,5 bis 2 mm, vorzugsweise um 1 mm, liegen.
Ein Alternativverfahren zur Verprillung besteht in der Pastillierung. Eine weitere Ausführungsform der vorliegenden Erfindung sieht daher ein Verfahren zur Herstellung pastillierter Reinigungsmittelkomponenten, vor, bei dem man eine Schmelze aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
auf gekühlte Pastillierteller dosiert.
Das Pastillieren, das gelegentlich auch als Pelletieren bezeichnet wird, umfaßt die Dosierung der Schmelze aus den Inhaltsstoffen a) bis d) auf rotierende, geneigte Teller, die eine Temperatur unterhalb der Schmelztemperatur der Schmelze aufweisen und vorzugsweise unter Raumtemperatur abgekühlt werden. Auch hier können Verfahrensvarianten durchgeführt werden, bei denen die Pastillierteller tiefgekühlt sind. Hierbei müssen allerdings Maßnahmen gegen das Aufkondensieren von Luftfeuchtigkeit getroffen werden.
Die Pastillierung liefert größere Partikel, die bei technisch üblichen Verfahren Größen zwischen 2 und 10 mm, vorzugsweise zwischen 3 und 6 mm aufweisen.
Als noch kostengünstigere Variante zur Herstellung partikelförmiger Reinigungsmittelkomponenten der genannten Zusammensetzung aus Schmelzen bietet sich der Einsatz von Kühlwalzen an. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung teilchenförmiger Reinigungsmittelkomponenten, bei dem man eine Schmelze aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
auf eine Kühlwalze aufträgt oder aufsprüht, die erstarrte Schmelze abschabt und falls erforderlich zerkleinert.
Der Einsatz von Kühlwalzen ermöglicht eine problemlose Einstellung des gewünschten Partikelgrößenbereichs, der bei diesem erfindungsgemäßen Verfahren auch unterhalb 1 mm, beispielsweise bei 200 bis 700 µm, liegen kann.
Selbstverständlich ist es erfindungsgemäß auch möglich, die partikelförmigen Zusammensetzungen zu einem Formkörper oder einem Bereich hiervon zu verpressen. Dieser Formkörper läßt sich dann beispielsweise vom Verbraucher dosieren, er kann aber auch pulverförmigen Zusammensetzungen beigegeben werden. Möglich ist es auch, die partikelförmigen Zusammensetzungen, insbesondere die Prills, Pastillen oder Produkte von der Kühlwalze, als tablettierfähiges Vorgemisch zu benutzen und bei der Herstellung von mehrphasigen Formkörpern einzusetzen. Hier liefert die Verpressung dann beispielsweise mehrschichtige Tabletten, von denen eine Schicht die Zusammensetzung einer herkömmlichen Reinigungsmitteltablette, die andere Schicht die Zusammensetzung der erfindungsgemäßen Reinigungsmittelkomponente aufweist, die auch in dieser Angebotsform ihre Vorteilhaftigkeit entfaltet.
Mehrphasige Formkörper lassen sich auch dadurch herstellen, daß Formkörper mit Kavitäten, beispielsweise Mulden oder durchgehenden Löchern, hergestellt und diese Kavitäten nachfolgend mit anderen Formkörpern befüllt werden. Im vorliegenden Fall hat es sich bewährt, daß der "Basisformkörper", d. h. die Tablette, die eine Kavität aufweist, die Zusammensetzung einer Reinigungsmitteltablette besitzt, während der in der Kavität enthaltene Formkörper ein Formkörper, der aus Prills, Pastillen oder Schuppen gepreßt wurde, ist. Die Haftung der beiden Formkörper aneinander kann durch verkleben der beiden Formkörper erreicht werden, es ist aber auch möglich, die Formkörper an- bzw. ineinanderzupressen. Auch das Ineinanderstecken, bei dem die Haftung durch die geometrische Ausgestaltung von Kavität und Füllung erreicht wird, ist möglich.
Als Herstellverfahren ist beispielsweise die Herstellung der Formkörper durch separate Herstellung (Verpressen) eines Basisformkörpers a) und eines Kernformkörpers b), der vorzugsweise aus Prills der erfindungsgemäßen Reinigungsmittelkomponenten gepreßt wird, das Zusammenfügen und die Endverpressung beider Teile, bevorzugt.
Die Herstellung von Formkörpern aus partikelförmigen erfindungsgemäßen Reinigungsmittelkomponenten kann nach gängigen Tablettierverfahren erfolgen. Diese werden weiter unten detailliert beschrieben.
Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Der hergestellte Formkörper kann jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weist der hergestellte Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.
Die erfindungsgemäßen Reinigungsmittelkomponenten können dem Verbraucher direkt an die Hand gegeben werden, so daß er sie zusätzlich bedarfsgerecht dem Reinigungsmittel zudosiert. Aufgrund dieses zusätzlichen Dosierschritts würden aber außer der festen Anbietungsform und der Zugabe in das gleiche Dosierfach die Vorteile gegenüber flüssigen Klarspülmitteln minimiert. Bevorzugt ist es deshalb, die erfindungsgemäßen Reinigungsmittelkomponenten teilchenförmigen maschinellen Geschirrspülmitteln zuzumischen oder diese in Formkörper einzuarbeiten.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung von teilchenfömigen Reinigungsmittelkomponenten aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
in Reinigungsmitteln für das maschinelle Geschirrspülen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist auch ein teilchenförmiges maschinelles Geschirrspülmittel, enthaltend Gerüststoffe sowie optional weitere Reinigungsmittel- Inhaltsstoffe, das teilchenförmige Reinigungsmittelkomponenten enthält, die bezogen auf ihr Gewicht,
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
enthalten.
Die Inhaltsstoffe der maschinellen Geschirrspülmittel werden nachfolgend beschrieben. Zum Teil können diese auch als Inhaltsstoff d) oder Trägermaterialien in den erfindungsgemäßen Reinigungsmittelkomponenten enthalten sein.
Die wichtigsten Inhaltsstoffe von maschinellen Geschirrspülmitteln sind Gerüststoffe. In den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wenn keine ökologischen Bedenken gegen ihren Einsatz bestehen - auch die Phosphate. Die nachstehend genannten Gerüststoffe sind allesamt als Trägermaterialien für die erfindungsgemäßen Reinigungsmittelkomponenten geeignet, wie bereits weiter oben ausgeführt wurde.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O
beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall-(ins­ besondere Natrium- und Kalium-)-Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3 , hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf <200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 gew.-%-igen Lösung (< 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70.000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20.000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10.000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70 000 g/mol, vorzugsweise 20 000 bis 50 000 g/mol und insbesondere 30 000 bis 40 000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere weisen als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat auf.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, die neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Poly­ saccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30 000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind im Stand der Technik ausführlich beschrieben. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Bevorzugte erfindungsgemäße teilchenförmige maschinelle Geschirrspülmittel enthalten Gerüststoffe in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% und insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Mittels.
Neben den Gerüststoffen sind insbesondere Stoffe aus den Gruppen der Tenside, der Bleichmittel, der Bleichaktivatoren, der Enzyme, der Polymere sowie der Farb- und Duftstoffe wichtige Inhaltsstoffe von Reinigungsmitteln. Wichtige Vertreter aus den genannten Substanzklassen werden nachstehend beschrieben, wobei bezüglich der Beschreibung der Tenside auf die Ausführungen weiter oben verwiesen wird.
Bevorzugte teilchenförmige maschinelle Geschirrspülmittel enthalten weiterhin einen oder mehrere Stoffe aus den Gruppen der Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Tenside, Korrosionsinhibitoren, Polymere, Farb- und Duftstoffe, pH-Stellmittel, Komplexbildner und der Enzyme.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen hat das Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumperborattetrahydrat und Natriumperboratmonohydrat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.
"Natriumpercarbonat" ist eine in unspezifischer Weise verwendete Bezeichnung für Natriumcarbonat-Peroxohydrate, welche streng genommen keine "Percarbonate" (also Salze der Perkohlensäure), sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2 Na2CO3.3 H2O2 und ist damit kein Peroxycarbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gcm-3, das leicht 55222 00070 552 001000280000000200012000285915511100040 0002019957505 00004 55103 in Natriumcarbonat und bleichend bzw. oxidierend wirkenden Sauerstoff zerfällt.
Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxycarbonat angesehen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid-Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung "Natriumpercarbonat" sich in der Praxis durchgesetzt.
Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösungen von Natriumcarbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzentrifugiert und in Fließbett-Trocknern bei 90°C getrocknet. Das Schüttgewicht des Fertigprodukts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/l schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Patentliteratur breit beschrieben. Grundsätzlich können erfindungsgemäß alle handelsüblichen Percarbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemira oder Akzo angeboten werden.
Erfindungsgemäße Reinigungsmittel können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylper-oxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimido-peroxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamido-peroxycapronsäure, N-nonenylamidoperadipinsäure und N- nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxy-phthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N- Terephthaloyl-di(6-aminopercapronsäure) können eingesetzt werden.
Als Bleichmittel in den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhy­ danthoin sind ebenfalls geeignet.
Auch die genannten Bleichmittel können zur Erzielung einer "Nachbleiche" teilweise über die erfindungsgemäßen Reinigungsmittelkomponenten, wo sie den Inhaltsstoff d) darstellen, in die erfindungsgemäßen maschinellen Geschirrspülmittel eingebracht werden.
Bleichaktivatoren, die die Wirkung der Bleichmittel unterstützen, sind beispielsweise Verbindungen, die eine oder mehrere N- bzw. O-Acylgruppen enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Beispiele sind Tetraacetylethylendiamin TAED, Tetraacetylmethylendiamin TAMD und Tetraacetylhexylendiamin TAHD, aber auch Pentaacetylglucose PAG, 1,5-Diacetyl-2,2-dioxo­ hexahydro-1,3,5-triazin DADHT und Isatosäureanhydrid ISA.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gege­ benenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen­ diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbeson­ dere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbe­ sondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsul­ fonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5- dihydrofuran, n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluco­ nolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil sub­ stituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Reinigungsmittel für das maschinelle Geschirrspülen eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Bevorzugt werden Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N- Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril- Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-% bezogen auf das gesamte Mittel, eingesetzt.
Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.
Als Enzyme kommen in den erfindungsgemäßen Reinigungsmitteln insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen.
Die Enzyme können an Trägerstoffe absorbiert oder in Schmelzbare Substanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.
Farb- und Duftstoffe können den erfindungsgemäßen maschinellen Geschirrspülmitteln zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p- tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Reinigungsmittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin- Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können. Auch eine Inkorporation der Duftstoffe als Inhaltsstoff d) in die erfindungsgemäßen Reinigungsmittelkomponenten ist möglich und führt zu einem Dufteindruck beim Öffnen der Maschine.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, kann es (oder Teile davon) mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den Mitteln zu behandelnden Substraten wie Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.
Die erfindungsgemäßen Reinigungsmittel können zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Die erfindungsgemäßen teilchenförmigen maschinellen Geschirrspülmittel können die erfindungsgemäßen Reinigungsmittelkomponenten in varierenden Mengen enthalten, wobei der Gehalt je nach Zusammensetzung der Reinigungsmittelkomponenten und je nach gewünschtem Anwendungserfolg höher oder niedriger liegt. Bevorzugte teilchenförmige maschinelle Geschirrspülmittel enthalten die teilchenförmige Reinigungsmittelkomponente in Mengen von 0.5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-% und insbesondere von 3 bis 15 Gew.-%, jeweils bezogen auf gesamtes Mittel.
Die erfindungsgemäßen Reinigungsmittelkomponenten können von ihrer Zusammensetzung her so gestaltet werden, daß sie sich im Hauptspülgang (und auch in optionalen Vorspülgängen) nicht bzw. nur in untergeordnetem Maße auflösen. Hierdurch wird erreicht, daß die Tenside erst im Klarspülgang freigesetzt werden und hier ihre Wirkung entfalten. Neben dieser chemischen Konfektionierung ist je nach Typ der Geschirrspülmaschine eine physikalische Konfektionierung erforderlich, damit die Klarspülerpartikel beim Wasserwechsel in der Maschine nicht abgepumpt werden und damit dem Klarspülgang nicht mehr zur Verfügung stehen. Haushaltsübliche Geschirrspülmaschinen enthalten vor der Laugenpumpe, welche das Wasser bzw. die Reinigungslösung nach den einzelnen Reinigungsgängen aus der Maschine pumpt, einen Siebeinsatz, der ein Verstopfen der Pumpe durch Schmutzreste verhindern soll. Wird vom Verbraucher stark verunreinigtes Geschirr gespült, so muß dieser Siebeinsatz regelmäßig gereinigt werden, was aufgrund der leichten Zugänglichkeit und Herausnehmbarkeit problemlos möglich ist. Die erfindungsgemäßen Reinigungsmittelkomponenten sind nun hinsichtlich ihrer Größe und Form vorzugsweise so gestaltet, daß sie den Siebeinsatz der Geschirrspülmaschine auch nach dem Reinigungsgang, d. h. nach Belastung durch Bewegung in der Maschine und der Reinigungslösung, nicht passieren. Auf diese Weise wird sichergestellt, daß sich im Klarspülgang Reinigungsmittelkomponenten in der Geschirrspülmaschine befinden, welche unter der Einwirkung des wärmeren Wassers die Aktivsubstanz(en) freisetzen und den gewünschten Klarspüleffekt bringen. Im Rahmen der vorliegenden Erfindung bevorzugte teilchenförmige maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß die teilchenförmige Reinigungsmittelkomponente Teilchengrößen zwischen 1 und 40 mm, vorzugsweise zwischen 1,5 und 30 mm und insbesondere zwischen 2 und 20 mm aufweist.
In den erfindungsgemäßen Geschirrspülmitteln können die Reinigungsmittelkomponenten mit den vorstehend genannten Größen aus der Matrix der anderen teilchenförmigen Inhaltsstoffe herausragen, die anderen Partikel können aber ebenfalls Größen aufweisen, die im genannten Bereich liegen, so daß insgesamt ein Reinigungsmittel formuliert wird, das aus großen Reinigungsmittel- und Reinigungsmittelkomponentenpartikeln besteht. Insbesondere, wenn die erfindungsgemäßen Reinigungsmittelkomponenten eingefärbt werden, beispielsweise also eine rote, blaue, grüne oder gelbe Farbe aufweisen, ist es für das Erscheinungsbild des Produkts, d. h. des gesamten Reinigungsmittels von Vorteil, wenn die Reinigungsmittelkomponenten sichtbar größer sind als die Matrix aus den Teilchen der übrigen Inhaltsstoffe des Reinigungsmittels. Hier sind erfindungsgemäße teilchenförmige maschinelle Geschirrspülmittel bevorzugt, die (ohne Berücksichtigung der teilchenförmigen Reinigungsmittelkomponente) Teilchengrößen zwischen 100 und 6000 µm, vorzugsweise bis 4500 µm und insbesondere zwischen 100 und 3000 µm aufweisen, wobei vor allem Teilchengrößen zwischen 300 und 2500 µm und insbesondere zwischen 400 und 2000 µm besonders bevorzugt sind.
Werden die erfindungsgemäßen Reinigungsmittel als Pulvermischung formuliert, so kann - insbesondere bei stark unterschiedlichen Größen von Reinigungsmittelkomponente und Reinigungsmittel-Matrix - einerseits bei Rüttelbelastung des Pakets eine teilweise Entmischung eintreten, andererseits kann die Dosierung in zwei aufeinanderfolgenden Reinigungsgängen unterschiedlich sein, da der Verbraucher nicht immer zwingend gleich viel Reinigungsmittel und Reinigungsmittelkomponente dosiert. Sollte gewünscht sein, technisch eine immer gleiche Menge pro Reinigungsgang einzusetzen, kann dies über die dem Fachmann geläufige Verpackung der erfindungsgemäßen Mittel in Beuteln aus wasserlöslicher Folie realisiert werden. Auch ein teilchenförmiges maschinelles Geschirrspülmittel, das dadurch gekennzeichnet ist, daß eine Dosiereinheit in einen Beutel aus wasserlöslicher Folie eingeschweißt vorliegt, ist ein Gegenstand der vorliegenden Erfindung.
Hierdurch hat der Verbraucher nur noch einen Beutel, der beispielsweise ein Reinigungsmittel- Pulver und mehrere optisch hervortretende Reinigungsmittelkomponenten-Partikel enthält, in das Dosierfach seiner Geschirrspülmaschine einzulegen. Diese Ausführungsform der vorliegenden Erfindung ist daher eine optisch reizvolle Alternative zu herkömmlichen Reinigungsmitteltabletten.
Da der Verbraucher nicht nur teilchenförmige Reinigungsmittel für das maschinelle Geschirrspülen nutzt, sondern auch auf Formkörper zurückgreifen möchte, sind diese ein weiterer Gegenstand der vorliegenden Erfindung. Hierzu läßt sich die Schmelze aus den Inhaltsstoffen a) bis d) als Phase eines Formkörpers formulieren, die beispielsweise die Form einer Schicht, eines kernförmigen Einsatzes usw. besitzt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit ein mehrphasiger Reinigungsmittelformkörper für das maschinelle Geschirrspülen, enthaltend Gerüststoffe sowie optional weitere Reinigungsmittel-Inhaltsstoffe, bei dem mindestens eine Phase aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
besteht.
Die einzelnen Phasen des Formkörpers können im Rahmen der vorliegenden Erfindung unterschiedliche Raumformen aufweisen. Die einfachste Realisierungsmöglichkeit liegt dabei in zwei- oder mehrschichtigen Tabletten, wobei jede Schicht des Formkörpers eine Phase darstellt. Es ist aber erfindungsgemäß auch möglich, mehrphasige Formkörper herzustellen, in denen einzelne Phasen die Form von Einlagerungen in (eine) andere Phase(n) aufweisen. Neben sogenannten "Ring-Kern-Tabletten" sind dabei beispielsweise Manteltabletten oder Kombinationen der genannten Ausführungsformen möglich. Beispiele für mehrphasige Formkörper finden sich in den Abbildungen der EP-A-0 055 100 (Jeyes), die Toilettenreinigungsblöcke beschreibt. Die technisch derzeit verbreiteste Raumform mehrphasiger Formkörper ist die Zwei- oder Mehrschichttablette. Im Rahmen der vorliegenden Erfindung ist es daher bevorzugt, daß die Phasen des Formkörpers die Form von Schichten aufweisen und der Formkörper 2-, 3- oder 4-phasig ist.
Die erfindungsgemäßen Formkörper können jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weisen die erfindungsgemäßen Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.
Anstelle des Schichtaufbaus lassen sich auch Formkörper herstellen, die die erfindungsgemäße Reinigungsmittelkomponente in Form anderer Phasen beinhalten. Hier hat es sich bewährt, Basisformkörper herzustellen, welche eine oder mehrere Kavität(en) aufweisen und die Schmelze aus den Inhaltsstoffen a) bis d) der erfindungsgemäßen Reinigungsmittelkomponente in die Kavität einzufüllen und dort erstarren zu lassen. Durch dieses Herstellungsverfahren ergeben sich bevorzugte mehrphasige Reinigungsmittelformkörper, die aus einem Basisfomkörper, welcher eine Kavität aufweist, und einem mindestens teilweise in der Kavität enthaltenen Teil bestehen.
Die Kavität im verpreßten Teil solcher erfindungsgemäßen Formkörper kann dabei jedwede Form aufweisen. Sie kann den Formkörper durchteilen, d. h. eine Öffnung an verschiedenen Seiten, beispielsweise an Ober- und Unterseite des Formkörpers aufweisen, sie kann aber auch eine nicht durch den gesamten Formkörper gehende Kavität sein, deren Öffnung nur an einer Formkörperseite sichtbar ist. Auch die Form der Kavität kann in weiten Grenzen frei gewählt werden. Aus Gründen der Verfahrensökonomie haben sich durchgehende Löcher, deren Öffnungen an einander gegenüberliegenden Flächen der Formkörper liegen, und Mulden mit einer Öffnung an einer Formkörperseite bewährt. In bevorzugten Wasch- und Reinigungsmittelformkörpern weist die Kavität die Form eines durchgehenden Loches auf, dessen Öffnungen sich an zwei gegenüberliegenden Formkörperflächen befinden. Die Form eines solchen durchgehenden Lochs kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen das durchgehende Loch kreisrunde, ellipsenförmige, dreieckige, rechteckige, quadratische, fünfeckige, sechseckige, siebeneckige oder achteckige Horizontalschnitte aufweist. Auch völlig irreguläre Lochformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind im Falle von eckigen Löchern solche mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.
Die vorstehend genannten geometrischen Realisierungsformen lassen sich beliebig miteinander kombinieren. So können Formkörper mit rechteckiger oder quadratischer Grundfläche und kreisrunden Löchern ebenso hergestellt werden wie runde Formkörper mit achteckigen Löchern, wobei der Vielfalt der Kombinationsmöglichkeiten keine Grenzen gesetzt sind. Aus Gründen der Verfahrensökonomie und des ästhetischen Verbraucherempfindens sind Formkörper mit Loch besonders bevorzugt, bei denen die Formkörpergrundfläche und der Lochquerschnitt die gleiche geometrische Form haben, beispielsweise Formkörper mit quadratischer Grundfläche und zentral eingearbeitetem quadratischem Loch. Besonders bevorzugt sind hierbei Ringformkörper, d. h. kreisrunde Formkörper mit kreisrundem Loch.
Wenn das o. g. Prinzip des an zwei gegenüberliegenden Formkörperseiten offenen Lochs auf eine Öffnung reduziert wird, gelangt man zu Muldenformkörpern. Erfindungsgemäße Wasch- und Reinigungsmittelformkörper, bei denen die Kavität die Form einer Mulde aufweist, sind ebenfalls bevorzugt. Wie bei den "Lochformkörpern" können die erfindungsgemäßen Formkörper auch bei dieser Ausführungsform jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weist der Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.
Auch die Form der Mulde kann frei gewählt werden, wobei Formkörpr bevorzugt sind, in denen mindestens eine Mulde eine konkave, konvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Form annehmen kann. Auch völlig irreguläre Muldenformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind Mulden mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.
Im vorstehend geschilderten Fall besteht der mindestens anteilsweise in der Kavität enthaltene Teil allein aus den Inhaltsstoffen a) bis d) der Reinigungsmittelkomponenten. Es ist aber auch möglich, trägermaterialbasierte Reinigungsmittelkomponenten in die Kavität(en) einzubringen. Aus Gründen der Verfahrensökonomie sind allerdings mehrphasige Reinigungsmittelformkörper bevorzugt, bei denen der in der Kavität enthaltene Teil aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
besteht.
Die Größe der Mulde oder des durchgehenden Loches im Vergleich zum gesamten Formkörper richtet sich nach dem gewünschten Verwendungszweck der Formkörper. Je nachdem, mit wieviel weiterer Aktivsubstanz das verbleibende Hohlvolumen befüllt werden soll und ob eine geringere oder größere Menge an Reinigungsmittelkomponente enthalten sein soll, kann die Größe der Kavität variieren. Unabhängig vom Verwendungszweck sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Volumenverhältnis von verpreßtem Teil ("Basisformkörper") zur Reinigungsmittelkomponente 2 : 1 bis 100 : 1, vorzugsweise 3 : 1 bis 80 : 1, besonders bevorzugt 4 : 1 bis 50 : 1 und insbesondere 5 : 1 bis 30 : 1, beträgt.
Neben dem genannten Volumenverhältnis kann auch ein Massenverhältnis der beiden Teile angegeben werden, wobei die beiden Werte über die Dichten des Basisformkörpers bzw. der Reinigungsmittelkomponente miteinander korrelieren. Unabhängig von der Dichte der einzelnen Teile sind erfindungsgemäße Wasch- oder Reinigungsmittelformkörper bevorzugt, bei denen das Gewichtsverhältnis von Basisformkörper zu Reinigungsmittelkomponente 1 : 1 bis 100 : 1, vorzugsweise 2 : 1 bis 80 : 1, besonders bevorzugt 3 : 1 bis 50 : 1 und insbesondere 4 : 1 bis 30 : 1 beträgt.
Analoge Angaben lassen sich auch für die Oberflächen machen, die jeweils vom Basisformkörper bzw von der Reinigungsmittelkomponente sichtbar sind. Hier sind Wasch- oder Reinigungsmittelformkörper bevorzugt, bei denen die nach außen sichtbare Oberfläche der Reinigungsmittelkomponente 1 bis 25%, vorzugsweise 2 bis 20%, besonders bevorzugt 3 bis 15% und insbesondere 4 bis 10% der Gesamtoberfläche des Formkörpers ausmacht.
Die Reinigungsmittelkomponente und der Basisformkörper sind vorzugsweise optisch unterscheidbar eingefärbt. Neben der optischen Differenzierung können anwendungstechnische Vorteile durch unterschiedliche Löslichkeiten der verschiedenen Formkörperbereiche erzielt werden. Wasch- und Reinigungsmittelformkörper, bei denen sich die Reinigungsmittelkomponente schneller löst als der Basisformkörper, sind erfindungsgemäß bevorzugt. Durch Inkorporation bestimmter Bestandteile kann einerseits die Löslichkeit der Reinigungsmittelkomponente gezielt beschleunigt werden, andererseits kann die Freisetzung bestimmter Inhaltsstoffe aus der Reinigungsmittelkomponente zu Vorteilen im Wasch- bzw. Reinigungsprozeß führen.
Selbstverständlich sind auch erfindungsgemäße Wasch- oder Reinigungsmittelformkörper bevorzugt, bei denen sich die Reinigungsmittelkomponente später löst als der Basisformkörper. Leistungsvorteile aus dieser verzögerten Freisetzung lassen sich beispielsweise dadurch erreichen, daß mit Hilfe einer langsamer löslichen Reinigungsmittelkomponente Aktivsubstanz(en) erst in späteren Spülgängen freigesetzt werden. So kann beispielsweise beim maschinellen Geschirrspülen durch langsamer lösliche Reinigungsmittelkomponenten erreicht werden, daß im Klarspülgang weitere Aktivsubstanz(en) zur Verfügung steht/stehen. Durch zusätzliche Stoffe wie nichtionische Tenside, Acidifizierungsmittel, soil-release-Polymere usw. lassen sich so die Klarspülergebnisse verbessern. Auch eine Inkorporation von Parfüm ist problemlos möglich; durch dessen verzögerte Freisetzung kann bei Geschirrspülmaschinen der oft auftretende "Laugengeruch" beim Öffnen der Maschine beseitigt werden. Die Inhaltsstoffe Acidifizierungsmittel, soil-release-Polymere usw. sind auf die erfindungsgemäßen Reinigungsmittelkomponenten bezogen dann Inhaltsstoffe d).
Der Basisformkörper besitzt in bevorzugten Ausführungsformen der vorliegenden Erfindung ein hohes spezifisches Gewicht. Wasch- und Reinigungsmittelformkörper, die dadurch gekennzeichnet sind, daß der Basisformkörper eine Dichte oberhalb von 1000 gdm-3, vorzugsweise oberhalb von 1025 gdm-3, besonders bevorzugt oberhalb von 1050 gdm-3 und insbesondere oberhalb von 1100 gdm-3 aufweist, sind erfindungsgemäß bevorzugt.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Bevorzugte Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht. Enthält nur der Basisformkörper Desintegrationshilfsmittel, so beziehen sich die genannten Angaben nur auf das Gewicht des Basisformkörpers. Bei der Inkorporation von Desintegrationshilfsmitteln in die erfindungsgemäßen Reinigungsmittelkomponenten zählen jene als Inhaltsstoff d).
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO 98/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
Im Rahmen der vorliegenden Erfindung bevorzugte Reinigungsmittelformkörper enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht.
Die erfindungsgemäßen Reinigungsmittelformkörper können darüber hinaus sowohl im Basisformkörper als auch in der Reinigungsmittelkomponente ein gasentwickelndes Brausesystem enthalten. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.
Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate aus waschtechnischem Interesse bevorzugt sein.
In bevorzugten Reinigungsmittelformkörpern werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkalimetallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 und insbesondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen auf den gesamten Formkörper, eingesetzt.
Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
Bevorzugt sind im Rahmen der vorliegenden Erfindung Reingungsmittelformkörper, bei denen als Acidifizierungsmittel im Brausesystem ein Stoff aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische aus diesen eingesetzt werden.
Die erfindungsgemäßen teilchenförmigen Reinigungsmittel und/oder Wasch- und Reinigungsmittelformkörper können - wie auch die erfindungsgemäßen Reinigungsmittelkomponenten an sich - nach der Herstellung verpackt werden, wobei sich der Einsatz bestimmter Verpackungssysteme besonders bewährt hat. Ein weiterer Aspekt der vorliegenden Erfindung ist eine Kombination aus (einem) erfindungsgemäßen teilchenförmigen Reinigungsmittel(n) und/oder (einem) erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper(n) und einem das Reinigungsmittel und/oder den oder die Wasch- und Reinigungsmittelformkörper enthaltenden Verpackungssystem, wobei das Verpackungssystem eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag aufweist, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird.
Das Verpackungssystem der Kombination aus Reinigungsmittelkomponente und/oder Reinigungsmittel und/oder Wasch- und Reinigungsmittelformkörper(n) und Verpackungssystem weist erfindungsgemäß eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag auf, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird. Die genannten Temperatur- und Feuchtigkeitsbedingungen sind die Prüfbedingungen, die in der DIN-Norm 53122 genannt werden, wobei laut DIN 53122 minimale Abweichungen zulässig sind (23 ± 1°C, 85 ± 2% rel. Feuchte). Die Feuchtigkeitsdampfdurchlässigkeitsrate eines gegebenen Verpackungssystems bzw. Materials läßt sich nach weiteren Standardmethoden bestimmen und ist beispielsweise auch im ASTM-Standard E-96-53T ("Test for measuring Water Vapor transmission of Materials in Sheet form") und im TAPPI Standard T464 m-45 ("Water Vapor Permeability of Sheet Materials at high temperature and Humidity") beschrieben. Das Meßprinzip gängiger Verfahren beruht dabei auf der Wasseraufnahme von wasserfreiem Calciumchlorid, welches in einem Behälter in der entsprechenden Atmosphäre gelagert wird, wobei der Behälter an der Oberseite mit dem zu testenden Material verschlossen ist. Aus der Oberfläche des Behälters, die mit dem zu testenden Material verschlossen ist (Permeationsfläche), der Gewichtszunahme des Calciumchlorids und der Expositionszeit läßt sich die Feuchtigkeitsdampfdurchlässigkeitsrate nach
berechnen, wobei A die Fläche des zu testenden Materials in cm2, x die Gewichtszunahme des Calciumchlorids in g und y die Expositionszeit in h bedeutet.
Die relative Gleichgewichtsfeuchtigkeit, oft als "relative Luftfeuchtigkeit" bezeichnet, beträgt bei der Messung der Feuchtigkeitsdampfdurchlässigkeitsrate im Rahmen der vorliegenden Erfindung 85% bei 23°C. Die Aufnahmefähigkeit von Luft für Wasserdampf steigt mit der Temperatur bis zu einem jeweiligen Höchstgehalt, dem sogenannten Sättigungsgehalt, an und wird in g/m3 angegeben. So ist beispielsweise 1 m3 Luft von 17° mit 14,4 g Wasserdampf gesättigt, bei einer Temperatur von 11° liegt eine Sättigung schon mit 10 g Wasserdampf vor. Die relative Luftfeuchtigkeit ist das in Prozent ausgedrückte Verhältnis des tatsächlich vorhandenen Wasserdampf-Gehalts zu dem der herrschenden Temperatur entsprechenden Sättigungs-Gehalt. Enthält beispielsweise Luft von 17° 12 g/m3 Wasserdampf, dann ist die relative Luftfeuchtigkeit = (12/14,4).100 = 83%. Kühlt man diese Luft ab, dann wird die Sättigung (100% r. L.) beim sogenannten Taupunkt (im Beispiel: 14°) erreicht, d. h., bei weiterem Abkühlen bildet sich ein Niederschlag in Form von Nebel (Tau). Zur quantitativen Bestimmung der Feuchtigkeit benutzt man Hygrometer und Psychrometer.
Die relative Gleichgewichtsfeuchtigkeit von 85% bei 23°C läßt sich beispielsweise in Laborkammern mit Feuchtigkeitskontrolle je nach Gerätetyp auf +/- 2% r. L. genau einstellen. Auch über gesättigten Lösungen bestimmter Salze bilden sich in geschlossenen Systemen bei gegebener Temperatur konstante und wohldefinierte relative Luftfeuchtigkeiten aus, die auf dem Phasen-Gleichgewicht zwischen Partialdruck des Wassers, gesättigter Lösung und Bodenkörper beruhen.
Die erfindungsgemäßen Kombinationen können selbstverständlich ihrerseits in Sekundärverpackungen, beispielsweise Kartonagen oder Trays, verpackt werden, wobei an die Sekundärverpackung keine weiteren Anforderungen gestellt werden müssen. Die Sekundärverpackung ist demnach möglich, aber nicht notwendig.
Im Rahmen der vorliegenden Erfindung bevorzugte Verpackungssysteme weisen eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,5 g/m2/Tag bis weniger als 15 g/m2/Tag auf.
Das Verpackungssystem der erfindungsgemäßen Kombination umschließt je nach Ausführungsform der Erfindung eine bestimmte Menge an erfindungsgemäßer Reinigungsmittelkomponente, eine bestimmte Menge einer teilchenförmigen Reinigungsmittelzusammensetzung oder einen oder mehrere Wasch- und Reinigungsmittelformkörper. Es ist dabei erfindungsgemäß bevorzugt, entweder einen Formkörper derart zu gestalten, daß er eine Anwendungseinheit des Wasch- und Reinigungsmittels umfaßt, und diesen Formkörper einzeln zu verpacken, oder die Zahl an Formkörpern in eine Verpackungseinheit einzupacken, die in Summe eine Anwendungseinheit umfaßt. Bei einer Solldosierung von 80 g Wasch- und Reinigungsmittel ist es also erfindungsgemäß möglich, einen 80 g schweren Wasch- und Reinigungsmittelformkörper herzustellen und einzeln zu verpacken, es ist erfindungsgemäß aber auch möglich, zwei je 40 g schwere Wasch- und Reinigungsmittelformkörper in eine Verpackung einzupacken, um zu einer erfindungsgemäßen Kombination zu gelangen. Dieses Prinzip läßt sich selbstverständlich erweitern, so daß erfindungsgemäß Kombinationen auch drei, vier, fünf oder noch mehr Wasch- und Reinigungsmittelformkörper in einer Verpackungseinheit enthalten können. Selbstverständlich können zwei oder mehr Formkörper in einer Verpackung unterschiedliche Zusammensetzungen aufweisen. Auf diese Weise ist es möglich, bestimmte Komponenten räumlich voneinander zu trennen, um beispielsweise Stabilitätsprobleme zu vermeiden.
Das Verpackungssystem der erfindungsgemäßen Kombination kann aus den unterschiedlichsten Materialien bestehen und beliebige äußere Formen annehmen. Aus ökonomischen Gründen und aus Gründen der leichteren Verarbeitbarkeit sind allerdings Verpackungssysteme bevorzugt, bei denen das Verpackungsmaterial ein geringes Gewicht hat, leicht zu verarbeiten und kostengünstig ist. In erfindungsgemäß bevorzugten Kombinationen besteht das Verpackungssystem aus einem Sack oder Beutel aus einschichtigem oder laminiertem Papier und/oder Kunststofffolie.
Dabei können die Wasch- und Reinigungsmittelformkörper unsortiert, d. h. als lose Schüttung, in einen Beutel aus den genannten Materialien gefüllt werden. Es ist aber aus ästhetischen Gründen und zur Sortierung der Kombinationen in Sekundärverpackungen bevorzugt, die Wasch- und Reinigungsmittelformkörper einzeln oder zu mehreren sortiert in Säcke oder Beutel zu füllen. Für einzelne Anwendungseinheiten der Wasch- und Reinigungsmittelformkörper, die sich in einem Sack oder Beutel befinden, hat sich in der Technik der Begriff "flow pack" eingebürgert. Solche "flow packs" können dann - wiederum vorzugsweise sortiert - optional in Umverpackungen verpackt werden, was die kompakte Angebotsform des Formkörpers unterstreicht.
Die bevorzugt als Verpackungssystem einzusetzenden Säcke bzw. Beutel aus einschichtigem oder laminiertem Papier bzw. Kunststoffolie können auf die unterschiedlichste Art und Weise gestaltet werden, beispielsweise als aufgeblähte Beutel ohne Mittelnaht oder als Beutel mit Mittelnaht, welche durch Hitze (Heißverschmelzen), Klebstoffe oder Klebebänder verschlossen werden. Einschichtige Beutel- bzw. Sackmaterialien sind die bekannten Papiere, die gegebenenfalls imprägniert sein können, sowie Kunststoffolien, welche gegebenenfalls coextrudiert sein können. Kunststoffolien, die im Rahmen der vorliegenden Erfindung als Verpackungssystem eingesetzt werden können, sind beispielsweise in Hans Domininghaus "Die Kunststoffe und ihre Eigenschaften", 3. Auflage, VDI Verlag, Düsseldorf, 1988, Seite 193, angegeben. Die dort gezeigte Abb. 111 gibt gleichzeitig Anhaltspunkte zur Wasserdampfdurchlässigkeit der genannten Materialien.
Im Rahmen der vorliegenden Erfindung besonders bevorzugte Kombinationen enthalten als Verpackungssystem einen Sack oder Beutel aus einschichtiger oder laminierter Kunststoffolie mit einer Dicke von 10 bis 200 µm, vorzugsweise von 20 bis 100 µm und insbesondere von 25 bis 50 µm.
Obwohl es möglich ist, neben den genannten Folien bzw. Papieren auch wachsbeschichtete Papiere in Form von Kartonagen als Verpackungssystem für die Wasch- und Reinigungsmittelformkörper einzusetzen, ist es im Rahmen der vorliegenden Erfindung bevorzugt, wenn das Verpackungssystem keine Kartons aus wachsbeschichtetem Papier umfaßt. Der Begriff "Verpackungssystem" kennzeichnet dabei im Rahmen der vorliegenden Erfindung immer die Primärverpackung der Reinigungsmittelkomponente, Reinigungsmittelzusammensetzung oder Formkörper, d. h. die Verpackung, die an ihrer Innenseite direkt mit der Reinigungsmittelkomponente, Reinigungsmittelzusammensetzung oder Formkörperoberfläche in Kontakt ist. An eine optionale Sekundärverpackung werden keinerlei Anforderungen gestellt, so daß hier alle üblichen Materialien und Systeme eingesetzt werden können.
Wie bereits weiter oben erwähnt, enthalten die Reinigungsmittelkomponenteen, Reinigungsmittelzusammensetzungen oder Wasch- und Reinigungsmittelformkörper der erfindungsgemäßen Kombination je nach ihrem Verwendungszweck weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln in variierenden Mengen. Unabhängig vom Verwendungszweck der Mittel bzw. Formkörper ist es erfindungsgemäß bevorzugt, daß das/die Mittel oder der bzw. die Wasch- und Reinigungsmittelformkörper eine relative Gleichgewichtsfeuchtigkeit von weniger als 30% bei 35°C aufweist/aufweisen.
Die relative Gleichgewichtsfeuchtigkeit der Mittel bzw. Wasch- und Reinigungsmittelformkörper kann dabei nach gängigen Methoden bestimmt werden, wobei im Rahmen der vorliegenden Untersuchungen folgende Vorgehensweise gewählt wurde: Ein wasserundurchlässiges 1-Liter-Gefäß mit einem Deckel, welcher eine verschließbare Öffnung für das Einbringen von Proben aufweist, wurde mit insgesamt 300 g Wasch- und Reinigungsmittelformkörpern befüllt und 24 h bei konstant 23°C gehalten, um eine gleichmäßige Temperatur von Gefäß und Substanz zu gewährleisten. Der Wasserdampfdruck im Raum über den Formkörpern kann dann mit einem Hygrometer (Hygrotest 6100, Testoterm Ltd., England) bestimmt werden. Der Wasserdampfdruck wird nun alle 10 Minuten gemessen, bis zwei aufeinanderfolgende Werte keine Abweichung zeigen (Gleichgewichtsfeuchtigkeit). Das o. g. Hygrometer erlaubt eine direkte Anzeige der aufgenommenen Werte in % relativer Feuchtigkeit.
Ebenfalls bevorzugt sind Ausführungsformen der erfindungsgemäßen Kombination, bei denen das Verpackungssystem wiederverschließbar ausgeführt ist. Auch Kombinationen, bei denen das Verpackungssystem eine Microperforation aufweist, lassen sich erfindungsgemäß mit Vorzug realisieren.
Wie weiter oben erwähnt, lassen sich Reinigungsmittelkomponenten, Reinigungsmittelzusammensetzungen oder Reinigungsmitteltabletten für das maschinelle Geschirrspülen nach den erfindungsgemäßen Verfahren herstellen. Dementsprechend ist ein Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, dadurch gekennzeichnet, daß man ein oder mehrere erfindungsgemäße(s) teilchenförmige(s) Reinigungsmittel und/oder einen oder mehrere erfindungsgemäße(n) Wasch- oder Reinigungsmittelformkörper die Dosierkammer der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf sich die Dosierkammer öffnet und das bzw. die Reinigungsmittel und/oder der bzw. die Formkörper aufgelöst werden, ein weiterer Gegenstand der vorliegenden Erfindung.
Auch beim erfindungsgemäßen Reinigungsverfahren kann man auf die Dosierkammer verzichten und die erfindungsgemäßen Reinigungsmittelkomponenten bzw. Reinigungsmittelzusammensetzungen oder den bzw. die erfindungsgemäßen Formkörper beispielsweise in den Besteckkorb einlegen. Selbstverständlich ist aber auch hier der Einsatz einer Dosierhilfe, beispielsweise eines Körbchens, das im Spülraum angebracht wird, problemlos möglich. Dementsprechend ist ein Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, dadurch gekennzeichnet, daß man ein oder mehrere erfindungsgemäße(s) teilchenförmige(s) Reinigungsmittel und/oder einen oder mehrere erfindungsgemäße(n) Wasch- oder Reinigungsmittelformkörper mit oder ohne Dosierhilfe in den Spülraum der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf das bzw. die Reinigungsmittel und/oder der bzw. die Formkörper aufgelöst werden, ein weiterer Gegenstand der vorliegenden Erfindung.
Beispiele
Es wurden Schmelzdispersionen bzw. -emulsionen folgender Zusammensetzung [Gew.-%] hergestellt:
Hierzu wurde das Niotensid auf 85°C erhitzt, das Paraffin unter Rühren zugesetzt und die übrigen Inhaltsstoffe zuletzt zugegeben. Die Stabilität der Suspension/Emulsion wurde bei 85°C durch Abschalten des Rührers und visuelle Beurteilung bewertet.
Dabei wurde folgendes Schema zugrundegelegt:
++ sichtbare Trennung erfolgt ab < 60 s
+ sichtbare Trennung erfolgt ab < 30 s
- sichtbare Trennung erfolgt ab < 30 s
- - sichtbare Trennung erfolgt nach Abschalten des Rührers < 10 s
Die folgende Tabelle zeigt die Ergebnisse

Claims (40)

1. Reinigungsmittelkomponente, enthaltend
  • a) 10 bis 89,9 Gew.-% Tensid(e),
  • b) 10 bis 89,9 Gew.-% schmelzbare Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
mit der Maßgabe, daß mindestens 90 Gew.-% der Partikel c) Teilchengrößen unter 300 µm aufweisen.
2. Reinigungsmittelkomponente nach Anspruch 1, dadurch gekennzeichnet, daß sie als Inhaltsstoff a) 15 bis 80, vorzugsweise 20 bis 70, besonders bevorzugt 25 bis 60 und insbesondere 30 bis 50 Gew.-% Tensid(e) enthält.
3. Reinigungsmittelkomponente nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß sie als Inhaltsstoff b) 15 bis 85, vorzugsweise 20 bis 80, besonders bevorzugt 25 bis 75 und insbesondere 30 bis 70 Gew.-% schmelzbare Substanz(en) enthält.
4. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie den Inhaltsstoff c) in Mengen von 0,15 bis 12,5, vorzugsweise von 0,2 bis 10, besonders bevorzugt von 0,25 bis 7,5 und insbesondere von 0,3 bis 5 Gew.-% enthält.
5. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie als Inhaltsstoff a) anionische(s) und/oder nichtionische(s) Tensid(e), vorzugsweise nichtionische(s) Tensid(e), enthält.
6. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als Inhaltsstoff a) nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, enthält.
7. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie als Inhaltsstoff a) ethoxylierte(s) Niotensid(e), das/die aus C6-20- Monohydroxyalkanolen oder C6-20-Alkylphenolen oder C16-20-Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurde(n), enthält.
8. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie als Inhaltsstoff a) ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, enthält.
9. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie als Inhaltsstoff a) nichtionische Tenside der Formel
R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2]
enthält, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
10. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie als Inhaltsstoff a) endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2
enthält, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, 2-Butyl- oder 2-Methyl-2- Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, wobei Tenside des Typs
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2,
in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind.
11. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie als Inhaltsstoff h) einen oder mehrere Stoffe mit einem Schmelzbereich zwischen 30 und 100°C, vorzugsweise zwischen 40 und 80°C und insbesondere zwischen 50 und 75°C, enthält.
12. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß sie als Inhaltsstoff b) mindestens ein Paraffinwachs mit einem Schmelzbereich von 30°C bis 65°C enthält.
13. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Wasserlöslichkeit des Inhaltsstoffs b) bei 20°C weniger als 15 g/l, vorzugsweise weniger als 10 g/l, besonders bevorzugt weniger als 5 g/l und insbesondere weniger als 2 g/l beträgt.
14. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß mindestens 90 Gew.-% der Partikel von c) Teilchengrößen unter 190 µm, vorzugsweise unter 175 µm und insbesondere unter 150 µm aufweisen.
15. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Inhaltsstoff c) vollständig aus Partikeln mit Teilchengrößen unter 200 µm, vorzugsweise unter 175 µm, besonders bevorzugt unter 150 µm und insbesondere unter 100 µm, besteht.
16. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß sie als Inhaltsstoff c) Alkalimetallsalze organischer Säuren, vorzugsweise Alkalimetallacetate und insbesondere Kaliumacetat, enthält.
17. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß sie als Inhaltsstoff c) Stoffe aus der Gruppe der Tonmineralien, vorzugsweise der chemisch modifizierten Tonminerale und insbesondere der hydrophobierten Bentonite, enthält.
18. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß sie als Inhaltsstoff c) anionische(s) Tensid(e), vorzugsweise Fettalkoholsulfate und insbesondere C12-18-Fettalkoholsulfate, enthält.
19. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß sie als Inhaltsstoff d) weitere Wirk- und/oder Hilfsstoffe aus den Gruppen der Farbstoffe, Duftstoffe, soil-release-Polymere, Korrosionsinhibitoren, Enzyme, Bleichmittel, Bleichaktivatoren und Komplexbildner in Mengen von 0 bis 10 Gew.-%, vorzugsweise von 0,25 bis 7,5 Gew.-%, besonders bevorzugt von 0,5 bis 5 Gew.-% und insbesondere von 0,75 bis 2,5 Gew.-%, enthält.
20. Reinigungsmittelkomponente nach einem der Ansprüche 1 bis 19, gekennzeichnet durch einen Schmelzpunkt zwischen 50 und 80°C, vorzugsweise zwischen 52,5 und 75°C und insbesondere zwischen 55 und 65°C.
21. Verfahren zur Herstellung teilchenförmiger Reinigungsmittelkomponenten, dadurch gekennzeichnet, daß man eine Schmelze aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
auf ein oder mehrere Trägermaterialien aufbringt und die Mischung formgebend verarbeitet.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die formgebende Verarbeitung durch Granulieren, Kompaktieren, Pelletieren, Extrudieren oder Tablettieren erfolgt.
23. Verfahren zur Herstellung verprillter Reinigungsmittelkomponenten, dadurch gekennzeichnet, daß man eine Schmelze aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
in einen Kaltgasstrom eindüst.
24. Verfahren zur Herstellung pastillierter Reinigungsmittelkomponenten, dadurch gekennzeichnet, daß man eine Schmelze aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
auf gekühlte Pastillierteller dosiert.
25. Verfahren zur Herstellung teilchenförmiger Reinigungsmittelkomponenten, dadurch gekennzeichnet, daß man eine Schmelze aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
auf eine Kühlwalze aufträgt oder aufsprüht, die erstarrte Schmelze abschabt und falls erforderlich zerkleinert.
26. Verwendung von teilchenförmigen Reinigungsmittelkomponenten aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
in Reinigungsmitteln für das maschinelle Geschirrspülen.
27. Teilchenförmiges maschinelles Geschirrspülmittel, enthaltend Gerüststoffe sowie optional weitere Reinigungsmittel-Inhaltsstoffe, dadurch gekennzeichnet, daß es teilchenförmige Reinigungsmittelkomponenten enthält, die bezogen auf ihr Gewicht,
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
enthalten.
28. Teilchenförmiges maschinelles Geschirrspülmittel nach Anspruch 27, dadurch gekennzeichnet, daß es Gerüststoffe in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% und insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Mittels, enthält.
29. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 27 oder 28, dadurch gekennzeichnet, daß es weiterhin einen oder mehrere Stoffe aus den Gruppen der Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Tenside, Korrosionsinhibitoren, Polymere, Farb- und Duftstoffe, pH-Stellmittel, Komplexbildner und der Enzyme enthält.
30. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 27 bis 29, dadurch gekennzeichnet, daß es die teilchenförmige Reinigungsmittelkomponente in Mengen von 0,5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-% und insbesondere von 3 bis 15 Gew.-%, jeweils bezogen auf gesamtes Mittel, enthält.
31. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 27 bis 30, dadurch gekennzeichnet, daß die teilchenförmige Reinigungsmittelkomponente Teilchengrößen zwischen 1 und 40 mm, vorzugsweise zwischen 1,5 und 30 mm und insbesondere zwischen 2 und 20 mm aufweist.
32. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 27 bis 31, dadurch gekennzeichnet, daß es (ohne Berücksichtigung der teilchenförmigen Reinigungsmittelkomponente) Teilchengrößen zwischen 100 und 3000 µm, vorzugsweise zwischen 300 und 2500 µm und insbesondere zwischen 400 und 2000 µm aufweist.
33. Teilchenförmiges maschinelles Geschirrspülmittel nach einem der Ansprüche 27 bis 32, dadurch gekennzeichnet, daß eine Dosiereinheit in einen Beutel aus wasserlöslicher Folie eingeschweißt vorliegt.
34. Mehrphasiger Reinigungsmittelformkörper für das maschinelle Geschirrspülen, enthaltend Gerüststoffe sowie optional weitere Reinigungsmittel-Inhaltsstoffe, dadurch gekennzeichnet, daß mindestens eine Phase aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
besteht.
35. Mehrphasiger Reinigungsmittelformkörper nach Anspruch 34, dadurch gekennzeichnet, daß die Phasen die Form von Schichten aufweisen und der Formkörper 2-, 3- oder 4-phasig ist.
36. Mehrphasiger Reinigungsmittelformkörper nach Anspruch 34, dadurch gekennzeichnet, daß er aus einem Basisfomkörper, welcher eine Kavität aufweist, und einem mindestens teilweise in der Kavität enthaltenen Teil besteht.
37. Mehrphasiger Reinigungsmittelformkörper nach Anspruch 36, dadurch gekennzeichnet, daß der in der Kavität enthaltene Teil aus
  • a) 10 bis 89,9 Gew.-% Tensid(en),
  • b) 10 bis 89,9 Gew.-% schmelzbare(n) Substanz(en) mit einem Schmelzpunkt oberhalb von 30°C und einer Wasserlöslichkeit von weniger als 20 g/l bei 20°C,
  • c) 0,1 bis 15 Gew.-% eines oder mehrerer Feststoffe,
  • d) 0 bis 15 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
besteht.
38. Kombination aus (einem) teilchenförmigen Reinigungsmittel(n) nach einem der Ansprüche 24 bis 30 und/oder (einem) Wasch- oder Reinigungsmittelformkörper(n) nach einem der Ansprüche 31 bis 34 und einem das Reinigungsmittel und/oder den oder die Wasch- und Reinigungsmittelformkörper enthaltenden Verpackungssystem, dadurch gekennzeichnet, daß das Verpackungssystem eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag aufweist, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird.
39. Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, dadurch gekennzeichnet, daß man ein oder mehrere teilchenförmige(s) Reinigungsmittel nach einem der Ansprüche 24 bis 30 und/oder einen oder mehrere Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 31 bis 34 in die Dosierkammer der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf sich die Dosierkammer öffnet und das bzw. die Reinigungsmittel und/oder der bzw. die Formkörper aufgelöst werden.
40. Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, dadurch gekennzeichnet, daß man ein oder mehrere teilchenförmige(s) Reinigungsmittel nach einem der Ansprüche 24 bis 30 und/oder einen oder mehrere Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 31 bis 34 mit oder ohne Dosierhilfe in den Spülraum der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf das bzw. die Reinigungsmittel und/oder der bzw. die Formkörper aufgelöst werden.
DE19957505A 1999-09-10 1999-11-30 Reinigungsmittelkomponente mit feinteiligen Feststoffen Withdrawn DE19957505A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE19957505A DE19957505A1 (de) 1999-09-10 1999-11-30 Reinigungsmittelkomponente mit feinteiligen Feststoffen
EP00964095A EP1210404B1 (de) 1999-09-10 2000-09-02 Reinigungsmittelkomponente mit feinteiligen feststoffen
AU75135/00A AU7513500A (en) 1999-09-10 2000-09-02 Detergent component with fine-particle solids
DE50011646T DE50011646D1 (de) 1999-09-10 2000-09-02 Reinigungsmittelkomponente mit feinteiligen feststoffen
AT00964095T ATE310075T1 (de) 1999-09-10 2000-09-02 Reinigungsmittelkomponente mit feinteiligen feststoffen
PCT/EP2000/008582 WO2001019950A1 (de) 1999-09-10 2000-09-02 Reinigungsmittelkomponente mit feinteiligen feststoffen
ES00964095T ES2253253T3 (es) 1999-09-10 2000-09-02 Componentes para agentes de limpieza con productos solidos finamente divididos.
CA002318000A CA2318000A1 (en) 1999-09-10 2000-09-11 Detergent component with finely divided solids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19943301 1999-09-10
DE19957505A DE19957505A1 (de) 1999-09-10 1999-11-30 Reinigungsmittelkomponente mit feinteiligen Feststoffen

Publications (1)

Publication Number Publication Date
DE19957505A1 true DE19957505A1 (de) 2001-03-15

Family

ID=7921485

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19957505A Withdrawn DE19957505A1 (de) 1999-09-10 1999-11-30 Reinigungsmittelkomponente mit feinteiligen Feststoffen

Country Status (1)

Country Link
DE (1) DE19957505A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011123737A1 (en) * 2010-04-01 2011-10-06 The Procter & Gamble Company Care polymers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011123737A1 (en) * 2010-04-01 2011-10-06 The Procter & Gamble Company Care polymers
US8440174B2 (en) 2010-04-01 2013-05-14 The Procter & Gamble Company Compositions comprising surfactants and alkyloxy-modified silicone
US8586015B2 (en) 2010-04-01 2013-11-19 The Procter & Gamble Company Compositions comprising surfactants and glycerol-modified silicones
US8940284B2 (en) 2010-04-01 2015-01-27 The Procter & Gamble Company Organosilicones
US9212338B2 (en) 2010-04-01 2015-12-15 The Procter & Gamble Company Organosilicones
US9650593B2 (en) 2010-04-01 2017-05-16 The Procter & Gamble Company Organosilicones

Similar Documents

Publication Publication Date Title
DE19944416A1 (de) Klarspülmittel
EP1322743B1 (de) Muldentabletten und verfahren zu ihrer herstellung
EP1192241B1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
DE10060533A1 (de) Maschinelle Geschirrspülmittel und Klarspüler mit Geruchsabsorber
DE10032612A1 (de) Klarspülmittel II
DE19959875A1 (de) Preßverfahren für mehrphasige Formkörper
DE19948667A1 (de) Reinigungsmittelkomponente mit doppelkontrollierter Duftfreisetzung
DE10003429A1 (de) Wasch- oder Reinigungsmittelportion mit kontrollierter Wirkstofffreisetzung
DE19914363A1 (de) Maschinelle Geschirrspülmittel mit teilchenförmigem Klarspüler
EP1210404B1 (de) Reinigungsmittelkomponente mit feinteiligen feststoffen
DE19957504A1 (de) Reinigungsmittelkomponente
DE20019913U1 (de) Klarspülmittel II
EP1123381B1 (de) Wasch- und reinigungsmittelformkörper/verpackung-kombination
EP1123380A1 (de) Wasch- und reinigungsmittelformkörper/verpackung-kombination
DE19957505A1 (de) Reinigungsmittelkomponente mit feinteiligen Feststoffen
EP1173538B1 (de) Leistungsgesteigerte reinigungsmitteltabletten für das maschinelle geschirrspülen
DE19957438A1 (de) Wasch- und Reinigungsmittelformkörper
DE19960096A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
DE10060534A1 (de) Klarspülmittel III
DE20014919U1 (de) Teilchenförmige maschinelle Geschirrspülmittel mit Klarspüleffekt
DE19914364A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
DE10134309A1 (de) Coextrusion von Wasch- und Reinigungsmitteln
DE10063430A1 (de) Reinigungsmittelkomponente für den Einsatz in maschinellen Geschirrspülmitteln
DE19919444B4 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound, Verfahren zu seiner Herstellung sowie Verwendung von Bindemittelcompounds
WO2000077151A1 (de) Wasch- und reinigungsmittelformkörper

Legal Events

Date Code Title Description
8141 Disposal/no request for examination