DE19939239C2 - Sensor for an atomic force microscope - Google Patents
Sensor for an atomic force microscopeInfo
- Publication number
- DE19939239C2 DE19939239C2 DE19939239A DE19939239A DE19939239C2 DE 19939239 C2 DE19939239 C2 DE 19939239C2 DE 19939239 A DE19939239 A DE 19939239A DE 19939239 A DE19939239 A DE 19939239A DE 19939239 C2 DE19939239 C2 DE 19939239C2
- Authority
- DE
- Germany
- Prior art keywords
- bending element
- sensor
- magnetic field
- magnetic
- movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005452 bending Methods 0.000 claims description 31
- 241000238366 Cephalopoda Species 0.000 claims description 9
- 239000000696 magnetic material Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 description 19
- 238000005259 measurement Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000000087 superconducting quantum interference device magnetometry Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q20/00—Monitoring the movement or position of the probe
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/38—Probes, their manufacture, or their related instrumentation, e.g. holders
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Measuring Magnetic Variables (AREA)
Description
Die Erfindung betrifft einen Sensor für ein Raster kraftmikroskop, zum Beispiel bekannt aus DE 195 20 457 C2. Der Sensor umfaßt ein Biegeelement, auch Hebelarm genannt, sowie eine am Biegeelement angebrachte Nadel, die auch als Spitze bezeichnet wird. Die Erfindung be trifft ferner ein Verfahren zur Ermittlung der Bewegung eines solchen Sensors.The invention relates to a sensor for a grid force microscope, known for example from DE 195 20 457 C2. The sensor comprises a bending element, also a lever arm called, and a needle attached to the bending element, which is also known as the tip. The invention be also applies a method for determining the movement of such a sensor.
In einem Rasterkraftmikroskop, auch bezeichnet als AFM (Atomic Force Microscope), wird die Oberfläche einer zu untersuchenden Probe mit der sehr dünnen Nadel abgeta stet. Die Atome der Nadel, die der Probe am nächsten sind, wechselwirken mit den Atomen der Probenoberflä che. Die Nadel erfährt hierbei eine Kraft. Üblicher weise weist das Biegeelement eine sehr geringe Feder konstante (10-3-100 N/m) auf. Die auf die Nadel wir kende Kraft führt dann zu einer meßbaren Auslenkung des Biegeelementes.In a scanning force microscope, also called AFM (Atomic Force Microscope), the surface of a sample to be examined is scanned with the very thin needle. The atoms of the needle closest to the sample interact with the atoms on the sample surface. The needle experiences a force. Usually, the bending element has a very low spring constant (10 -3 -100 N / m). The force acting on the needle then leads to a measurable deflection of the bending element.
Während das Biegeelement relativ zur Probenoberfläche parallel bewegt wird, oszilliert es senkrecht zur Pro benoberfläche. Diese Auf- und Abbewegung wird durch eine abstoßende bzw. anziehende Kraft auf die Nadel verursacht. Sie hängt von der Position der Atome ab und vermittelt so eine Information über den atomaren Aufbau der Probenoberfläche. While the flexure is relative to the sample surface is moved in parallel, it oscillates perpendicular to the pro surface. This up and down movement is through a repulsive or attractive force on the needle caused. It depends on the position of the atoms and conveys information about the atomic structure the sample surface.
Der aus DE 195 20 457 C2 bekannte Sensor weist zwei auf ihrem Biegeelement befindliche Elektroden auf, die ei nen Tunnelkontakt bilden. Auslenkungen des Biegeelemen tes verändern einen durch den Tunnelkontakt fließenden elektrischen Strom. Die Änderung des Stromes stellt ein Maß für die Auslenkung dar.The sensor known from DE 195 20 457 C2 has two their bending element on electrodes, the egg Make a tunnel contact. Deflections of the bending element tes change one flowing through the tunnel contact electricity. The change in current stops Measure of the deflection.
Während der Relativbewegung des Sensors parallel zur Probenoberfläche wirkt ferner eine Querkraft auf die Nadel. Die Querkraft tritt auf, da die untersten Atome der Nadel in Abhängigkeit von der Art der Probenober fläche unterschiedlich gut über die Probe gleiten kön nen. Diese Art der Reibung wird auch als "molekulare Reibung" bezeichnet. Die Querkraft bewirkt eine Torsion des Biegeelementes.During the relative movement of the sensor parallel to Shear force also acts on the sample surface Needle. The shear force occurs because the lowest atoms the needle depending on the type of sample surface can slide differently well over the sample nen. This type of friction is also called "molecular Friction ". The transverse force causes a torsion of the bending element.
Aus US-A 5,386,720 ist ein AFM bekannt, bei dem wenig stens zwei Hebelarme am Ende über ein Dreieck verbunden sind, an dem die Tastspitze angebracht ist. Die Hebel arme weisen piezoresistive Schichten und Elektroden auf, die in der Lage sind, sowohl eine vertikale Aus lenkung (warpage) als auch eine Verdrehung (Torsion) der Tastspitze zu detektieren.From US-A 5,386,720 an AFM is known in which little at least two lever arms connected at the end by a triangle on which the probe tip is attached. The levers arms have piezoresistive layers and electrodes on that are capable of both a vertical out steering (warpage) as well as twisting (torsion) to detect the probe tip.
Ein Rastermikroskop, welches nach demselben Prinzip ar beitet, ist auch aus US-A 5,444,244 bekannt.A scanning microscope, which works on the same principle is also known from US-A 5,444,244.
Das in JP 09251026 A offenbarte Rastermikroskop, bzw. AFM, besitzt einen zweigeteilten Hebelarm mit einer Tastspitze. Jeder Hebelarm weist jeweils einen Deh nungsmeßstreifen oberhalb und unterhalb des Hebelarmes auf. Damit kann die Krümmung der Hebelarme detektiert werden. The scanning microscope disclosed in JP 09251026 A, or AFM, has a two-part lever arm with a Probe tip. Each lever arm has a deh measurement strips above and below the lever arm on. The curvature of the lever arms can thus be detected become.
Alle kommerziellen Raumtemperatur-AFMs bieten die Mög lichkeit, diese Torsion zu messen, wenn sie über eine 4-Quadranten-Fotodiode verfügen. Mit Hilfe des soge nannten Lichtzeigerprinzips wird die Bewegung eines vom Biegeelement reflektierten Laserstrahls nach oben und unten als auch nach links und rechts mit Hilfe einer 4- Quadranten-Photodiode gemessen, und so die Torsion de tektiert (siehe dazu T. R. Albrecht, P. Grütter, D. Rugar and D. P. E. Smith, Ultramicroscopy 45-44, (1992) 1638).All commercial room temperature AFMs offer the poss ability to measure this torsion if it has a 4-quadrant photodiode. With the help of the so-called called light pointer principle, the movement of one of the Bending element of reflected laser beam upwards and below as well as left and right using a 4- Quadrant photodiode measured, and so the torsion de tect (see T. R. Albrecht, P. Grütter, D. Rugar and D.P. E. Smith, Ultramicroscopy 45-44, (1992) 1638).
Messungen mit dem Lichtzeigerprinzip sind in kryogener Umgebung so gut wie nicht möglich, da durch den Licht strahl Wärme zugeführt wird. Auch ist es aufgrund tech nischer Probleme kaum möglich, den Lichtstrahl über große Distanzen in einen Kryostaten mit der erforderli chen Genauigkeit hineinzuführen. In einigen Fällen wur de dieses Problem durch Zuhilfenahme einer optischen Glasfaser gelöst, wie aus A. Moser, H. J. Hug, O. Fritz, I. Parashikov and H. J. Güntherodt, J. Vac. Sci. Technol. B12, (1994) 1586 bekannt ist.Measurements using the light pointer principle are more cryogenic Environment as good as not possible because of the light radiant heat is supplied. It is also due to tech problems, the beam of light is hardly possible large distances in a cryostat with the required Chen accuracy. In some cases de this problem by using an optical Glass fiber dissolved, as from A. Moser, H. J. Hug, O. Fritz, I. Parashikov and H. J. Güntherodt, J. Vac. Sci. Technol. B12, (1994) 1586.
Nachteilig kann aber durch das dann verwendete inter ferometrische Meßprinzip nur eine Abstandskomponente, nämlich die vertikale Auslenkung des Biegeelementes, gemessen werden. Die Torsion bzw. die molekulare Rei bung kann dann nicht gemessen werden.However, the inter ferometric measuring principle only one distance component, namely the vertical deflection of the bending element, be measured. The torsion or the molecular Rei then exercise cannot be measured.
In US-A 5,925,818 wird ein Rastermikroskop beschrieben, bei welchem durch ein homogenes, äußeres magnetisches Feld einer ersten Magnetquelle eine Kraft auf die Tast spitze bewirkt wird. Die erzeugten Magnetfeldlinien zeigen nahezu senkrecht auf die Probenoberfläche. Auf dem Ende des Hebelarmes ist eine zweite magnetische Quelle angebracht, deren magnetisches Moment nahezu parallel zur Probenoberfläche und damit senkrecht zum angelegten Feld weist. Je nach angelegtem Feld erfährt die zweite magnetische Quelle eine Drehbewegung und be wirkt so eine Kraft auf die Tastspitze.A scanning microscope is described in US Pat. No. 5,925,818. in which by a homogeneous, external magnetic Field of a first magnetic source a force on the probe peak is effected. The generated magnetic field lines point almost perpendicular to the sample surface. On the end of the lever arm is a second magnetic Source attached, its magnetic moment almost parallel to the sample surface and thus perpendicular to the field created. Depending on the field created the second magnetic source rotates and be such a force acts on the probe tip.
Aufgabe der Erfindung ist die Schaffung eines Sensors für ein Rasterkraftmikroskop, bei dem sowohl die verti kalen Auslenkungen als auch die molekulare Reibung auf neuartige Weise ermittelt werden können. Ferner ist es die Aufgabe der Erfindung, ein weiteres Verfahren zu schaffen, mit welchem neben der eigentlichen Auf- und Abbewegung auch die Torsionsbewegung eines Sensors ei nes Rasterkraftmikroskops ermittelt werden kann.The object of the invention is to create a sensor for an atomic force microscope, in which both the verti kalen deflections as well as the molecular friction novel ways can be determined. Furthermore, it is the object of the invention to a further method create with which in addition to the actual opening and closing Downward movement also the torsional movement of a sensor nes atomic force microscope can be determined.
Die Aufgabe wird durch einen Sensor mit den Merkmalen des Hauptanspruchs sowie durch ein Verfahren mit den Merkmalen des Nebenanspruchs gelöst.The task is carried out by a sensor with the characteristics of the main claim and through a procedure with the Features of the subsidiary claim solved.
Der anspruchsgemäße Sensor umfaßt Mittel, die die Auf- und Abbewegung einer Seite des Biegeelmentes sowie die Auf- und Abbewegung einer anderen, gegenüberliegenden Seite des Biegeelmentes messen.The sensor according to the claims comprises means which and movement of one side of the bending element and the Moving up and down another, opposite Measure the side of the bending element.
Eine gegenüberliegende Seite im Sinne der Erfindung liegt vor, wenn aus den gemessenen Auf- und Abbewegungen der beiden Seiten sowohl die Auf- und Abbewegung des Biegeelmentes als auch seine Torsionsbewegung be rechnet werden kann.An opposite side in the sense of the invention exists if from the measured up and down movements the two sides both the up and down movement of the bending element as well as its torsional movement can be expected.
Beispielsweise liegt das Biegeelement in Form eines Streifens vor. Der Streifen wird von einer Ober- und Unterseite (vorgegeben durch Streifenbreite mal Strei fenlänge), zwei Stirnseiten und zwei Längsseiten (seit liche Kannten des Streifens) begrenzt. Ein Detektor mißt dann an einer Stelle einer Längsseite die Bewe gung. Ein anderer Detektor mißt an der gegenüberliegen den Stelle der gegenüberliegenden Längsseite die Bewe gung. Mißt jeder Detektor die gleichen Bewegungen, so bewegt sich der Sensor ausschließlich auf und ab. Mes sen die beiden Detektoren unterschiedliche Bewegungen, so liegt eine Torsionsbewegung und eventuell zusätzlich eine Auf- und Abbewegung der Nadel vor.For example, the bending element is in the form of a Strip. The strip is made of a top and Bottom side (given by strip width times strip length), two end faces and two long sides (since edges of the strip). A detector then measures the movement at a point on one long side supply. Another detector measures on the opposite the position of the opposite long side of the movement supply. If every detector measures the same movements, so the sensor only moves up and down. Mes the two detectors have different movements, so there is a torsional movement and possibly additional an up and down movement of the needle.
Als Detektoren können insbesondere die auf dem Gebiet der Rasterkraftmikroskopie bekannten eingesetzt werden. Ein Beispiel für einen solchen Detektor stellt der aus der Druckschrift DE 39 22 589 A1 bekannte dar. Das Bie geelement bildet die eine Hälfte einer Kondensatorelek trode. Die andere Kondensatorelektrode ist ortsfest nahe beim Biegeelement plaziert. Eine Bewegung des Bie geelementes verändert den Abstand zum ortsfesten Teil des Kondensators und damit die Kapazität. Die ermit telte Kapazitätsänderung ist ein Maß für die erfolgte Bewegung.In particular, those in the field can be used as detectors known from atomic force microscopy. The shows an example of such a detector the publication DE 39 22 589 A1 known. The Bie geelement forms one half of a capacitor trode. The other capacitor electrode is stationary placed near the bending element. A movement of the bie geelementes changes the distance to the fixed part of the capacitor and thus the capacitance. The mitit The capacity change is a measure of the success Move.
Ein weiteres Beispiel für einen solchen Detektor stellt der aus der Druckschrift US Re. 33 387 bekannte dar, bei dem anstelle einer Kapazität ein Tunnelstrom gemes sen wird.Another example of such a detector the from US Re. 33 387 known ones where instead of a capacity a tunnel current is measured will.
In einer vorteilhaft einfachen Ausführungsform der Er findung umfaßt die Sonde eine Magnetfeldquelle, die zum Beispiel in Form einer Beschichtung des Biegeelementes mit magnetischem Material vorliegen kann. Als Detektor oder Detektoren werden dann Magnetfelddetektoren einge setzt, die die Magnetfeldquelle oder -quellen erfassen. Es sind sehr empfindliche Messungen möglich, insbeson dere wenn SQUIDs (Supraleitender QUanten-Interferenz- Detektor), zum Beispiel bekannt aus DE 195 19 480 A1, als Magnetfelddetektoren eingesetzt werden.In an advantageously simple embodiment of the Er Finding the probe comprises a magnetic field source, which for Example in the form of a coating of the bending element can be present with magnetic material. As a detector or detectors are then turned on magnetic field detectors sets that detect the magnetic field source or sources. Very sensitive measurements are possible, especially when SQUIDs (superconducting quantum interference Detector), for example known from DE 195 19 480 A1, can be used as magnetic field detectors.
In einer weiteren vorteilhaften Ausgestaltung der Er findung umfaßt die Sonde wenigstens eine Magnetfeld quelle mit hohem Streufeldgradienten. Hohe Streufeld gradienten treten regelmäßig an Kanten und Spitzen der Magnetschicht, an Domänengrenzen oder an Multipolen (wie z. B. bei Festplattenbits) auf. Streufelder sind typischerweise ab 10-6 ϕ0 meßbar. Unter hohen Streufeld gradienten im Sinne der Erfindung sind Variationen des Streufeldes größer als 10-2 ϕ0/µm zu verstehen, insbe sondere größer als 10-1 ϕ0/µm.In a further advantageous embodiment of the invention, the probe comprises at least one magnetic field source with a high stray field gradient. High stray field gradients occur regularly at the edges and tips of the magnetic layer, at domain boundaries or at multipoles (such as hard disk bits). Stray fields can typically be measured from 10 -6 ϕ 0 . High stray field gradients in the sense of the invention are to be understood as variations of the stray field larger than 10 -2 ϕ 0 / µm, in particular larger than 10 -1 ϕ 0 / µm.
Die Magnetfeldquelle ist insbesondere mit dem Biegeele ment verbunden. Als Detektor oder Detektoren werden dann ein oder mehrere Magnetfelddetektoren vorgesehen, die die Magnetfeldquelle oder -quellen geeignet regi strieren. Eine geeignete Registrierung liegt vor, wenn durch die Registrierung die Bewegungen zweier gegen überliegender Seiten des Biegeelementes ermittelt werden können. Magnetfeldquellen können auch ortsfest nahe beim Biegeelement angebracht sein. Dann sind der oder die Magnetfelddetektoren am Biegeelement anzubringen.The magnetic field source is especially with the bending element ment connected. Be as a detector or detectors then one or more magnetic field detectors are provided, which suitably regulate the magnetic field source or sources strate. A suitable registration exists if by registering the movements of two against overlying sides of the bending element can be determined can. Magnetic field sources can also be stationary close be attached to the bending element. Then the or attach the magnetic field detectors to the bending element.
Es zeigenShow it
Fig. 1: Ausführungsform des Sensors mit zwei Detektoren Fig. 1: Embodiment of the sensor with two detectors
Fig. 2: Ausführungsform des Sensors mit einem Detektor Fig. 2: Embodiment of the sensor with a detector
Fig. 1 zeigt eine Ausführungsform der Sonde mit zwei Detektoren in Aufsicht (linke Abbildung) und im Schnitt (rechte Abbildung). Das Biegeelement weist eine strei fenförmige magnetische Beschichtung als Magnetfeld quelle auf. Dieser magnetische Streifen verläuft von einer Längsseite des Biegeelementes zur anderen gegen überliegenden Längsseite. Der magnetische Streifen ver läuft an dem Ende des Biegeelementes, an dem die Nadel bzw. Spitze befestigt ist. In der Nähe der beiden Enden des aus magnetischem Material bestehenden Streifens ist je ein SQUID ortsfest plaziert. Die von den Enden des magnetischen Streifens ausgehenden magnetischen Streu felder H werden von dem jeweiligen SQUID registriert. Signale SigSQ1 bzw. SigSQ2 werden so vom ersten bzw. zweiten SQUID ermittelt. Die registrierten Streufelder verändern sich bei Auftreten einer Torsionskraft und/oder anziehenden/abstoßenden Kraft, die auf die Spitze in der in der Fig. 1, rechte Abbildung, gezeig ten Weise einwirken. Die Änderungen der registrierten Streufelder ermöglichen die Berechnung der Torsions- sowie der Auf- und Abbewegung des Biegeelementes. Fig. 1 shows an embodiment of the probe with two detectors in top view (left figure) and in section (right figure). The bending element has a strip-shaped magnetic coating as a magnetic field source. This magnetic strip runs from one long side of the bending element to the other opposite the long side. The magnetic strip runs at the end of the bending element to which the needle or tip is attached. A SQUID is placed in the vicinity of the two ends of the strip made of magnetic material. The magnetic stray fields H emanating from the ends of the magnetic stripe are registered by the respective SQUID. Signals Sig SQ1 or Sig SQ2 are thus determined by the first or second SQUID. The registered stray fields change when a torsional force and / or attractive / repulsive force occur, which act on the tip in the manner shown in FIG. 1, right illustration. The changes in the registered stray fields enable the torsion as well as the up and down movement of the bending element to be calculated.
Durch die Verwendung von zwei SQUIDs und einem Feldgra dienten jeweils an den seitlichen Kanten des Biegeele mentes gemäß Fig. 1 können Biege- und Torsionsbewegun gen voneinander unabhängig detektiert werden. So ergibt die Differenz Sig.2 der beiden SQUID-Meßsignale SigSQ1 bzw. SigSQ2 für einfach geschlossene magnetische Feldli nien das Signal, welches die Auf- und Abbewegung be schreibt, und die Addition Sig.1 das Signal, welches die Torsion beschreibt. Durch Wahl entsprechender Mate rialien bei der magnetischen Beschichtung kann der Gra dient des Streufeldes optional vergrößert werden und erforderlichenfalls der Dynamikbereich des Reibungssen sors an das Meßproblem angepaßt werden. Als magnetische Materialien eignen sich insbesondere ein hartmagneti sches Material, wie es auch für Festplatten verwendet wird, oder alle anderen hartmagnetischen Materialien (Fe, Ni, Co, Fex, Niy, usw.), die sich auf das Biegeele ment abscheiden lassen.By using two SQUIDs and a Feldgra served on the lateral edges of the Biegeele elementes according to FIG. 1, bending and torsional movements can be detected independently of one another. Thus, the difference Sig.2 of the two SQUID measurement signals Sig SQ1 and Sig SQ2 for single-closed magnetic field lines gives the signal which describes the up and down movement, and the addition Sig.1 the signal which describes the torsion. By choosing appropriate materials for the magnetic coating, the gra of the stray field can optionally be enlarged and, if necessary, the dynamic range of the friction sensor can be adapted to the measurement problem. Particularly suitable magnetic materials are a hard magnetic material, such as is also used for hard disks, or all other hard magnetic materials (Fe, Ni, Co, Fe x , Ni y , etc.) that can be deposited on the bending element.
Die Erfindung kann sehr variabel für alle Bereiche der Tieftemperatur-Kraftmikroskopie eingesetzt werden. So ist es sowohl möglich im flüssigen Helium, flüssigen Stickstoff oder im kühlenden Gasfluß sowie bei geeigne ter Passivierung der SQUIDs unter Vakuumbedingungen zu messen. Letzteres erlaubt eine variable Temperatur der Probe, deren Oberfläche untersucht wird. Eine Passivie rung erfolgt beispielsweise physikalisch durch Aufbrin gen einer SiO2-Schicht oder chemisch durch einen Photo lack, z. B. PMMA.The invention can be used very variably for all areas of low-temperature force microscopy. So it is possible to measure in liquid helium, liquid nitrogen or in the cooling gas flow as well as with suitable passivation of the SQUIDs under vacuum conditions. The latter allows a variable temperature of the sample, the surface of which is examined. Passivation takes place, for example, physically by applying an SiO 2 layer or chemically by a photo lacquer, e.g. B. PMMA.
Die Erfindung läßt sich mit jedem rf- oder dc-SQUID realisieren. Des weiteren kann auch je eine Einkoppelschleife alternativ anstelle der in Fig. 1 gezeigten SQUIDs positioniert werden, die dann das jeweilige Meß signal zum jeweiligen SQUID übertragen. Mit Hilfe einer Einkoppelschleife kann auch ein Gradiometer derart ge formt werden, daß mit nur einem SQUID sehr störun empfindlich die Bewegung gemessen werden kann.The invention can be implemented with any rf or dc SQUID. Furthermore, a coupling loop can alternatively be positioned instead of the SQUIDs shown in FIG. 1, which then transmit the respective measurement signal to the respective SQUID. With the help of a coupling loop, a gradiometer can also be formed in such a way that the movement can be measured with very little interference with only one SQUID.
Ein Gradiometer mißt den Gradienten zwischen zwei Meß punkten. Im vorliegenden Fall wird der magnetische Feldgradient gemessen. Dies bietet einen meßtechnischen Vorteil, da das Signal einer magnetischen Störquelle, die sich weit entfernt befindet, an beiden Meßpunkten gleich ist und somit bei der Differenzbildung regel mäßig herausfällt.A gradiometer measures the gradient between two measurements score. In the present case, the magnetic Field gradient measured. This offers a metrological Advantage because the signal from a magnetic interference source, which is far away at both measuring points is the same and therefore rule in the formation of differences falls out moderately.
Ein Aufbau mit nur einem SQUID und einer gradiometri schen Einkoppelschleife ist aus Fig. 2 ersichtlich. Dabei werden die beiden Sensoren des Gradiometers durch eine Einkoppelschleife ersetzt, die wie eine Achterbahn geformt ist, und somit schon die Differenz mißt.A structure with only one SQUID and a gradiometric coupling loop is shown in FIG. 2. The two sensors of the gradiometer are replaced by a coupling loop, which is shaped like a roller coaster and thus already measures the difference.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19939239A DE19939239C2 (en) | 1999-08-18 | 1999-08-18 | Sensor for an atomic force microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19939239A DE19939239C2 (en) | 1999-08-18 | 1999-08-18 | Sensor for an atomic force microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
DE19939239A1 DE19939239A1 (en) | 2001-04-05 |
DE19939239C2 true DE19939239C2 (en) | 2001-07-12 |
Family
ID=7918850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19939239A Expired - Fee Related DE19939239C2 (en) | 1999-08-18 | 1999-08-18 | Sensor for an atomic force microscope |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19939239C2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5386720A (en) * | 1992-01-09 | 1995-02-07 | Olympus Optical Co., Ltd. | Integrated AFM sensor |
US5444244A (en) * | 1993-06-03 | 1995-08-22 | Park Scientific Instruments Corporation | Piezoresistive cantilever with integral tip for scanning probe microscope |
US5925818A (en) * | 1994-08-15 | 1999-07-20 | The Regents Of The University Of Calif. | Method and apparatus for magnetic force control of a scanning probe |
-
1999
- 1999-08-18 DE DE19939239A patent/DE19939239C2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5386720A (en) * | 1992-01-09 | 1995-02-07 | Olympus Optical Co., Ltd. | Integrated AFM sensor |
US5444244A (en) * | 1993-06-03 | 1995-08-22 | Park Scientific Instruments Corporation | Piezoresistive cantilever with integral tip for scanning probe microscope |
US5925818A (en) * | 1994-08-15 | 1999-07-20 | The Regents Of The University Of Calif. | Method and apparatus for magnetic force control of a scanning probe |
Non-Patent Citations (2)
Title |
---|
Datenbank: INSPEC auf STN, IEE. AN 1996:5466218, AB. Ascoli,C. [u.a.], in: Applied Physics Letters,1996, Bd.69, Nr.25, S.3920-3922 * |
Datenbank: WPIDS auf STN, Derwent. AN 1997-523096,AB. JP 09251026 A * |
Also Published As
Publication number | Publication date |
---|---|
DE19939239A1 (en) | 2001-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3750406T2 (en) | Atomic force sensor with interferometric measurement of the properties of a data carrier. | |
DE69232339T2 (en) | Cantilever unit and atomic force microscope, magnetic force microscope, as well as reproduction and information processing apparatus with it | |
DE4310349C2 (en) | Sensor head and method for its production | |
DE69019913T2 (en) | Atomic force microscope. | |
Hug et al. | Quantitative magnetic force microscopy on perpendicularly magnetized samples | |
DE69416563T2 (en) | Device for determining physical properties of a micro-area | |
DE19939239C2 (en) | Sensor for an atomic force microscope | |
DE69433974T2 (en) | ELECTRO-OPTICAL INSTRUMENT | |
DE19519480C2 (en) | Magnetic flux sensor with high spatial resolution | |
DE112007001684T5 (en) | Scanning probe microscope and method for measuring the relative position between probes | |
US20160103192A1 (en) | Sensor device for direct magnetic field imaging | |
US6081113A (en) | Cantilever magnetic force sensor for magnetic force microscopy having a magnetic probe coated with a hard-magnetic material | |
DE4344499C2 (en) | Scanning probe microscope with detector probe | |
Jarząbek | Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers | |
WO1992008101A1 (en) | Device for measuring linear dimensions on a patterned surface | |
EP0407835B1 (en) | Atomic force microscope | |
Klapetek | Scanning probe microscopy characterization of optical thin films | |
DE19912814C2 (en) | Method and device for scanning tunneling microscopy | |
EP3667279B1 (en) | Sensing device | |
DE10242749A1 (en) | 3D interferometric position measurement system, e.g. for use in locating the probe of a raster scanning microscope, whereby a measurement area is created by the interference of at least three coherent waves | |
Willke | Atomic-scale transport in graphene: the role of localized defects and substitutional doping | |
DE10158096B4 (en) | Component for a SQUID microscope for room temperature samples and associated use | |
JPH02243918A (en) | Displacement detector | |
EP1599739A1 (en) | Magnetic flow sensor comprising a magnetic field conductor and a hole diaphragm | |
SU315083A1 (en) | DEVICE FOR REGISTRATION OF THE DISTRIBUTION OF POTATO CLUBS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |