[go: up one dir, main page]

DE19917813A1 - Membrane electrolyte, for a high temperature membrane fuel cell, comprises a self-dissociating compound chemically bonded to a base polymer - Google Patents

Membrane electrolyte, for a high temperature membrane fuel cell, comprises a self-dissociating compound chemically bonded to a base polymer

Info

Publication number
DE19917813A1
DE19917813A1 DE19917813A DE19917813A DE19917813A1 DE 19917813 A1 DE19917813 A1 DE 19917813A1 DE 19917813 A DE19917813 A DE 19917813A DE 19917813 A DE19917813 A DE 19917813A DE 19917813 A1 DE19917813 A1 DE 19917813A1
Authority
DE
Germany
Prior art keywords
self
base polymer
membrane
fuel cell
dissociating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19917813A
Other languages
German (de)
Inventor
Manfred Waidhas
Ulrich Gebhardt
Armin Datz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Corp
Original Assignee
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Corp filed Critical Siemens Corp
Priority to DE19917813A priority Critical patent/DE19917813A1/en
Priority to PCT/DE2000/001229 priority patent/WO2000063988A2/en
Publication of DE19917813A1 publication Critical patent/DE19917813A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Die Erfindung betrifft einen Membranelektrolyten für eine Hochtemperatur-Membran-(HTM)Brennstoffzelle und ein Verfahren zur Herstellung eines Membranelektrolyts. Der Membranelektrolyt umfaßt ein Basispolymer und eine eigendissoziierende Verbindung, die chemisch an das Basispolymer gebunden ist.The invention relates to a membrane electrolyte for a high-temperature membrane (HTM) fuel cell and a method for producing a membrane electrolyte. The membrane electrolyte comprises a base polymer and a self-dissociating compound which is chemically bound to the base polymer.

Description

Die Erfindung betrifft einen Membranelektrolyten für eine Hochtemperatur-Membran-(HTM)Brennstoffzelle und ein Verfahren zur Herstellung eines Membranelektrolyts.The invention relates to a membrane electrolyte for a High temperature membrane (HTM) fuel cell and process for the production of a membrane electrolyte.

Bekannt ist die Polymer-Elektrolyt-Membran-Brennstoffzelle, die als Membranelektrolyten ein Basispolymer hat, an dem [- SO3H]-Gruppen hängen. Die elektrolytische Leitung findet da­ bei über hydratisierte Protonen statt. Diese Membran braucht entsprechend flüssiges Wasser, d. h. unter Normaldruck Be­ triebstemperaturen unter 100°C, um die Protonenleitfähigkeit zu gewährleisten. Daraus ergibt sich das Problem, daß die einströmenden Prozeßgase bei Temperaturen oberhalb von ca. 65°C befeuchtet werden müssen.The polymer electrolyte membrane fuel cell is known, which has a base polymer as membrane electrolytes on which [- SO 3 H] groups are attached. The electrolytic conduction takes place with over-hydrated protons. Correspondingly, this membrane needs liquid water, ie operating temperatures below 100 ° C. under normal pressure, in order to ensure the proton conductivity. This leads to the problem that the inflowing process gases have to be humidified at temperatures above approx. 65 ° C.

Ein Ansatzpunkt, die Beschränkung der Betriebstemperatur auf­ zuheben, ist, daß anstelle der [-SO3H]-Gruppen enthaltenden Membran eine andere Membran (dabei kann es sich auch um eine Ionenaustauschermembran handeln) und/oder eine Matrix mit freier und/oder physikalisch gebundener Phosphorsäure und/oder einer anderen eigendissoziierenden bzw. autoprotoly­ tischen Verbindung als Membranelektrolyt einer Brennstoffzel­ le eingesetzt wird. Durch die Möglichkeit, diese Brennstoff­ zelle bei einer Betriebstemperatur < 100° einzusetzen, wird sie auch Hochtemperatur-Membran-Brennstoffzelle (HTM- Brennstoffzelle) genannt. Bei der Realisierung einer HTM- Brennstoffzelle mit z. B. freier Phosphorsäure tritt jedoch zumindest ein Problem auf, nämlich die Ausspülung des Membra­ nelektrolyten durch Produktwasser bei Temperaturen unter 100°C, also beim Starten der Brennstoffzellenanlage. Dies ist hauptsächlich ein Problem, wenn die Brennstoffzelle im Start/Stop Betrieb gefahren wird, also z. B. bei der mobilen Anwendung. Der durch die Ausspülung bedingte Elektrolytver­ lust kann zu Leistungseinbußen bis hin zum Funktionsausfall der Zelle führen. Der ausgespülte Membranelektrolyt verläßt beispielsweise mit dem Prozeßgasstrom die Zelle. Zum Erhalt der Funktionsfähigkeit der Zelle muß Membranelektrolyt nach­ dosiert werden.One starting point to lift the limitation of the operating temperature is that instead of the membrane containing the [-SO 3 H] groups, another membrane (this can also be an ion exchange membrane) and / or a matrix with free and / or physical bound phosphoric acid and / or another self-dissociating or autoprotolytic compound is used as the membrane electrolyte of a fuel cell. Due to the possibility of using this fuel cell at an operating temperature <100 °, it is also called high-temperature membrane fuel cell (HTM fuel cell). When realizing an HTM fuel cell with z. B. free phosphoric acid, however, at least one problem occurs, namely the flushing out of the membrane electrolyte by product water at temperatures below 100 ° C., that is when the fuel cell system is started. This is mainly a problem when the fuel cell is operated in the start / stop mode. B. in the mobile application. The electrolyte loss caused by the rinsing can lead to a loss of performance or even a functional failure of the cell. The flushed membrane electrolyte leaves the cell with the process gas stream, for example. To maintain the functionality of the cell, membrane electrolyte must be added.

Das Problem ist von der Phosphorsäurebrennstoffzelle PAFC (Phosphor Acid Fuel Cell) her bekannt, dort jedoch von unter­ geordneter Bedeutung, weil die PAFC vornehmlich stationär im ständigen Betrieb über einen längeren Zeitraum eingesetzt wird und der Großteil des Elektrolytverlustes, wie gesagt, während des Startens entsteht. An eine Anwendung der vorlie­ genden Erfindung bei mobilen wie bei stationären Anlagen ist gedacht.The problem is from the phosphoric acid fuel cell PAFC (Phosphoric Acid Fuel Cell) ago, but from there orderly importance, because the PAFC is mainly stationary in the permanent operation over a longer period of time and most of the electrolyte loss, as I said, occurs during startup. To an application of the present ing invention in mobile as in stationary systems thought.

Aufgabe der Erfindung ist, einen Membranelektrolyten zur Ver­ fügung zu stellen, der Phosphorsäure oder eine andere eigen­ dissoziierende bzw. autoprotolytische Verbindung enthält, die beim Hochfahren der Brennstoffzellenanlage nicht durch die Verdünnung mit Produktwasser einfach ausgespült wird.The object of the invention is a membrane electrolyte for Ver to provide, the phosphoric acid or another own contains dissociative or autoprotolytic compound which when starting up the fuel cell system not by the Dilution with product water is simply rinsed out.

Gegenstand der Erfindung ist ein Membranelektrolyt für eine HTM-Brennstoffzelle mit einem Basispolymer und zumindest ei­ ner eigendissoziierenden Verbindung als elektrolytisch akti­ ven Bestandteil, wobei die eigendissoziierende Verbindung chemisch an das Basispolymer gebunden ist.The invention relates to a membrane electrolyte for a HTM fuel cell with a base polymer and at least one ner self-dissociating compound as electrolytically active ven component, being the self-dissociating compound is chemically bound to the base polymer.

Außerdem ist Gegenstand der Erfindung ein Verfahren zur Her­ stellung eines Membranelektrolyten mit einem Basispolymer und zumindest einer chemisch gebundenen eigendissoziierenden Ver­ bindung, bei dem an das Basispolymer die eigendissoziierende Broenstedt-Säure chemisch gebunden wird und/oder ein Polymer aus einem Monomer gebildet wird, das eine eigendissoziierende Verbindung chemisch gebunden enthält.The invention also relates to a process for the preparation of position of a membrane electrolyte with a base polymer and at least one chemically bound self-dissociative ver bond, in which the self-dissociating to the base polymer Broenstedt acid is chemically bound and / or a polymer is formed from a monomer that is self-dissociating Compound contains chemically bound.

Bevorzugt wird die eigendissoziierende Verbindung über eine σ-(sigma)-Einfachbindung an das Basispolymer gebunden. The self-dissociating connection is preferred via a σ- (sigma) single bond bound to the base polymer.  

Die Anbindung erfolgt bevorzugt über das Zentralatom der Bro­ enstedt-Säure oder über einen oder mehrere ihrer Liganden.The connection is preferably via the central atom of the Bro enstedt acid or via one or more of its ligands.

Als Basispolymere werden konventionelle oxidations- und tem­ peraturstabile Polymere eingesetzt, wie z. B. Polyetherketone, Polyethersulfone und/oder Polyimidazole.Conventional oxidation and tem Temperature-stable polymers used, such as. B. polyether ketones, Polyether sulfones and / or polyimidazoles.

Als eigendissoziierende bzw. autoprotolytische Verbindung wird bevorzugt eine Broenstedt-Säure eingesetzt. Bevorzugt wird Phosphinsäure, Phosphonsäure und Phosphorsäure verwen­ det. Als eigendissoziierend wird dabei die Eigenschaft einer Broenstedt-Säure, d. h. einer Protonensäure, bezeichnet, so­ wohl als Base als auch als Säure zu reagieren. Die verwende­ ten Broensted-Säuren können Protonen aufnehmen und abgeben.As a self-dissociating or autoprotolytic compound a Broenstedt acid is preferably used. Prefers will use phosphinic acid, phosphonic acid and phosphoric acid det. The property of one becomes self-dissociating Broenstedt acid, d. H. a protonic acid, so called to react probably as base as well as acid. The use Broensted acids can take up and release protons.

Die chemische Bindung der eigendissoziierenden Verbindung findet bevorzugt über eine sigma-Einfachbindung statt, sie kann aber genauso gut über eine beliebige andere chemisch Bindung erfolgen, solange diese Bindung gewährleistet, dass die eigendissoziierende Verbindung nicht durch das entstehen­ de flüssige Produktwasser verdünnt und ausgespült wird. Die Klassifizierung einer chemischen Bindung als beispielsweise "sigma-Einfachbindung" ist immer unvollständig, so dass keine vollständige Beschreibung vorliegt, wenn von einer σ- Einfachbindung z. B. bei der Bindung eines Phosphorsäurerestes an einen Phenylrest gesprochen wird. Deshalb kann die Art der Bindung hier nicht abgrenzend positiv beschrieben werden son­ dern nur, wie oben geschehen, über eine Abgrenzung zu einer rein physikalischen Bindung, bei der die Zugabe von flüssigem Lösungsmittel wie Produktwasser zur Ausspülung führt.The chemical bond of the self-dissociating compound takes place preferably via a sigma single bond, she but can just as well be chemical over any other Binding take place as long as this binding ensures that the self-dissociating connection does not arise from that de liquid product water is diluted and rinsed out. The Classification of a chemical bond as, for example "Sigma single binding" is always incomplete, so none Complete description is available if from a σ- Single bond z. B. in the binding of a phosphoric acid residue is spoken to a phenyl radical. Therefore, the type of Binding is not described positively here only, as has been done above, by delimitation to one purely physical bond, in which the addition of liquid Solvent such as product water leads to rinsing.

Denkbar sind beispielsweise ausser der Einfachbindung auch eine π-Bindung, eine Dreifachbindung, eine π-Donor-Akzeptor Bindung, eine Komplexbindung, eine ionogene Bindung und schließlich auch eine Protonen- oder sonstige -Brückenbin­ dung. In addition to single binding, for example, are also conceivable a π bond, a triple bond, a π donor acceptor Bond, a complex bond, an ionogenic bond and finally a proton or other bridge bin dung.  

Im folgenden werden Beispiele zur Herstellung des Membrane­ lektrolyten gegeben:The following are examples of the manufacture of the membrane given electrolytes:

1. Phosphinierung von Polystyrol
Polystyrol wird zunächst in Gegenwart von Aluminiumtrichlorid mit Phosphorsäuretrichlorid umgesetzt. Die entstandene Dichlorphosinarylverbindung wird mit Wasser zur entsprechen­ den Phosphinsäureverbindung hydrolisiert.
-[CHPh-CH2]n- + PCl3 → Zugabe von AlCl3 und Abspaltung von HCl ergibt -[CH(Ph-PCl2)-CH2]n- → Hydrolyse ergibt -[CH(Ph-PHO(OH))-CH2]n- "Phosphinat" oder "Phosphinsäure" an Styrol gebunden.
1. Phosphination of polystyrene
Polystyrene is first reacted with phosphoric acid trichloride in the presence of aluminum trichloride. The resulting dichlorophosinaryl compound is hydrolyzed with water to give the corresponding phosphinic acid compound.
- [CHPh-CH 2 ] n - + PCl 3 → addition of AlCl 3 and elimination of HCl gives - [CH (Ph-PCl 2 ) -CH 2 ] n - → hydrolysis gives - [CH (Ph-PHO (OH) ) -CH 2 ] n - "phosphinate" or "phosphinic acid" bound to styrene.

2. Phosphonierung von Polystyrol
Die nach Punkt 1 erhaltene Phosphinsäureverbindung wird mit Salpetersäure und/oder KJ3 in Pyridin zur Polystyrolphosphon­ säureverbindung umgesetzt.
-[CH(Ph-PHO(OH))-CH2]n- → Oxidation mit HNO3 ergibt -[CH(Ph-PO (OH)2)-CH2]n- "Phosphonsäure" an Polystyrol gebunden.
2. Phosphonation of polystyrene
The phosphinic acid compound obtained according to point 1 is reacted with nitric acid and / or KJ 3 in pyridine to form the polystyrene phosphonic acid compound.
- [CH (Ph-PHO (OH)) - CH 2 ] n - → Oxidation with HNO 3 gives - [CH (Ph-PO (OH) 2 ) -CH 2 ] n - "phosphonic acid" bound to polystyrene.

3. Radikalische Polymerisation von Monomeren mit Phosphor­ säuregruppen ergibt auch den Membranelektrolyten.3. Radical polymerization of monomers with phosphorus Acid groups also result in the membrane electrolyte.

Ein denkbares Monomer dabei wäre das folgende:
A conceivable monomer would be the following:

CH2 = C(CH3)-CO-O-CH2-CH2-O-PO(OH)2 CH 2 = C (CH 3 ) -CO-O-CH 2 -CH 2 -O-PO (OH) 2

4. Chloralkylierung von Polystyrol und Umsetzung mit Trime­ thoxyphosphin zum entsprechenden Phosphonsäureester der an­ schließend hydrolisiert wird.
-[CHPh-CH2]n- + CH3OCH2Cl → Umsetzung nach Friedel-Craft er­ gibt -[CH(PhCH2Cl)-CH2]n- → Umsetzung mit P(OCH3)3 ergibt [CH(PhCH2PO(OCH3)2)-CH2]n- → Hydrolyse ergibt -[CH(Ph-CH2PO(OH)2)-CH2]n- "Phosphonsäure" an Polystyrol gebunden.
4. Chloroalkylation of polystyrene and reaction with trimethoxyphosphine to the corresponding phosphonic acid ester which is then hydrolyzed.
- [CHPh-CH 2 ] n - + CH 3 OCH 2 Cl → reaction according to Friedel-Craft results - [CH (PhCH 2 Cl) -CH 2 ] n - → reaction with P (OCH 3 ) 3 gives [CH ( PhCH 2 PO (OCH 3 ) 2 ) -CH 2 ] n - → hydrolysis gives - [CH (Ph-CH 2 PO (OH) 2 ) -CH 2 ] n - "phosphonic acid" bound to polystyrene.

Als Hochtemperatur-Membran-(HTM)-Brennstoffzelle wird jede Brennstoffzelle bezeichnet, die eine herkömmliche Elektrolyt- Membran und/oder die eine Membran als Matrix zur physikali­ schen und/oder chemischen Aufnahme des Elektrolyten als Kern­ stück enthält und deren Betriebstemperatur höher als die der herkömmlichen PEM-Brennstoffzelle ist, also höher als 80°C, bevorzugt höher als 100°C. Die maximale Betriebstemperatur liegt in etwa bei 220°C, bis 250°C. Die HTM-Brennstoffzelle hat einen Membranelektrolyten, der gute Leitfähigkeit auch im nicht-wässrigen Milieu bei den oben genannten Temperaturen besitzt.As a high temperature membrane (HTM) fuel cell, each Fuel cell, which is a conventional electrolyte Membrane and / or a membrane as a matrix for physi and / or chemical absorption of the electrolyte as the core piece contains and their operating temperature higher than that of conventional PEM fuel cell, i.e. higher than 80 ° C, preferably higher than 100 ° C. The maximum operating temperature is around 220 ° C to 250 ° C. The HTM fuel cell has a membrane electrolyte, which also has good conductivity non-aqueous environment at the above temperatures owns.

Claims (5)

1. Membranelektrolyt für eine HTM-Brennstoffzelle mit einem Basispolymer und zumindest einer eigendissoziierenden Verbin­ dung als elektrolytisch aktiven Bestandteil, wobei die eigen­ dissoziierende Verbindung chemisch an das Basispolymer gebun­ den ist.1. Membrane electrolyte for a HTM fuel cell with one Base polymer and at least one self-dissociating verb dung as an electrolytically active component, the own Dissociating compound chemically bound to the base polymer that is. 2. Membranelektrolyt nach Anspruch 1, bei dem die eigendissoziierende Verbindung eine Protonensäure ist.2. membrane electrolyte according to claim 1, in which the self-dissociating compound is a protonic acid is. 3. Membranelektrolyt nach Anspruch 1 oder 2, bei dem die eigendissoziierende Verbindung Phosphor-, Phos­ phin- und/oder Phosphonsäure ist.3. membrane electrolyte according to claim 1 or 2, in which the self-dissociating compound phosphorus, Phos is phinic and / or phosphonic acid. 4. Membranelektrolyt nach einem der vorstehenden Ansprüche, bei dem die chemische Bindung an das Basispolymer im wesent­ lichen eine σ-Einfachbindung ist.4. membrane electrolyte according to any one of the preceding claims, in which the chemical bond to the base polymer essentially is a σ single bond. 5. Verfahren zur Herstellung eines Membranelektrolyten mit einem Basispolymer und zumindest einer chemisch gebundenen eigendissoziierenden Verbindung, bei dem an das Basispolymer die eigendissoziierende Broenstedt-Säure chemisch gebunden wird und/oder ein Polymer aus einem Monomer gebildet wird, das eine eigendissoziierende Verbindung chemisch gebunden enthält.5. Process for the production of a membrane electrolyte a base polymer and at least one chemically bound self-dissociating compound, in which the base polymer the self-dissociative Broenstedt acid chemically bound and / or a polymer is formed from a monomer, which chemically binds a self-dissociating compound contains.
DE19917813A 1999-04-20 1999-04-20 Membrane electrolyte, for a high temperature membrane fuel cell, comprises a self-dissociating compound chemically bonded to a base polymer Withdrawn DE19917813A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19917813A DE19917813A1 (en) 1999-04-20 1999-04-20 Membrane electrolyte, for a high temperature membrane fuel cell, comprises a self-dissociating compound chemically bonded to a base polymer
PCT/DE2000/001229 WO2000063988A2 (en) 1999-04-20 2000-04-19 Membrane electrolyte for a high temperature membrane fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19917813A DE19917813A1 (en) 1999-04-20 1999-04-20 Membrane electrolyte, for a high temperature membrane fuel cell, comprises a self-dissociating compound chemically bonded to a base polymer

Publications (1)

Publication Number Publication Date
DE19917813A1 true DE19917813A1 (en) 2000-10-26

Family

ID=7905194

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19917813A Withdrawn DE19917813A1 (en) 1999-04-20 1999-04-20 Membrane electrolyte, for a high temperature membrane fuel cell, comprises a self-dissociating compound chemically bonded to a base polymer

Country Status (2)

Country Link
DE (1) DE19917813A1 (en)
WO (1) WO2000063988A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1056149A2 (en) * 1999-05-27 2000-11-29 Honda Giken Kogyo Kabushiki Kaisha Fuel cell power generation system
WO2002036379A1 (en) * 2000-10-30 2002-05-10 Siemens Aktiengesellschaft Fuel cell unit for a vehicle, in particular a motor vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895612A4 (en) * 2005-06-21 2012-05-30 Dainippon Ink & Chemicals FUEL CELL SEPARATOR, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL
WO2008142570A2 (en) * 2007-03-21 2008-11-27 Advent Technologies Proton conductors based on aromatic polyethers and their use as electrolytes in high temperature pem fuel cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635039A (en) * 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602185A (en) * 1993-09-21 1997-02-11 Ballard Power Systems Inc. Substituted trifluorostyrene compositions
US5468574A (en) * 1994-05-23 1995-11-21 Dais Corporation Fuel cell incorporating novel ion-conducting membrane
DE19535086B4 (en) * 1995-09-21 2004-08-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Use of polymeric solid electrolytes and process for their production
JP3521579B2 (en) * 1995-10-18 2004-04-19 Jsr株式会社 Phosphate group-containing polymer
DE19632285A1 (en) * 1996-08-09 1998-02-19 Hoechst Ag Proton conductor with a temperature resistance in a wide range and good proton conductivities
US5643689A (en) * 1996-08-28 1997-07-01 E.C.R.-Electro-Chemical Research Ltd. Non-liquid proton conductors for use in electrochemical systems under ambient conditions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635039A (en) * 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1056149A2 (en) * 1999-05-27 2000-11-29 Honda Giken Kogyo Kabushiki Kaisha Fuel cell power generation system
EP1056149A3 (en) * 1999-05-27 2004-07-21 Honda Giken Kogyo Kabushiki Kaisha Fuel cell power generation system
WO2002036379A1 (en) * 2000-10-30 2002-05-10 Siemens Aktiengesellschaft Fuel cell unit for a vehicle, in particular a motor vehicle

Also Published As

Publication number Publication date
WO2000063988A2 (en) 2000-10-26
WO2000063988A3 (en) 2001-04-05

Similar Documents

Publication Publication Date Title
DE60301653T2 (en) Proton conducting solid polymer electrolyte containing polybenzimidazole and production method therefor
DE69930474T2 (en) Solid polymer electrolytes
DE102008030659A1 (en) High ionic conductivity solid electrolyte and method of making the same, and electrochemical system using the solid electrolyte
DE69902810T2 (en) METHOD FOR PRODUCING A SOLID POLYMER ELECTROLYTE MEMBRANE
DE19917812C2 (en) Membrane electrode unit for a self-moistening fuel cell, method for its production and fuel cell battery with such a membrane electrode unit
WO2001084657A2 (en) Polymer membranes
DE10021104A1 (en) Organic-inorganic membranes
DE112006003025T5 (en) Components of high-durability fuel cells with cerium salt additives
EP2260533A1 (en) Ionic liquid-containing catalyst ink and the use thereof in the production of electrodes, ccms, gdes and meas
WO2009138172A1 (en) Proton-conducting membrane and its use
DE60029731T2 (en) Solid polymer electrolyte with high durability
DE102008016063A1 (en) Process for producing a solid electrolyte with high ionic conductivity
DE102004012197A1 (en) Proton-conducting material, proton-conducting membrane and fuel cell
DE19917813A1 (en) Membrane electrolyte, for a high temperature membrane fuel cell, comprises a self-dissociating compound chemically bonded to a base polymer
DE112007002070T5 (en) Polymer, polymer electrolyte and fuel cell using the same
CN101024723A (en) Electrolyte for fuel cell, membrane-electrode assembly, and method for preparing the electrolyte for fuel cell
EP1986769B1 (en) Catalytic process for the phosphonylation of high-temperature polymers
DE69900094T2 (en) Polymer electrolyte fuel cell and manufacturing process
DE102005026572A1 (en) Solid electrolyte and electrochemical system comprising the solid electrolyte
DE102009054357A1 (en) Conductive and hydrophilic coating for a PEMFC bipolar plate
DE112007001464T5 (en) Condensed rings containing polymer electrolyte and application thereof
EP3005459B1 (en) Chemical bonding for catalyst/membrane surface adherence in membrane electrolyte fuel cells
EP4298137B1 (en) Novel phosphonated fluoroelastomers (pfkms), phosphonated perfluoroelastomers (pffkms), their process of preparation and use in electromembrane applications
EP1181731A1 (en) High-temperature membrane (htm) fuel cell electrolyte, method of operating an htm fuel cell and htm fuel cell battery
Ogawa et al. Low humidity dependence of proton conductivity in modified zirconium (IV)-hydroxy ethylidene diphosphonates

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal