DE19824666A1 - Separation of mixtures of substances using permeable material - Google Patents
Separation of mixtures of substances using permeable materialInfo
- Publication number
- DE19824666A1 DE19824666A1 DE19824666A DE19824666A DE19824666A1 DE 19824666 A1 DE19824666 A1 DE 19824666A1 DE 19824666 A DE19824666 A DE 19824666A DE 19824666 A DE19824666 A DE 19824666A DE 19824666 A1 DE19824666 A1 DE 19824666A1
- Authority
- DE
- Germany
- Prior art keywords
- membrane
- ceramic
- separation
- microns
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 9
- 239000000126 substance Substances 0.000 title claims abstract description 8
- 238000000926 separation method Methods 0.000 title claims description 16
- 239000000203 mixture Substances 0.000 title abstract 2
- 239000012528 membrane Substances 0.000 claims description 105
- 239000000919 ceramic Substances 0.000 claims description 27
- 239000000725 suspension Substances 0.000 claims description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 229910001220 stainless steel Inorganic materials 0.000 claims description 12
- 239000010935 stainless steel Substances 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 10
- 239000004408 titanium dioxide Substances 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 238000001471 micro-filtration Methods 0.000 claims description 7
- 238000007664 blowing Methods 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 150000002739 metals Chemical group 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 239000012876 carrier material Substances 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- 230000005684 electric field Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- 239000003014 ion exchange membrane Substances 0.000 claims description 3
- 238000000108 ultra-filtration Methods 0.000 claims description 3
- -1 Polytetrafluoroethylene Polymers 0.000 claims description 2
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims description 2
- 239000005871 repellent Substances 0.000 claims description 2
- 239000012465 retentate Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 12
- 238000007711 solidification Methods 0.000 claims 3
- 230000008023 solidification Effects 0.000 claims 3
- 230000005855 radiation Effects 0.000 claims 2
- 229910021536 Zeolite Inorganic materials 0.000 claims 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims 1
- 230000003670 easy-to-clean Effects 0.000 claims 1
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 231100000572 poisoning Toxicity 0.000 claims 1
- 230000000607 poisoning effect Effects 0.000 claims 1
- 229920005597 polymer membrane Polymers 0.000 claims 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims 1
- 239000004810 polytetrafluoroethylene Substances 0.000 claims 1
- 238000000746 purification Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 description 13
- 239000002390 adhesive tape Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- VXPLXMJHHKHSOA-UHFFFAOYSA-N propham Chemical compound CC(C)OC(=O)NC1=CC=CC=C1 VXPLXMJHHKHSOA-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920006360 Hostaflon Polymers 0.000 description 1
- 208000029422 Hypernatremia Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/54—Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
- B01D46/543—Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0001—Making filtering elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/42—Auxiliary equipment or operation thereof
- B01D46/4263—Means for active heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/66—Regeneration of the filtering material or filter elements inside the filter
- B01D46/80—Chemical processes for the removal of the retained particles, e.g. by burning
- B01D46/84—Chemical processes for the removal of the retained particles, e.g. by burning by heating only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8671—Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
- B01D53/8675—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/88—Handling or mounting catalysts
- B01D53/885—Devices in general for catalytic purification of waste gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0083—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0225—Coating of metal substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
- B01J37/033—Using Hydrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2279/00—Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
- B01D2279/30—Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/0283—Pore size
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Catalysts (AREA)
- Filtering Materials (AREA)
Abstract
Description
Keramische Schichten können auf porösen Träger mit Öffnungen bis zu 500 µm dadurch hergestellt werden, daß eine Suspension, hergestellt aus einer metallhaltigen Verbindung, die durch Wasser hydrolysiert und mit Mineralsäure peptisiert wurde und supergemahlenem Aluminiumoxid mit Kornverteilung zwischen 0,1 µm und 10 µm auf den Träger aufgestrichen wird und mit Heißluft bei 450°C innerhalb weniger Sekunden zu einer keramischen Beschichtung verfestigt wird. Auf diese Weise lassen sich keramische Schichten für die Mikrofiltration herstellen. In Abhängigkeit von der Größe der Öffnungen des Trägers ist die Auswahl der verwendbaren Korngrößen zu kleineren Größen hin limitiert. Zur rißfreien Beschichtung von Öffnungen von etwa 100 µm ist die Verwendung von käuflich erhältlichen, einheitlichen Fraktionen von mittleren Korngrößen < 0,7 µm bereits kritisch. Die Verwendung mittlerer Korngrößen zwischen 0,7 µm und 2 µm dagegen günstig. Die Größe der Poren der entstehenden keramischen Membranen ist bei Verwendung einer einheitlichen Korngrößenfraktion demnach nach unten limitiert und liegt bei der angegebenen Größe der zu beschichtenden Öffnungen bei 0,35 µm bis 0,6 µm.Ceramic layers can be made on porous supports with openings up to 500 µm be made that a suspension made of a metal-containing compound was hydrolyzed by water and peptized with mineral acid and super-ground Alumina with a grain size distribution between 0.1 µm and 10 µm is spread on the carrier becomes and with hot air at 450 ° C within a few seconds to a ceramic Coating is solidified. In this way, ceramic layers for the Make microfiltration. Depending on the size of the openings of the carrier, the Selection of the usable grain sizes limited to smaller sizes. For crack-free Coating openings of about 100 µm is the use of commercially available, uniform fractions of average grain sizes <0.7 µm are already critical. The In contrast, the use of medium grain sizes between 0.7 µm and 2 µm is cheap. The size The pores of the resulting ceramic membranes are uniform when using Grain size fraction is therefore limited at the bottom and is at the specified size coating openings at 0.35 µm to 0.6 µm.
Eine besonders interessante praktische Ausführung des erfindungsgemäßen Verfahrens wurde in einer Apparatur realisiert, die erstmals die Herstellung von keramischen Membranen als Rollenmaterial ermöglicht.A particularly interesting practical implementation of the method according to the invention was realized in an apparatus that is the first to manufacture ceramic membranes Roll material allows.
Dazu wird jeweils als Rollenware erhältliches poröses Metall, bevorzugt Edelstahlquadratmaschengewebe mit Maschenweiten zwischen 70 µm und 120 µm oder Streckmetall, kontinuierlich durch eine Apparatur geführt, auf der die Beschichtung aufgetragen und verfestigt und nach der Verfestigung wieder als Rollenware aufgewickelt. In der praktischen Ausführung des erfindungsgemäßen Verfahrens geschieht dies in guter Qualität mit einer Geschwindigkeit von 18 Meter/Stunde. Diese Ausführung besteht im wesentlichen aus einer motorisch angetriebenen Aufrollvorrichtung für das fertig beschichtete Material, einer Bremsvorrichtung zum Straffen des von der Rolle abgewickelten Trägermateriales, einer Auftragsvorrichtung für die keramische Suspension und einer Kammer, in der die Membran durch Beblasen mit Heißluft verfestigt wird.For this purpose, porous metal available as a roll is preferred Stainless steel square mesh with mesh sizes between 70 µm and 120 µm or Expanded metal, continuously passed through an apparatus on which the coating applied and consolidated and wound up again after the consolidation as roll goods. In the practical implementation of the method according to the invention does this in good Quality at a speed of 18 meters / hour. This version consists of essentially from a motorized retractor for the finished coated Material, a braking device to tighten the unwound from the roll Carrier material, an application device for the ceramic suspension and one Chamber in which the membrane is solidified by blowing with hot air.
Zum Erreichen kleinerer Poren wird die so entstandene keramische Membran mit einer zweiten keramischen Membran versehen. Da die nun als Träger für die zweite Schicht dienenden Trägerporen der ersten Schicht (im Vergleich zu den 100 µm-Maschen des Trägers für die erste Schicht) wesentlich kleiner sind, können wesentlich kleinere Korngrößen verwendet werden, wobei es prinzipiell jedoch nicht Ziel der Herstellung ist, zu einer kleineren Porenweite durch Porenverengung der existierenden Mikrofiltrationsmembran zu kommen, sondern möglichst eine separate keramische Schicht auf die Trägerschicht aufzubringen um zu einem optimalen Durchflußverhalten der Membran zu gelangen. Die maximal rißfrei erreichbare Dicke dieser Schicht ist in Ausführung des erfindungsgemäßen, kontinuierlichen Herstellverfahrens wegen fehlender Bindemittel limitiert und kritisch. Sie ist in jedem Fall in erster Linie abhängig von der Größe der verwendeten Metalloxidpartikel und liegt bei Verwendung von mittleren Korngrößen unter 0,1 µm bei etwa 5 µm. Die entstehenden Membranen weisen Poren auf, die etwa das 0,6fache bis 0,8fache der Korngrößen betragen.In order to reach smaller pores, the ceramic membrane thus created is covered with a second ceramic membrane. Since that is now the carrier for the second layer serving carrier pores of the first layer (compared to the 100 µm mesh of the carrier for the first layer) are significantly smaller, significantly smaller grain sizes can be used can be used, but in principle it is not the aim of the production, to a smaller pore size by narrowing the pores of the existing microfiltration membrane come, but if possible a separate ceramic layer on the carrier layer to apply in order to achieve an optimal flow behavior of the membrane. The The maximum thickness of this layer which can be achieved without cracks is in the embodiment of the invention, continuous manufacturing process limited and critical due to the lack of binding agents. she is in any case primarily depending on the size of the metal oxide particles and is about 5 µm when using average grain sizes below 0.1 µm. The resulting membranes have pores that are about 0.6 times to 0.8 times that Grain sizes are.
Das Ziel der Herstellung rißfreier keramischer Schichten auf einem porösen Träger mit kleineren Poren als 0,35 µm kann erfindungsgemäß auch dadurch erreicht werden, daß statt einer einzigen kornmerziell erhältlichen Korngrößenfraktion gleichzeitig unterschiedliche Korngrößenfraktionen eingesetzt werden. Dadurch läßt sich die Porenweite der entstehenden Membran manipulieren.The goal of producing crack-free ceramic layers on a porous support Pores smaller than 0.35 μm can also be achieved according to the invention in that instead of a single commercially available grain size fraction Grain size fractions are used. This allows the pore size of the resulting Manipulate the membrane.
Eine nach dem erfindungsgemäßen Verfahren aus einer Suspension einer einzigen Korngrößenfraktion entstandene keramische Schicht weist bei Verwendung von mittleren Korngrößen um 0,7 µm (Alcoa CT 3000 SG) Poren im Bereich von 0,35 µm-0,60 µm auf. Verwendet man statt dessen zusätzlich eine kleinere Korngrößenfraktionen, die sich deutlich unterscheidet, (wie z. B. Alcoa Premalox mit einer mittleren Korngröße um 0,25 µm) gelangt man mittels einer einzigen Beschichtung zu rißfreien Schichten mit deutlich kleinerer Porenweite. Der mengenmäßige Anteil der kleineren Fraktion darf dabei zur Verhinderung einer Rißbildung einen maximalen Anteil aber nicht übersteigen. Dieser maximale Anteil liegt immer unterhalb der offenen Porosität einer Membran die aus einer Suspension entsteht, die nur aus der größeren Korngrößenfraktion besteht. Meist liegt der zur zuverlässigen Herstellung rißfreier Schichten maximal verwendbare Anteil der kleineren Fraktion mit ca. 10% sogar weit unter dem derart definierten maximalen Anteil, wobei die Maschenweite des verwendeten Trägers ebenso eine Rolle spielt wie die Viskosität der Suspension.One according to the inventive method from a suspension of a single one Grain size fraction resulting ceramic layer shows when using medium Grain sizes around 0.7 µm (Alcoa CT 3000 SG) pores in the range of 0.35 µm-0.60 µm. Instead, you use a smaller grain size fraction, which is clear differs (such as Alcoa Premalox with an average grain size of around 0.25 µm) one with a single coating to crack-free layers with significantly smaller Pore size. The quantitative proportion of the smaller fraction can be used to prevent this of cracks, however, do not exceed a maximum proportion. This maximum share is always below the open porosity of a membrane that arises from a suspension that consists only of the larger grain size fraction. Most of the time it is reliable Production of crack-free layers maximum usable proportion of the smaller fraction with approx. 10% even far below the maximum proportion defined in this way, the mesh size of the used carrier plays a role as does the viscosity of the suspension.
Als kleinere Fraktion kann neben Aluminiumoxid (z. B. Alcoa Premalox) auch ein anderes Metalloxid verwendet werden. Günstig sind chemisch inerte Materialien wie Titandioxid, Zirkonoxid aber auch Siliciumoxid. Soll die herzustellende Membran als Elektromembran oder als elektrisch zu modifizierende Membran dienen, wird als Sol Titandioxidsol und als partikuläre Bestandteile der kleineren Korngrößenfraktion Titandioxid verwendet.In addition to aluminum oxide (e.g. Alcoa Premalox), another fraction can be used as a smaller fraction Metal oxide can be used. Chemically inert materials such as titanium dioxide, Zirconium oxide but also silicon oxide. If the membrane to be manufactured is intended as an electrical membrane or serve as an electrically modifiable membrane, is used as sol titanium dioxide sol and as particulate components of the smaller grain size fraction titanium dioxide are used.
Die Realisierung der Herstellung der Ultrafiltrationsmembran in der Zwei-Schritt-Methode, also das Aufbringen einer zweiten feinporigen Schicht auf die primäre Mikrofiltrationsschicht kann derart durchgeführt werden, daß diese Schicht in der gleichen Weise wie die erste Schicht nachträglich mit der gleichen beschriebenen Apparatur, aber einer Suspension mit einer entsprechend feineren Korngrößenstruktur, durchgeführt wird.Realizing the manufacture of the ultrafiltration membrane in the two-step method, thus the application of a second fine-pored layer on the primary microfiltration layer can be carried out in such a way that this layer in the same way as the first Subsequent layer with the same equipment described, but with a suspension a correspondingly finer grain size structure is carried out.
Das Aufbringen der Ultrafiltrationsmembran kann, statt des erfindungsgemäßen kontinuierlichen Verfahrens, erfindungsgemaß aber auch als Chargenverfahren durch Tauchen einer spiralig aufgewickelten Rolle einer doppelten Lage der Mikrofiltrationsmembran in eine geeignete Suspension erfolgen, wobei die gemeinsamen Kanten, jeweils einer Doppellage, während des beschichtenden Eintauchvorganges abgeklebt werden, so daß die einzelnen Mikrofiltrationsmembranen jeweils nur einseitig mit der Beschichtungssuspension in Kontakt kommen können. Das zur Überklebung verwendete Klebeband wird dabei so dick gewählt, daß die Oberflächen der einzelnen Lagen des Spiralwickels einen Abstand von einigen mm aufweisen. Beim Herausnehmen des getauchten Wickels läuft dadurch die überschüssige Suspension, ohne die Bildung von Flüssigkeitsbrücken durch Kapillarkräfte zwischen den einzelnen Lagen, ab. Durch Ausblasen mit Druckluft kann dieser Prozess unterstützt werden. Nach Trocknen des Spiralwickels an der Luft werden die Klebebänder entfernt, die Membran in ein Rohr gesteckt und mittels eines Heißluftföns verfestigt.The application of the ultrafiltration membrane can instead of the invention continuous process, but also according to the invention as a batch process by immersion a spirally wound roll of a double layer of the microfiltration membrane in one suitable suspension, the common edges, each of a double layer, are taped during the coating immersion process, so that the individual Microfiltration membranes in contact with the coating suspension only on one side can come. The adhesive tape used for pasting is chosen so thick that the surfaces of the individual layers of the spiral wrap a distance of a few mm exhibit. When you take out the dipped roll, the excess runs Suspension without the formation of liquid bridges by capillary forces between the individual layers. This process can be supported by blowing out with compressed air. After drying the spiral wrap in air, the adhesive tapes are removed, the membrane inserted into a tube and solidified by means of a hot air dryer.
Da auf diese Weise innerhalb sehr kurzer Zeit sehr große Membranflächen bearbeitet werden können, ist es wirtschaftlich durchaus sinnvoll, neben den erfindungsgemäßen Suspensionen auch binderhaltige wash-coat Beschichtungslösungen nach dem Stand der Technik zu verwenden. Dadurch verlängern sich zwar die Erhitzungszeiten, beziehungsweise werden Temperaturprogramme erforderlich, allerdings ist dieser Aufwand dennoch vergleichsweise gering, da pro Charge große Membranflächen hergestellt werden. Ein Beispiel soll dies verdeutlichen. Zwei 20 m lange und 30 cm breite Streifen einer nach dem erfindungsgemäßen Verfahren hergestellten Membran werden an ihren langen Ober- und Unterkanten mit einem 2 mm dicken Klebeband, sowie an den Enden abgeklebt. Diese Membrandoppelrolle mit einer Gesamt-Membranfläche von 12 m2 wird spiralig aufgewickelt in eine geeignete Suspension nach dem erfindungsgemäßen Verfahren kurz eingetaucht. Nach Trocknen und Entfernen des Klebebandes wird das gewickelte Paket, eventuell zusammen mit einer zusätzlichen Lage als Spacer dienenden Edelstahlgewebe in ein 80 mm dickes und 500 mm langes Rohr gegeben und mittels eines Heißluftföns mit einer Leistung von 4-5 Kwh und einer Heißlufttemperatur von etwa 500° über einen Zeitraum von etwa 10 min. behandelt. Mit dieser einfachen Vorrichtung gelingt also die Herstellung einer großen Membranfläche in sehr kurzer Zeit. Verwendet man wash-coat Lösungen nach dem Stand der Technik, kann sich die erforderliche Zeit entsprechend den angegebenen Bedingungen um das Mehrfache verlängern. Dennoch ist der Aufwand im Verhältnis zu den bislang bekannten Methoden zur Herstellung keramischer Membranen sehr gering.Since very large membrane areas can be processed in this way within a very short time, it makes economic sense to also use binder-containing wash-coat coating solutions according to the prior art in addition to the suspensions according to the invention. Although this increases the heating times or temperature programs are required, this effort is nevertheless comparatively low, since large membrane areas are produced per batch. An example should clarify this. Two 20 m long and 30 cm wide strips of a membrane produced by the process according to the invention are taped at their long upper and lower edges with a 2 mm thick adhesive tape and at the ends. This double membrane roll with a total membrane area of 12 m 2 is spirally wound into a suitable suspension briefly immersed according to the inventive method. After the adhesive tape has dried and removed, the wound package, possibly together with an additional layer of stainless steel mesh serving as a spacer, is placed in a tube 80 mm thick and 500 mm long and using a hot air dryer with a power of 4-5 Kwh and a hot air temperature of about 500 ° over a period of about 10 minutes. treated. With this simple device, a large membrane area can be produced in a very short time. If state-of-the-art wash-coat solutions are used, the time required can be extended by a multiple in accordance with the specified conditions. Nevertheless, the effort is very low compared to the previously known methods for producing ceramic membranes.
Die nach dem Stand der Technik bekannten Verfahren zum Auftragen feinerer keramischer Schichten auf gröbere Träger, die auf dem Tauchen oder auf dem kurzzeitigen Befüllen von Rohren zur Herstellung keramischer Membranen beruhen, können nach dem erfindungsgemäßen Verfahren auch auf die erfindungsgemäß hergestellten keramischen Flachmembranen angewendet werden.The prior art methods for applying finer ceramic Layers on coarser substrates that are based on diving or on short-term filling Tubes for the production of ceramic membranes can be based on the The inventive method also on the ceramic produced according to the invention Flat membranes are used.
So erhält man flexible, keramische Membranen für die verschiedenen Trennbereiche und die verschiedenen Applikationsfelder für Abtrennungen im fest/flüssig-Bereich, gelöster Stoffe, sowie das Reinigen und das Trennen von Gasen, aber auch als Separatoren in Batterien und Brennstoffzellen.So you get flexible, ceramic membranes for the different separation areas and various fields of application for separations in the solid / liquid area, dissolved substances, as well as cleaning and separating gases, but also as separators in batteries and Fuel cells.
Die entstehende Membran kann als Träger dienen für Flüssigmembranen, z. B. für die Pertraction (z. B. die Extraktion hydrohober organischer Komponenten aus Wasser und Abgabe des Extraktes an die organische Phase auf der Membranrückseite oder für ein Polymer, wenn die Membran für die Trennung verschiedener organischer Komponenten verwendet werden soll.The resulting membrane can serve as a carrier for liquid membranes, e.g. B. for the Pertraction (e.g. the extraction of hydrohobic organic components from water and Delivery of the extract to the organic phase on the back of the membrane or for a Polymer when the membrane for the separation of various organic components should be used.
Die nach dem erfindungsgemäßen Verfahren hergestellte Membran kann erfindungsgemäß als Elektrode in wäßrigen Lösungen zur Erzeugung von Gasen durch Wasserhydrolyse eingesetzt werden.According to the invention, the membrane produced by the process according to the invention can be used as Electrode used in aqueous solutions to generate gases by water hydrolysis become.
Schaltet man die Membran in einer wäßrigen Lösung bei einer Gleichspannung von wenigstens 2-30 Volt als Kathode, wird das in der Membran befindliche Titandioxid zum elektrisch gut leitfähigen, blauen Titansuboxid reduziert. Die Membran wird damit in ihrer gesamten Struktur elektrisch leitend. Durch das in der Membran befindliche gut leitfähige metallische Gewebe sind die elektrischen Wege durch die Keramik selbst relativ kurz, wodurch sich ein niedriger elektrischer Gesamtwiderstand ergibt. Als Kathode geschaltet, handelt es sich bei dieser Membran also um einen elektrisch vollständig leitenden Körper.Switching the membrane in an aqueous solution at a DC voltage of at least 2-30 volts as cathode, the titanium dioxide in the membrane becomes electrically conductive, blue titanium suboxide reduced. The membrane is thus in their entire structure electrically conductive. Due to the highly conductive in the membrane metallic fabrics, the electrical paths through the ceramic itself are relatively short, which results in a low total electrical resistance. Switched as cathode, this membrane is an electrically fully conductive body.
Erfindungsgemäß kann man diese Membran als Kathode bei der Elektromembranfiltration verwenden. Nach dem Stand der Technik wird darunter eine Membranfiltration wäßriger Medien verstanden, bei der während einer Membranfiltration ein elektrisches Feld dadurch aufgebaut wird, daß meist auf der Permeatseite eine Kathode und im Retentat eine Anode angebracht wird. Die meist elektrisch negativ geladenen Partikel werden so von der Membranoberfläche abgestoßen. Erfindungsgemäß wird die Membran selbst zur Kathode, d. h. die gesamte Membranoberfläche selbst ist negativ geladen. Der abstoßende Effekt auf negativ geladene Teilchen steigert sich im Vergleich zum Stand der Technik dadurch erheblich. In Abhängigkeit von der Porenweite der Membran kann somit auch Salz in unterschiedlichem Maß zurückgehalten werden, wobei der Salzrückhalt entscheidend durch das elektrische Feld gesteuert werden kann. Es handelt sich somit um eine elektrisch schaltbare Membran.According to the invention, this membrane can be used as a cathode in electromembrane filtration use. According to the prior art, membrane filtration becomes more aqueous Understand media in which an electric field occurs during membrane filtration is built up that usually a cathode on the permeate side and an anode in the retentate is attached. The mostly electrically negatively charged particles are thus from the Repelled membrane surface. According to the invention, the membrane itself becomes the cathode, i.e. H. the entire membrane surface itself is negatively charged. The repulsive effect on negative charged particles increase significantly compared to the prior art. In Depending on the pore size of the membrane, salt can also be used in different ways Dimension are retained, the salt retention being crucial due to the electric field can be controlled. It is therefore an electrically switchable membrane.
Die Leitfähigkeit der kathodisch betriebenen Membran kann man erfindungsgemäß auch zur elektrolytischen Abscheidung von Metallen nutzen. Die elektrolytische Abscheidung von Metallen selbst ist dabei Stand der Technik.The conductivity of the cathodically operated membrane can also be used according to the invention use electrolytic deposition of metals. The electrodeposition of Metals themselves are state of the art.
Erfindungsgemäß nutzt man diese Möglichkeit der Abscheidung von Metallen zum Aufbringen von katalytisch aktiven Metallen auf die Membran, beziehungsweise in die Poren der Membran. Diese Art der Herstellung katalytisch aktiver Membranen war bislang nicht möglich.According to the invention, this possibility of depositing metals is used Application of catalytically active metals on the membrane or in the pores the membrane. This type of production of catalytically active membranes has not previously been used possible.
Erfindungsgemäß kann man solcherart hergestellte katalytisch aktive Membranen anschließend wiederum als Kathode in wäßrigen Medien nutzen zur katalytischen Reduktion mit der in-situ Erzeugung von zur Reduktion benötigtem Wasserstoff. Dies sei am Beispiel des Nitratabbaus verdeutlicht. Den für den katalytischen Nitratabbau an Edelmetall, z. B. Pd/Sn erforderlichen Wasserstoff liefert dann nämlich diese mit dem Katalysator ausgerüstete kathodisch betriebene Membran am benötigten Ort in idealer Weise.According to the invention, it is possible to produce catalytically active membranes produced in this way then again used as a cathode in aqueous media for catalytic reduction with the in-situ generation of hydrogen required for the reduction. This is the example of nitrate degradation clarified. The for catalytic nitrate degradation of precious metal, e.g. B. The hydrogen required by Pd / Sn then supplies this hydrogen equipped with the catalyst ideally cathodically operated membrane at the required location.
Erfindungsgemäß kann eine durch elektrolytische Abscheidung von Edelmetall nach dem beschriebenen Verfahren imprägnierte Membran auch als Anode verwendet werden. Obwohl das in der Membran befindliche Titandioxid in einer wäßrigen Lösung als Anode vollständig nichtleitend ist und damit keinen Beitrag zur Leitfähigkeit mehr leistet, kann man die Leitfähigkeit der Membran dadurch herstellen, daß zunächst Metall, welches im Hinblick auf die spätere Verwendung der Membran als Katalysator ausgewählt werden kann, wie zuvor beschrieben, kathodisch abgeschieden wird bis eine gut leitfähige (metallische) Struktur in den Poren der Membran entstanden ist, welche bei der nachfolgenden Verwendung als Anode nicht mehr auf die Leitfähigkeit von Titandioxid angewiesen ist.According to the invention by electrolytic deposition of noble metal after impregnated membrane method described can also be used as an anode. Although the titanium dioxide in the membrane completely in an aqueous solution as anode is non-conductive and therefore no longer makes a contribution to conductivity, you can Establish conductivity of the membrane by first metal, which with regard to the later use of the membrane as a catalyst can be selected as before described, is deposited cathodically until a highly conductive (metallic) structure in the pores of the membrane, which is used in the subsequent use as an anode is no longer dependent on the conductivity of titanium dioxide.
Erfindungsgemäß kann man solcherart hergestellte katalytisch aktive Membranen als Anode in wäßrigen Medien nutzen zur katalytischen Oxidation mit der in-situ Erzeugung von zur Oxidation benötigtem Sauerstoff.According to the invention, catalytically active membranes produced in this way can be used as the anode in aqueous media for catalytic oxidation with the in-situ generation of Oxidation required oxygen.
Weiterhin wurde erfindungsgemäß gefunden, daß die Zugabe einer käuflichen, hydrophoben Dispersion in einer Menge von 1-20% zu der für die Herstellung der Keramikmembran verwendeten Suspension ebenfalls zu einer brauchbaren Membran führt. Verwendet wurden dazu die Hostaflon-Typen der Fa. Höchst TF 5032 u. a. Diese Membran ist nützlich für Anwendungen, bei denen die Membran am Benetzen durch Wasser oder aber andere Flüssigkeiten gehindert werden soll und nur der Durchtritt von Gasen erwünscht ist.Furthermore, it was found according to the invention that the addition of a commercially available, hydrophobic Dispersion in an amount of 1-20% to that for the manufacture of the ceramic membrane suspension used also leads to a useful membrane. Were used the Hostaflon types from Höchst TF 5032 u. a. This membrane is useful for Applications where the membrane is wetted by water or other Liquids should be prevented and only the passage of gases is desired.
Sofern die ursprüngliche Mikrofiltrationsmembran einseitig mit einer hydrohobierten Keramikschicht ausgerüstet wurde, kann die in wäßrige Lösung eingetauchte Membran beim Anlegen einer elektrischen Spannung an das Edelstahlträgergewebe als Elektrode fungieren und Gase bilden, die im Falle einer teflonisierten Beschichtung bevorzugt auf der hydrophobierten Membranseite an die berührende Flüssigkeit abgegeben werden.Provided the original microfiltration membrane is hydrohobic on one side Ceramic layer was equipped, the membrane immersed in aqueous solution can Applying an electrical voltage to the stainless steel support mesh act as an electrode and form gases which, in the case of a teflonized coating, preferably on the water-repellent membrane side are released to the contacting liquid.
Erfindungsgemäß kann man nach den voranstehenden Methoden Membranen herstellen, die auf einer Membranseite hydrophob ausgerüstet sind und auf der anderen Membranseite mit einem Katalysator versehen sind. Mit diesen Membranen können demnach Membranreaktoren aufgebaut werden, die katalytisch aktivierte Oxidationen oder Reduktionen mit der in-situ Erzeugung der benötigten Gase ermöglichen, bei denen sich die Gegenelektrode nicht im Reaktionsgefäß befindet. Das Reaktionsmedium kann daher nichtleitend organisch sein.According to the invention, membranes can be produced using the above methods on one side of the membrane are hydrophobic and on the other side of the membrane are provided with a catalyst. Accordingly, membrane reactors can be used with these membranes be built up, the catalytically activated oxidations or reductions with the in-situ Allow generation of the required gases in which the counter electrode is not in the Reaction vessel is located. The reaction medium can therefore be non-conductive organic.
Weiterhin kann eine solche Membran wegen ihres Charakters als Gasdiffusionselektrode erfindungsgemäß als Sauerstoffverzehrkathode oder als Wasserstoffverzehranode verwendet werden.Furthermore, because of its character, such a membrane can act as a gas diffusion electrode used according to the invention as an oxygen consumption cathode or as a hydrogen consumption anode become.
Weiterhin kann die Membran erfindungsgemäß genutzt werden zum Aufbringen einer Ionenaustauschermembran. Bei der Ionenaustauschermembran kann es sich um einen festen Polymerelektrolyten handeln, wobei das Polymer in der gleichen Art auf die keramische Membran aufgebracht wird, wie es für das Aufbringen auf poröse Trägermaterialien zum Stand der Technik gehört. Günstig ist auch das Aufbringen von Zeolithen auf die keramische Membran analog den Methoden, die für das Aufbringen auf poröse Träger zum Stand der Technik gehören. Eine solcherart hergestellte Membran kann zum Aufbau von SPE-Zellen (Solid Polymer Electrolyt-Zellen) in der leitsalzfreien, organischen Synthese verwendet werden. Einsetzbar sind solche Membranen auch für die gezielte Trennungen von Substanzen mit unterschiedlichen isoelektrischen Punkten im elektrischen Feld.Furthermore, the membrane can be used according to the invention to apply a Ion exchange membrane. The ion exchange membrane can be a solid one Act polymer electrolytes, the polymer in the same way to the ceramic Membrane is applied as it is for application to porous support materials State of the art belongs. It is also favorable to apply zeolites to the ceramic Membrane analogous to the methods used for applying porous supports to the state of the art Technology belongs. Such a membrane can be used to build SPE cells (Solid Polymer Electrolytic Cells) used in the salt-free, organic synthesis become. Such membranes can also be used for the targeted separation of substances with different isoelectric points in the electric field.
Erfindungsgemäß kann die Membran aber auch geheizt werden. Das Edelstahlgewebe hat (unabhängig von der aufgebrachten keramischen Membran) je nach eingesetztem Typ einen elektrischen Widerstand, der naturgemäß mit der Länge des Gewebes zunimmt. Durch Anlegen einer elektrischen Spannung an die beiden Enden eines Membranstreifens fließt eine Strommenge durch die Membran, die diese aufheizt. Bei Quadratmaschengeweben mit Maschenweiten um 100 µm beträgt der Stromfluß beispielsweise beim Anlegen einer Spannung von 12 Volt an einen 1 cm breiten und 15 cm langen Streifen etwa 4 Ampere. Diese Heizbarkeit der Membran wird erfindungsgemäß zur Realisierung verschiedener Absichten genutzt. So kann ein wesentlicher Teil der mit der Membran und den beschriebenen Modifikationen durchführbaren Stofftrennungen durch Erreichen höherer Temperaturen beschleunigt werden.According to the invention, however, the membrane can also be heated. The stainless steel mesh has (regardless of the applied ceramic membrane) depending on the type used electrical resistance, which naturally increases with the length of the tissue. By Applying an electrical voltage to the two ends of a membrane strip flows one Amount of electricity through the membrane, which heats it up. With square mesh fabrics with Mesh widths around 100 µm, the current flow is, for example, when creating a Voltage of 12 volts to a 1 cm wide and 15 cm long strip about 4 amps. This Heatability of the membrane is used according to the invention to implement various purposes utilized. So can an essential part of the membrane and the described Modifications of feasible separations by reaching higher temperatures be accelerated.
Da die Membran aber auch für adsorptive Zwecke verwendet werden kann, dient die Beheizbarkeit erfindungsgemäß auch der Desorption adsorbierter Gase oder Dämpfe.Since the membrane can also be used for adsorptive purposes, the serves Heatability according to the invention also for the desorption of adsorbed gases or vapors.
Weiterhin dient diese Beheizbarkeit erfindungsgemäß der Reinigung der Membran. Eine durch Fouling verursachende organische Substanzen verblockte Membran kann durch Ausheizen auf mehrere hundert Grad regeneriert werden.Furthermore, this heatability is used according to the invention to clean the membrane. A Membrane blocked by organic substances causing fouling can be blocked by Bake out to be regenerated to several hundred degrees.
Auch die Regenerierung durch organische Substanzen vergifteter auf der Membran befindlicher Katalysatoren kann erfindungsgemäß durch Ausheizen realisiert werden.Regeneration by organic substances also more poisoned on the membrane existing catalysts can be realized according to the invention by baking.
Claims (13)
Priority Applications (47)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1997141498 DE19741498B4 (en) | 1997-09-20 | 1997-09-20 | Production of a ceramic stainless steel mesh composite |
DE19824666A DE19824666B4 (en) | 1997-09-20 | 1998-06-03 | Production and use of a ceramic-metal carrier composite |
EP98950049A EP0959981A1 (en) | 1997-09-20 | 1998-09-18 | Method for separating mixtures of substances using a material pervious to said substances |
CA 2272318 CA2272318A1 (en) | 1997-09-20 | 1998-09-18 | Method for separating mixtures of substances using a material pervious to said substances |
PCT/EP1998/005938 WO1999015272A1 (en) | 1997-09-20 | 1998-09-18 | Catalytically active permeable composite material, method for producing said composite material, and use of the same |
ES98948988T ES2232963T3 (en) | 1997-09-20 | 1998-09-18 | PROCEDURE FOR THE PREPARATION OF A COMPOSITE MATERIAL, CATALYTICALLY ACTIVE, PERMEABLE TO SUBSTANCES. |
EP19980952595 EP0946270B1 (en) | 1997-09-20 | 1998-09-18 | Permeable composite material, method for producing said composite material, and use of the same |
EP98951432A EP0939669A1 (en) | 1997-09-20 | 1998-09-18 | Gas filter, method for producing a gas filter and use of said gas filter |
CA 2272312 CA2272312C (en) | 1997-09-20 | 1998-09-18 | Permeable composite material, method for producing said composite material, and use of the same |
US09/308,222 US6340379B1 (en) | 1997-09-20 | 1998-09-18 | Gas filter, method for producing a gas filter and use of said gas filter |
AT98952595T ATE297247T1 (en) | 1997-09-20 | 1998-09-18 | PERMEABLE COMPOSITE MATERIAL, METHOD FOR THE PRODUCTION THEREOF AND USE OF THE PERMEABLE COMPOSITE MATERIAL |
US09/308,219 US6309545B1 (en) | 1997-09-20 | 1998-09-18 | Permeable composite material, method for producing said composite material, and use of the same |
PCT/EP1998/005937 WO1999015260A1 (en) | 1997-09-20 | 1998-09-18 | Method for separating mixtures of substances using a material pervious to said substances |
AT98948988T ATE284756T1 (en) | 1997-09-20 | 1998-09-18 | METHOD FOR PRODUCING A CATALYTICALLY ACTIVE, PERMEABLE COMPOSITE MATERIAL |
PCT/EP1998/005939 WO1999015262A1 (en) | 1997-09-20 | 1998-09-18 | Permeable composite material, method for producing said composite material, and use of the same |
PCT/EP1998/005946 WO1999015257A1 (en) | 1997-09-20 | 1998-09-18 | Gas filter, method for producing a gas filter and use of said gas filter |
US09/308,230 US6299668B1 (en) | 1997-09-20 | 1998-09-18 | Method for separating mixtures of substances using a material pervious to said substances |
DE59812384T DE59812384D1 (en) | 1997-09-20 | 1998-09-18 | METHOD FOR PRODUCING A CATALYTICALLY ACTIVE, SUBSTITUTED COMPOSITE MATERIAL |
DE59812853T DE59812853D1 (en) | 1997-09-20 | 1998-09-18 | SUBSTITUTED COMPOSITE MATERIAL, METHOD FOR THE PRODUCTION AND USE OF THE SUBSTITUTED COMPOSITE MATERIAL |
CA 2272314 CA2272314A1 (en) | 1997-09-20 | 1998-09-18 | Gas filter, method for producing a gas filter and use of said gas filter |
EP98948988A EP0951355B1 (en) | 1997-09-20 | 1998-09-18 | Method for producing catalytically active permeable composite material |
CA 2272310 CA2272310C (en) | 1997-09-20 | 1998-09-18 | Catalytically active permeable composite material, method for producing said composite material, and use of the same |
US09/308,221 US6299778B1 (en) | 1997-09-20 | 1998-09-18 | Catalytically active permeable composite material, method for producing said composite material, and use of the same |
CA002299472A CA2299472A1 (en) | 1998-06-03 | 1999-03-20 | Hydrophobic permeable composite, method for producing said composite and use of the same |
AT99920554T ATE342759T1 (en) | 1998-06-03 | 1999-03-20 | ION-CONDUCTING, PERMEABLE COMPOSITE, METHOD FOR THE PRODUCTION THEREOF AND USE OF THE COMPOSITE |
US09/463,413 US6383386B1 (en) | 1998-06-03 | 1999-03-20 | Hydrophobic permeable composite, method for producing said composite and use of the same |
DE59913112T DE59913112D1 (en) | 1998-06-03 | 1999-03-20 | HYDROPHOBY, SUBSTITUTED COMPOSITE, METHOD FOR THE PRODUCTION THEREOF AND ITS USE |
EP99923393A EP1007193B1 (en) | 1998-06-03 | 1999-03-20 | Hydrophobic permeable composite, method for producing said composite and use of the same |
AT99923393T ATE317289T1 (en) | 1998-06-03 | 1999-03-20 | HYDROPHOBIC, PERMEABLE COMPOSITE MATERIAL, METHOD FOR THE PRODUCTION AND USE THEREOF |
PCT/DE1999/000875 WO1999062620A1 (en) | 1998-06-03 | 1999-03-20 | Ion-conducting composite which is permeable to matter, method for producing said composite, and use of the same |
JP2000551869A JP4662626B2 (en) | 1998-06-03 | 1999-03-20 | Ion conductive and material permeable composite material, method for its production and use of the composite |
PL99338562A PL338562A1 (en) | 1998-06-03 | 1999-03-20 | Ion-conductive permeable composite material, method of obtaining same and application thereof |
PL99338474A PL338474A1 (en) | 1998-06-03 | 1999-03-20 | Hydrophobous permeable compoiste material, method of obtaining same and application thereof |
US09/463,414 US6620320B1 (en) | 1998-06-03 | 1999-03-20 | Ion-conducting composite which is permeable to matter, method for producing said composite, and use of the same |
CA002299461A CA2299461A1 (en) | 1998-06-03 | 1999-03-20 | Ion-conducting composite which is permeable to matter, method for producing said composite, and use of the same |
PCT/DE1999/000876 WO1999062624A1 (en) | 1998-06-03 | 1999-03-20 | Hydrophobic permeable composite, method for producing said composite and use of the same |
DE59913933T DE59913933D1 (en) | 1998-06-03 | 1999-03-20 | ION-LEADING, SUBSTITUTED COMPOSITE, METHOD FOR THE PRODUCTION THEREOF, AND THE USE OF THE COMPOSITE MATERIAL |
JP2000551873A JP4571744B2 (en) | 1998-06-03 | 1999-03-20 | Hydrophobic substance-permeable composite material, its production method and use |
EP99920554A EP1017476B1 (en) | 1998-06-03 | 1999-03-20 | Ion-conducting composite which is permeable to matter, method for producing said composite, and use of the same |
NO992432A NO992432L (en) | 1997-09-20 | 1999-05-20 | Catalytically active, permeable composite material, process for making composite material, and using the same |
NO992434A NO992434L (en) | 1997-09-20 | 1999-05-20 | Permeable composite material, process for making the composite material and using the same |
NO992433A NO992433L (en) | 1997-09-20 | 1999-05-20 | Process for separating mixtures of substances using a material permeable to the substances |
NO992435A NO992435L (en) | 1997-09-20 | 1999-05-20 | Gas filter, method of making a gas filter and use of the gas filter |
NO20000437A NO20000437L (en) | 1998-06-03 | 2000-01-27 | Ion conductive, permeable composite, method of making the composite, and use of the composite |
NO20000438A NO20000438L (en) | 1998-06-03 | 2000-01-27 | Hydrophobic permeable composite, method of making the composite and using the same |
US09/941,587 US6841075B2 (en) | 1997-09-20 | 2001-08-30 | Permeable composite material, method for producing said composite material, and use of the same |
US09/956,915 US20020023419A1 (en) | 1997-09-20 | 2001-09-21 | Gas filter, process for producing a gas filter and use of this gas filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1997141498 DE19741498B4 (en) | 1997-09-20 | 1997-09-20 | Production of a ceramic stainless steel mesh composite |
DE19824666A DE19824666B4 (en) | 1997-09-20 | 1998-06-03 | Production and use of a ceramic-metal carrier composite |
Publications (2)
Publication Number | Publication Date |
---|---|
DE19824666A1 true DE19824666A1 (en) | 1999-12-09 |
DE19824666B4 DE19824666B4 (en) | 2008-08-21 |
Family
ID=26040154
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19811708A Expired - Lifetime DE19811708B4 (en) | 1997-09-20 | 1998-03-18 | Production of ceramic membranes |
DE19812035A Expired - Lifetime DE19812035B4 (en) | 1997-09-20 | 1998-03-19 | Production of catalytically active, ceramic membranes |
DE19820580A Expired - Lifetime DE19820580B4 (en) | 1997-09-20 | 1998-05-08 | Regenerable diesel exhaust filter |
DE19824666A Expired - Lifetime DE19824666B4 (en) | 1997-09-20 | 1998-06-03 | Production and use of a ceramic-metal carrier composite |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19811708A Expired - Lifetime DE19811708B4 (en) | 1997-09-20 | 1998-03-18 | Production of ceramic membranes |
DE19812035A Expired - Lifetime DE19812035B4 (en) | 1997-09-20 | 1998-03-19 | Production of catalytically active, ceramic membranes |
DE19820580A Expired - Lifetime DE19820580B4 (en) | 1997-09-20 | 1998-05-08 | Regenerable diesel exhaust filter |
Country Status (1)
Country | Link |
---|---|
DE (4) | DE19811708B4 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092500A1 (en) * | 2001-05-11 | 2002-11-21 | Creavis Gesellschaft Für Technologie Und Innovation Mbh | Catalytically active separating membrane for producing high-purity hydrogen |
WO2002092203A1 (en) * | 2001-05-11 | 2002-11-21 | Creavis Gesellschaft Für Technologie Und Innovation Mbh | Inorganic composite membrane for isolating hydrogen from mixtures containing hydrogen |
DE102010038308A1 (en) | 2010-07-23 | 2012-01-26 | Evonik Degussa Gmbh | Lithium cells and batteries with improved stability and safety, process for their preparation and use in mobile and stationary electrical energy storage |
DE102011003186A1 (en) | 2011-01-26 | 2012-07-26 | Evonik Degussa Gmbh | Thin, macroporous polymer films |
EP2915577A4 (en) * | 2012-11-01 | 2016-08-03 | Ngk Insulators Ltd | METHOD FOR REGENERATING A ZEOLITAN MEMBRANE |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10055610A1 (en) * | 2000-11-09 | 2002-05-23 | Creavis Tech & Innovation Gmbh | Composite material, used e.g. as a catalyst for oxidation and dehydrogenation reactions, comprises inorganic component consisting of compound of metal, semi-metal or mixed metal of group 3-7 main group element on support material |
DE10301037A1 (en) * | 2002-05-25 | 2004-02-05 | Hjs Fahrzeugtechnik Gmbh & Co. | Exhaust gas particle filter used for removing particles from exhaust gas stream of diesel engine comprises metal support with openings and on which porous sintered metal powder is bound by sintering process |
DE10305865B4 (en) * | 2003-02-13 | 2006-06-08 | Itn Nanovation Gmbh | filtration device |
DE10361570A1 (en) * | 2003-12-23 | 2005-07-21 | Mann + Hummel Gmbh | Filter system with a rotationally symmetrical filter element |
DE102009004278A1 (en) | 2009-01-05 | 2010-07-15 | Synthesechemie Dr. Penth Gmbh | Meter for low hydrocarbon concentrations |
KR101351221B1 (en) | 2011-09-21 | 2014-01-14 | 한국전력공사 | Fabrication Method of Substrate-Supported Coating Layers by Using Tape Casting Film Sheet |
DE102013105177A1 (en) | 2013-05-21 | 2014-11-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for obtaining metallic fractions and metal-depleted material from metal-containing materials |
DE102013013295A1 (en) | 2013-08-12 | 2015-02-12 | Airbus Defence and Space GmbH | Ion dosing device for an energy storage device, method for manufacturing an ion dosing device and energy storage device |
CN113546527B (en) * | 2021-07-28 | 2022-05-27 | 江西嘉陶无机材料有限公司 | Silver and lanthanum ion water purification composite ceramic membrane process |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3887979T2 (en) * | 1988-03-17 | 1994-06-01 | Bazet Ceramiques Tech | Filter membrane and process for its manufacture. |
WO1996000198A1 (en) * | 1994-06-23 | 1996-01-04 | Bernd Penth | Production of ceramic layers and their use |
-
1998
- 1998-03-18 DE DE19811708A patent/DE19811708B4/en not_active Expired - Lifetime
- 1998-03-19 DE DE19812035A patent/DE19812035B4/en not_active Expired - Lifetime
- 1998-05-08 DE DE19820580A patent/DE19820580B4/en not_active Expired - Lifetime
- 1998-06-03 DE DE19824666A patent/DE19824666B4/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092500A1 (en) * | 2001-05-11 | 2002-11-21 | Creavis Gesellschaft Für Technologie Und Innovation Mbh | Catalytically active separating membrane for producing high-purity hydrogen |
WO2002092203A1 (en) * | 2001-05-11 | 2002-11-21 | Creavis Gesellschaft Für Technologie Und Innovation Mbh | Inorganic composite membrane for isolating hydrogen from mixtures containing hydrogen |
DE102010038308A1 (en) | 2010-07-23 | 2012-01-26 | Evonik Degussa Gmbh | Lithium cells and batteries with improved stability and safety, process for their preparation and use in mobile and stationary electrical energy storage |
WO2012010468A1 (en) | 2010-07-23 | 2012-01-26 | Evonik Degussa Gmbh | Lithium cells and batteries with improved stability and safety, method for the production thereof, and application in mobile and stationary electrical energy accumulators |
DE102011003186A1 (en) | 2011-01-26 | 2012-07-26 | Evonik Degussa Gmbh | Thin, macroporous polymer films |
WO2012100889A1 (en) | 2011-01-26 | 2012-08-02 | Evonik Degussa Gmbh | Thin macroporous polymer films |
EP2915577A4 (en) * | 2012-11-01 | 2016-08-03 | Ngk Insulators Ltd | METHOD FOR REGENERATING A ZEOLITAN MEMBRANE |
Also Published As
Publication number | Publication date |
---|---|
DE19811708B4 (en) | 2008-09-04 |
DE19820580A1 (en) | 1999-11-11 |
DE19811708A1 (en) | 1999-09-23 |
DE19824666B4 (en) | 2008-08-21 |
DE19812035A1 (en) | 1999-09-23 |
DE19812035B4 (en) | 2008-07-31 |
DE19820580B4 (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19824666B4 (en) | Production and use of a ceramic-metal carrier composite | |
EP0951355B1 (en) | Method for producing catalytically active permeable composite material | |
DE3049982C2 (en) | ||
EP2131949B1 (en) | Method for introducing a catalytic coating into the pores of a ceramic honeycomb flow body | |
EP1017476B1 (en) | Ion-conducting composite which is permeable to matter, method for producing said composite, and use of the same | |
DE10034386A1 (en) | Method and device for electrofiltration | |
DE102007033753B4 (en) | On its surface provided with metallic nanoparticles ultrahydrophobic substrate, process for its preparation and use thereof | |
DE1267296C2 (en) | FUEL ELEMENT | |
DE102006050090A1 (en) | Oxygen reduction gas diffusion cathode has a porous electrically conductive substrate with diamond particles with hydrophobic coatings and catalytic particles in a fluorine resin binder | |
DE1546717A1 (en) | Catalyst electrode for electrochemical cells | |
EP2573211B1 (en) | Method for their production of gas diffusion electrodes | |
DE4438275B4 (en) | Electrolytic cell and process for the electrolysis of an aqueous saline solution | |
DE10122889C2 (en) | Inorganic composite membrane for the separation of hydrogen from mixtures containing hydrogen | |
DE4417403C2 (en) | Process for the production of a gas electrode | |
EP2129814B1 (en) | Method for producing a catalyst layer | |
DE2311957C3 (en) | Method for producing an electrode structure for electrical cells | |
DE3827049A1 (en) | Zeolite molecular sieve for separating fluids | |
DE3782026T2 (en) | COMPOSED MEMBRANE / ELECTRODE STRUCTURE THAT HAS ISLANDS OF CATALYTICALLY ACTIVE PARTICLES. | |
DE3221306A1 (en) | METHOD FOR REDUCING OR OXIDATING REDUCABLE OR OXIDIZABLE SUBSTANCES IN AQUEOUS SOLUTION | |
EP0042624B1 (en) | Support for an electrochemically active catalyst for the oxidation or reduction of components of aqueous solutions | |
DE3515025A1 (en) | Process for producing a filter having pores of a predetermined and roughly equal micro size and a filter produced by this process | |
DE2140310A1 (en) | Heterogeneous, semi-permeable plastic membrane for separating liquid or gas mixtures | |
DE3781262T2 (en) | COMPOSED MEMBRANE / ELECTRODE STRUCTURE THAT HAS CONNECTED WAYS OF CATALYTICALLY ACTIVE PARTICLES. | |
WO2005039743A2 (en) | Nanoporous filter or support membrane and method for production therof | |
DE102023209672B3 (en) | electrode for electrochemical cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AF | Is addition to no. |
Ref document number: 19741498 Country of ref document: DE |
|
8110 | Request for examination paragraph 44 | ||
8127 | New person/name/address of the applicant |
Owner name: DEGUSSA AG, 40474 DUESSELDORF, DE |
|
8127 | New person/name/address of the applicant |
Owner name: DEGUSSA GMBH, 40474 DUESSELDORF, DE |
|
8127 | New person/name/address of the applicant |
Owner name: EVONIK DEGUSSA GMBH, 40474 DUESSELDORF, DE |
|
AF | Is addition to no. |
Ref document number: 19741498 Country of ref document: DE Kind code of ref document: P |
|
8364 | No opposition during term of opposition | ||
R071 | Expiry of right |