DE19800711A1 - Mostly dry working screw spindle vacuum pump - Google Patents
Mostly dry working screw spindle vacuum pumpInfo
- Publication number
- DE19800711A1 DE19800711A1 DE1998100711 DE19800711A DE19800711A1 DE 19800711 A1 DE19800711 A1 DE 19800711A1 DE 1998100711 DE1998100711 DE 1998100711 DE 19800711 A DE19800711 A DE 19800711A DE 19800711 A1 DE19800711 A1 DE 19800711A1
- Authority
- DE
- Germany
- Prior art keywords
- vacuum pump
- screw
- thread
- mainly dry
- working screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/082—Details specially related to intermeshing engagement type pumps
- F04C18/084—Toothed wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2220/00—Application
- F04C2220/10—Vacuum
- F04C2220/12—Dry running
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Abstract
Description
Die Erfindung betrifft eine vorwiegend trocken arbeitende Schraubenspindelvakuumpumpe
mit zwei oder mehr Spindeln, die an einer Stirnseite mit einem Zahnradgetriebe gegeneinander
geführt sind und eine innere Verdichtung aufweisen. Im Grundprinzip ist diese Pumpe, aber
ohne innere Verdichtung, bekannt, so daß auf eine Gesamtdarstellung mit Getriebe, Lagerung
und Antriebe verzichtet wird. Es geht bei der Erfindung im wesentlichen, um die Ausbildung
des Förderschraubengewindes. Bei den jetzt bekannten Pumpen wird das zu fördernde
Medium auf der einen Seite der Schrauben angesaugt und in axialer Richtung von den
Schrauben gleichen Querschnittes auf der ganzen Länge zum Auslaßstutzen gefördert. Durch
die Anordnung mehrere Schraubengänge auf den Spindeln lassen sich mit diesem Pumpentyp
ohne Unterteilung des Pumpengehäuses (keine Zwischenwände) hohe Druckverhältnisse
überwinden, und zwar in einer Pumpeneinheit von etwa 10-2 mbar bis 1000 mbar
(atmosphärischer Druck). Diesem Vorteil steht jedoch der Nachteil gegenüber, daß die bisher
verwendeten Schraubenspindelvakuumpumpen, das abgesaugte Medium (Gasdampfgemisch)
unverdichtet von Schraubengang zu Schraubengang weiterfördern. Damit ist die
Antriebsleistung "N" wie bei allen Vakuumpumpen ohne innere Vorverdichtung, wie zum
Beispiel auch der Wälzkolbenvakuumpumpe, direkt ihrem Produkt aus dem Schöpfvolumen
"V" (m3/h) und der Druckdifferenz "Δp" (mbar) zwischen Ansaugdruck und Ausstoßdruck
proportional und hat seinen höchsten Wert bei Betrieb auf Endvakuum. Schon eine relativ
kleine Schraubenspindelvakuumpumpe mit einem theoretischen Schöpfvolumen "V" von 100
m3/h benötigt daher bei einer Druckdifferenz von 1000 mbar, d. h. von Endvakuum auf
Atmosphärendruck ohne Berücksichtigung des mechanischen Wirkungsgrades eine
Antriebsleistung von
The invention relates to a predominantly dry working screw vacuum pump with two or more spindles, which are guided against each other on one end face with a gear transmission and have an internal compression. The basic principle of this pump is known, but without internal compression, so that an overall representation with gear, bearing and drives is dispensed with. The invention is essentially about the formation of the feed screw thread. In the pumps now known, the medium to be delivered is sucked in on one side of the screws and is conveyed in the axial direction by the screws of the same cross section over the entire length to the outlet connection. The arrangement of several screw turns on the spindles enables this pump type to overcome high pressure ratios without dividing the pump housing (no partition walls), in one pump unit from about 10 -2 mbar to 1000 mbar (atmospheric pressure). However, this advantage is offset by the disadvantage that the screw spindle vacuum pumps used hitherto continue to convey the extracted medium (gas vapor mixture) from the screw thread to the screw thread without being compressed. Thus, as with all vacuum pumps without internal pre-compression, such as the Roots vacuum pump, the drive power "N" is directly its product of the scooping volume "V" (m 3 / h) and the pressure difference "Δp" (mbar) between suction pressure and discharge pressure proportional and has its highest value when operating on final vacuum. Even a relatively small screw spindle vacuum pump with a theoretical scoop volume "V" of 100 m 3 / h therefore requires a drive power of at a pressure difference of 1000 mbar, ie from a final vacuum to atmospheric pressure without taking mechanical efficiency into account
Abb. 1 zeigt in Gegenüberstellung (ohne mechanische Wirkungsgrade) den Energiebedarf für die isobarische Verdichtung (Vakuumschraubenpumpe und Wälzkolbenvakuumpumpe beide ohne Vorverdichtung), dann den Idealfall - isothermische Verdichtung - und weiter den Energiebedarf bei abgestuften Vakuumpumpständen von erwähnter Bauart im Verhältnis 1 : 5 und 1 : 10. Solche Schaltungen sind aus wirtschaftlichen Gründen bei Langzeitbetrieb schon im 10er mbar Bereich und insbesondere bei noch niederen Drucken erforderlich. Für Großpumpstände steht diese Aufteilung in mehrere Einzelaggregate aus diesen Gründen außer Frage. Mit der vorliegenden Erfindung wird nun ein Schraubenspindelvakuumsystem für kleine bis mittelgroße Pumpeinheiten in einem Gehäuse vorgestellt, das die Eigenschaft hat, das geförderte Medium kontinuierlich oder in zwei oder mehr Stufen bis auf Werte von 1 : 10 und mehr vorzuverdichten, bevor es gegen die Atmosphäre oder den Gegendruck ausgestoßen wird. Das bedeutet für Prozesse, die sich hauptsächlich im niederen Druckbereich abspielen, die Auspumpzeit also nur einen Bruchteil der Chargenzeit ausmacht, eine enorme Energieeinsparung bei gleichzeitig besserer Temperaturführung der Schraubenvakuumpumpe, da nicht erzeugter Energieaufwand auch nicht abgeführt werden muß. Die Erfindung beruht auf der Tatsache, daß die Förderschrauben sich in axialer Richtung zur Weiterförderung des Gasstromes nicht zueinander verschieben müssen, sondern immer die gleichen Schraubenflanken miteinander zum Eingriff kommen. Daher kann das Gewindeprofil an jeder Stelle beliebig ausgeführt werden, d. h. möglichst optimal dem gewünschten Pumpprozeß angepaßt werden, das ist in diesem Falle eine stetige Verkleinerung, der von dem Schraubenprofil und der Gehäusewand gebildeten Förderkammer (8) und das geschieht einmal durch Verkleinerung der Gewindesteigung hin zum Auslaßstutzen kontinuierlich oder jeweils nach einigen Gewindegängen und durch Verkleinerung der Schraubenaußendurchmesser und entsprechende Vergrößerung der Schraubenkerndurchmesser hin zum Auslaß. Auch diese Ausführung kann stetig, siehe Abb. 2, oder stufenweise, siehe Abb. 3, erfolgen. Durch diese Abstimmung des Gewindeaußendurchmessers mit dem Gewindekerndurchmesser wird verhindert, daß trotz Gewindeänderung unter beibehalt gleichen Achsabstandes größere Leckspalte entstehen. Alle diese Maßnahmen können kontinuierlich oder auch in zwei, drei oder auch mehr Stufen erfolgen und lassen Vorverdichtungsverhältnisse bis über 1 : 10 zu. Abb. 2 zeigt ein Schraubenpaar, bei dem die Steigung einmal abgestuft ist, also zwei verschiedenen Steigungen aufweist und die Gewindedurchmesser kontinuierlich geändert werden. Abb. 3 zeigt dagegen ein Schraubenpaar, bei dem die Aufteilung von Steigung und Durchmesserwahl in 3 Stufen erfolgt. Ferner zeigt Abb. 3 an den Übergangsstellen angeordnete Überdruckventile (3 + 4), um den Aufbau hoher innerer Überdrücke zu vermeiden. Da die Vorverdichtung ein stetiger Ablauf von der Saug- zur Druckseite ist, bei dem der Außendurchmesser von Stufe zu Stufe so ausgeführt werden kann, daß immer eine Außendurchmesserverjüngung auftritt, lassen sich die komplett vormontierten und eingestellten Schraubenspindeln ohne Zerlegung in das Gehäuse einführen und mit dem Getriebe justieren. Die Schraubenpaare selbst können bei der Fertigung so ausgeführt werden, daß eine Nachjustierung der einzelnen Profilabschnitte nicht mehr notwendig ist. Fig. 1 shows a comparison (without mechanical efficiency) of the energy requirement for isobaric compression (vacuum screw pump and Roots vacuum pump both without pre-compression), then the ideal case - isothermal compression - and further the energy requirement for graduated vacuum pump levels of the type mentioned in a ratio of 1: 5 and 1 : 10. For economic reasons, such circuits are required in the 10 mbar range for long-term operation and especially in the case of even lower pressures. For large pumping stations, this division into several individual units is out of the question for these reasons. With the present invention, a screw vacuum system for small to medium-sized pump units in a housing is now presented, which has the property of continuously or in two or more stages to pre-compress the conveyed medium to values of 1:10 and more before it is released to the atmosphere or the back pressure is expelled. For processes that mainly take place in the low pressure range, i.e. the pumping time is only a fraction of the batch time, this means enormous energy savings with better temperature control of the screw vacuum pump, since energy that is not generated does not have to be dissipated. The invention is based on the fact that the feed screws do not have to shift relative to each other in the axial direction for the further conveying of the gas flow, but the same screw flanks always come into engagement with one another. Therefore, the thread profile can be carried out at any point, ie be optimally adapted to the desired pumping process, which in this case is a constant reduction in the delivery chamber ( 8 ) formed by the screw profile and the housing wall, and this is done once by reducing the thread pitch to the outlet nozzle continuously or after a few threads in each case and by reducing the outer screw diameter and increasing the screw core diameter accordingly to the outlet. This version can also be carried out continuously, see Fig. 2, or in stages, see Fig. 3. This coordination of the thread outer diameter with the thread core diameter prevents larger leakage gaps from occurring despite the change in thread while maintaining the same center distance. All of these measures can be carried out continuously or in two, three or even more stages and allow pre-compression ratios up to 1:10. Fig. 2 shows a pair of screws in which the pitch is stepped once, i.e. has two different pitches and the thread diameter is continuously changed. Fig. 3, on the other hand, shows a pair of screws in which the pitch and diameter selection are divided into 3 stages. Fig. 3 also shows overpressure valves ( 3 + 4 ) located at the transition points to avoid the build-up of high internal overpressures. Since the pre-compression is a continuous process from the suction to the pressure side, in which the outer diameter can be designed from step to step so that there is always a tapering of the outer diameter, the completely pre-assembled and adjusted screw spindles can be inserted into the housing without disassembly and with the Adjust the gear. The pairs of screws themselves can be made during production so that readjustment of the individual profile sections is no longer necessary.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1998100711 DE19800711A1 (en) | 1998-01-10 | 1998-01-10 | Mostly dry working screw spindle vacuum pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1998100711 DE19800711A1 (en) | 1998-01-10 | 1998-01-10 | Mostly dry working screw spindle vacuum pump |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19800711A1 true DE19800711A1 (en) | 1999-07-29 |
Family
ID=7854316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1998100711 Ceased DE19800711A1 (en) | 1998-01-10 | 1998-01-10 | Mostly dry working screw spindle vacuum pump |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19800711A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10019637A1 (en) * | 2000-04-19 | 2001-10-25 | Leybold Vakuum Gmbh | Screw-type vacuum pump has at least two adjacent chambers directly interconnected by check valve with throughflow direction towards pressure side and formed by continuous valve passage |
EP1111243A3 (en) * | 1999-12-23 | 2002-05-08 | The BOC Group plc | Screw vacuum pump |
WO2005047704A1 (en) * | 2003-11-06 | 2005-05-26 | Varian, Inc. | Two stage scroll vacuum pump |
WO2007068973A1 (en) * | 2005-12-13 | 2007-06-21 | Edwards Limited | Screw pump |
EP1813818A2 (en) * | 1999-11-17 | 2007-08-01 | Teijin Seiki Co., Ltd. | Evacuating apparatus |
DE102006045261A1 (en) * | 2006-09-26 | 2008-04-10 | Steller, Claus-Jürgen | Helical-screw type compressor e.g. displacement machine, has tapering screws cooperated in two different conical holes, and volumes of discharging space between screw threads that are smaller towards end |
DE102010019402A1 (en) * | 2010-05-04 | 2011-11-10 | Oerlikon Leybold Vacuum Gmbh | Screw vacuum pump |
CN102937094A (en) * | 2012-10-22 | 2013-02-20 | 台州职业技术学院 | Dry screw vacuum pump varying pitch screw |
EP2719899A1 (en) * | 2009-04-17 | 2014-04-16 | Oerlikon Leybold Vacuum GmbH | Screw vacuum pump |
GB2520140A (en) * | 2013-09-13 | 2015-05-13 | Agilent Technologies Inc | Multi-stage Pump Having Reverse Bypass Circuit |
WO2018041614A1 (en) * | 2016-08-30 | 2018-03-08 | Leybold Gmbh | Screw-type vacuum pump |
CN109139471A (en) * | 2018-09-03 | 2019-01-04 | 东北大学 | A horizontal oil-free screw vacuum pump with overpressure exhaust function |
DE202017005336U1 (en) * | 2017-10-17 | 2019-01-21 | Leybold Gmbh | screw rotor |
WO2022248252A1 (en) * | 2021-05-27 | 2022-12-01 | Atlas Copco Airpower, Naamloze Vennootschap | Element for compressing a gas and method for controlling such element |
-
1998
- 1998-01-10 DE DE1998100711 patent/DE19800711A1/en not_active Ceased
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1813818A2 (en) * | 1999-11-17 | 2007-08-01 | Teijin Seiki Co., Ltd. | Evacuating apparatus |
EP1813818A3 (en) * | 1999-11-17 | 2007-10-24 | Teijin Seiki Co., Ltd. | Evacuating apparatus |
EP1111243A3 (en) * | 1999-12-23 | 2002-05-08 | The BOC Group plc | Screw vacuum pump |
US6672855B2 (en) | 1999-12-23 | 2004-01-06 | The Boc Group Plc | Vacuum pumps |
DE10019637B4 (en) * | 2000-04-19 | 2012-04-26 | Leybold Vakuum Gmbh | Screw vacuum pump |
WO2001081766A1 (en) * | 2000-04-19 | 2001-11-01 | Leybold Vakuum Gmbh | Screw-type vacuum pump |
DE10019637A1 (en) * | 2000-04-19 | 2001-10-25 | Leybold Vakuum Gmbh | Screw-type vacuum pump has at least two adjacent chambers directly interconnected by check valve with throughflow direction towards pressure side and formed by continuous valve passage |
WO2005047704A1 (en) * | 2003-11-06 | 2005-05-26 | Varian, Inc. | Two stage scroll vacuum pump |
WO2007068973A1 (en) * | 2005-12-13 | 2007-06-21 | Edwards Limited | Screw pump |
US8827669B2 (en) | 2005-12-13 | 2014-09-09 | Edwards Limited | Screw pump having varying pitches |
DE102006045261A1 (en) * | 2006-09-26 | 2008-04-10 | Steller, Claus-Jürgen | Helical-screw type compressor e.g. displacement machine, has tapering screws cooperated in two different conical holes, and volumes of discharging space between screw threads that are smaller towards end |
DE102006045261B4 (en) * | 2006-09-26 | 2009-03-19 | Steller, Claus-Jürgen | Screw compressor with delivery chamber compression |
EP2719899A1 (en) * | 2009-04-17 | 2014-04-16 | Oerlikon Leybold Vacuum GmbH | Screw vacuum pump |
DE102010019402A1 (en) * | 2010-05-04 | 2011-11-10 | Oerlikon Leybold Vacuum Gmbh | Screw vacuum pump |
WO2011138318A3 (en) * | 2010-05-04 | 2012-08-16 | Oerlikon Leybold Vacuum Gmbh | Screw vacuum pump |
CN102884324A (en) * | 2010-05-04 | 2013-01-16 | 厄利孔莱博尔德真空技术有限责任公司 | Screw vacuum pump |
JP2013525690A (en) * | 2010-05-04 | 2013-06-20 | オーリコン レイボルド バキューム ゲーエムベーハー | Screw type vacuum pump |
CN102937094A (en) * | 2012-10-22 | 2013-02-20 | 台州职业技术学院 | Dry screw vacuum pump varying pitch screw |
CN102937094B (en) * | 2012-10-22 | 2016-05-04 | 台州职业技术学院 | A kind of dry screw vacuum pump varying pitch screw |
GB2520140A (en) * | 2013-09-13 | 2015-05-13 | Agilent Technologies Inc | Multi-stage Pump Having Reverse Bypass Circuit |
WO2018041614A1 (en) * | 2016-08-30 | 2018-03-08 | Leybold Gmbh | Screw-type vacuum pump |
KR20190039966A (en) * | 2016-08-30 | 2019-04-16 | 라이볼트 게엠베하 | Screw vacuum pump |
US11300123B2 (en) | 2016-08-30 | 2022-04-12 | Leybold Gmbh | Screw vacuum pump without internal cooling |
KR102395548B1 (en) * | 2016-08-30 | 2022-05-06 | 라이볼트 게엠베하 | screw vacuum pump |
DE202017005336U1 (en) * | 2017-10-17 | 2019-01-21 | Leybold Gmbh | screw rotor |
CN109139471A (en) * | 2018-09-03 | 2019-01-04 | 东北大学 | A horizontal oil-free screw vacuum pump with overpressure exhaust function |
CN109139471B (en) * | 2018-09-03 | 2019-07-02 | 东北大学 | A horizontal oil-free screw vacuum pump with overpressure exhaust function |
WO2022248252A1 (en) * | 2021-05-27 | 2022-12-01 | Atlas Copco Airpower, Naamloze Vennootschap | Element for compressing a gas and method for controlling such element |
BE1029442B1 (en) * | 2021-05-27 | 2023-01-09 | Atlas Copco Airpower Nv | Element for compressing a gas and method for controlling such element |
US12234825B2 (en) | 2021-05-27 | 2025-02-25 | Atlas Copco Airpower, Naamloze Vennootschap | Element for compressing a gas and method for controlling such element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19800711A1 (en) | Mostly dry working screw spindle vacuum pump | |
DE2412624A1 (en) | MOLECULAR VACUUM PUMP | |
EP1957798B1 (en) | Helical screw compressor | |
DE60034006T2 (en) | Device for evacuating a vacuum system | |
DE1428277B2 (en) | Two-stage screw compressor of the tandem design | |
EP3507496A1 (en) | Dry-compressing vacuum pump | |
EP0363503B1 (en) | Pump stage for a high vacuum pump | |
WO2007079514A1 (en) | High-pressure compressor and its use and method for operating it | |
EP3467314B1 (en) | Screw pump | |
DE68908186T2 (en) | MACHINE FOR A GAS MEDIUM. | |
WO2000047897A1 (en) | Twin delivery screws provided for installation in positive-displacement machines, especially pumps | |
DE102007038966B4 (en) | Multi-stage rotary piston vacuum pump or compressor | |
EP2745015A2 (en) | Roots pump | |
DE2447116A1 (en) | COOLING SYSTEM | |
WO2018041614A1 (en) | Screw-type vacuum pump | |
DE2134241C3 (en) | Two-stage external-axis rotary piston machine | |
DE19945871A1 (en) | Screw pump, in particular screw vacuum pump, with two pump stages | |
DE29922878U1 (en) | Two-stage dry-running screw compressor | |
DE2527238C3 (en) | Device for draining excess oil from the gear housing of a rotary piston compressor | |
EP3698047A1 (en) | Screw rotor | |
WO2018228784A1 (en) | Multi-stage rotary piston pump | |
DE1628271A1 (en) | Multi-stage rotating liquid ring compressor | |
EP0988453A1 (en) | Screw spindle vacuum pump and operating method | |
DE202016006745U1 (en) | Two-stage screw air compressor with oil injection | |
EP2385257A2 (en) | Vacuum pump stage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8122 | Nonbinding interest in granting licenses declared | ||
8127 | New person/name/address of the applicant |
Owner name: PFEIFFER VACUUM GMBH, 35614 ASSLAR, DE |
|
8101 | Request for examination as to novelty | ||
8105 | Search report available | ||
8110 | Request for examination paragraph 44 | ||
8131 | Rejection |