[go: up one dir, main page]

DE19746855A1 - Operation of lean-burn fuel-injected diesel and petrol engines - Google Patents

Operation of lean-burn fuel-injected diesel and petrol engines

Info

Publication number
DE19746855A1
DE19746855A1 DE19746855A DE19746855A DE19746855A1 DE 19746855 A1 DE19746855 A1 DE 19746855A1 DE 19746855 A DE19746855 A DE 19746855A DE 19746855 A DE19746855 A DE 19746855A DE 19746855 A1 DE19746855 A1 DE 19746855A1
Authority
DE
Germany
Prior art keywords
fuel
exhaust gas
additional
injected
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19746855A
Other languages
German (de)
Inventor
Gerhard Dr Lepperhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEV Europe GmbH
Original Assignee
FEV Motorentechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEV Motorentechnik GmbH and Co KG filed Critical FEV Motorentechnik GmbH and Co KG
Priority to DE19746855A priority Critical patent/DE19746855A1/en
Priority to DE19881622T priority patent/DE19881622D2/en
Priority to PCT/DE1998/003081 priority patent/WO1999022128A1/en
Priority to PCT/DE1998/003082 priority patent/WO1999022129A1/en
Priority to JP52298399A priority patent/JP2001507103A/en
Priority to JP52298499A priority patent/JP2001507104A/en
Priority to DE19881623T priority patent/DE19881623D2/en
Publication of DE19746855A1 publication Critical patent/DE19746855A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3818Common rail control systems for petrol engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Following conventionally controlled, metered fuel injection into a cylinder, once the combustion phase is over, additional fuel is injected. This occurs in the region of bottom dead center, following expansion. Exhaust subsequently passes through one or more treatment stages (10,11) of mechanical (soot filter), chemical or catalytic nature, to remove pollutants. Preferred features: Additional fuel is injected, once the mean gas temperature in the cylinder is below the sooting temperature of 1300 deg K. The quantity is metered over time, such that neither gas in the cylinder, nor gas after leaving, reaches sooting temperature. Additional injection takes place at latest, 110 deg after bottom dead center. Additional fuel is metered, to relate exhaust NOx concentration, to a C1 equivalent (further detailed in text). Metering assures that the mean exhaust fuel air ratio is 0.95. Waste gas temperature before the soot filter is kept below 850 deg C. Of pollutants present, at least the NOx content is measured before treatment, allowing the engine management system (5) to determine the required additional quantity. Additional fuel injection quantities are entered as a matrix in the engine management unit, for each revolution of the engine.

Description

Direkteinspritzende Kolbenbrennkraftmaschinen, und zwar so­ wohl direkteinspritzende Dieselmotoren als auch direkte in­ spritzende Ottomotoren werden im Luftüberschußbereich, d. h. also im mageren Bereich betrieben. Dementsprechend können die im Abgas befindlichen Stickoxide (NOx) infolge eines fehlen­ den Reduktionsmittels nicht reduziert werden.Direct-injection piston internal combustion engines, both direct-injection diesel engines and direct-injection gasoline engines, are operated in the excess air range, ie in the lean range. Accordingly, the nitrogen oxides (NO x ) in the exhaust gas cannot be reduced due to a lack of the reducing agent.

Die Drei-Wege-Katalysatortechnik beruht darauf, daß im Abgas bei einem Luftverhältnis λ = 1 in einem schmalen Luftverhält­ nisbereich Konzentrationen an Kohlenwasserstoff (HC) und an Kohlenmonoxid (CO) sowie an Stickoxiden in einem solchen Ver­ hältnis miteinander vorliegen, daß die Stickoxide durch die vorhandenen Kohlenwasserstoffe und des Kohlenmonoxid redu­ ziert werden können und gleichzeitig die Kohlenwasserstoffe bzw. des Kohlenmonoxids so weit oxidiert werden, daß der Um­ setzungsgrad für alle Komponenten etwa 90% und mehr beträgt.The three-way catalyst technology is based on the fact that in the exhaust gas with an air ratio λ = 1 in a narrow air ratio concentrations of hydrocarbon (HC) and Carbon monoxide (CO) and nitrogen oxides in such a ver Ratio with each other that the nitrogen oxides through the existing hydrocarbons and carbon monoxide redu can be decorated and at the same time the hydrocarbons or the carbon monoxide are oxidized so far that the order degree of settlement for all components is about 90% and more.

Diese Technik ist zur Verminderung des Stickoxidanteils in­ folge des Luftüberschusses im Abgas bei mager betriebenen Mo­ toren, vor allen Dingen bei direkteinspritzenden Kolbenbrenn­ kraftmaschinen nicht möglich.This technique is used to reduce the nitrogen oxide content follow the excess air in the exhaust gas at lean Mo gors, especially with direct-injection piston combustion engines not possible.

Zur Verminderung der Stickoxide im Abgas werden hierbei soge­ nannte SCR-Katalysatoren (selected catalytic reduction) ein­ gesetzt, die mit Hilfe eines in das Abgas eingedüsten Reduk­ tionsmittels die Stickoxide selektiv vermindert. Als Redukti­ onsmittel kommen hierbei in Frage beispielsweise Harnstoffe, Ammoniak oder auch Kohlenwasserstoffe bzw. Kohlenwasserstoff­ gemische. Diese wurden bisher dem Abgas vor dem Katalysator durch eine gesonderte Düse im Abgassystem zugemischt. Zur Si­ cherstellung von NOx-Reduktionsgraden größer 15% mußte vor allem bei direkteinspritzenden Verbrennungsmotoren auch Koh­ lenwasserstoff dem Abgas von außen zugemischt werden.To reduce the nitrogen oxides in the exhaust gas, so-called SCR catalysts (selected catalytic reduction) are used, which selectively reduce the nitrogen oxides with the aid of a reducing agent injected into the exhaust gas. Possible reducing agents here are, for example, ureas, ammonia or also hydrocarbons or hydrocarbon mixtures. These were previously mixed with the exhaust gas upstream of the catalytic converter through a separate nozzle in the exhaust system. To ensure NO x reduction levels greater than 15%, especially in the case of direct-injection internal combustion engines, carbon dioxide also had to be mixed with the exhaust gas from the outside.

Eine weitere Möglichkeit der Stickoxidverminderung sind die Stickoxid-Speicherkatalysatoren. Hierbei werden die Stickoxi­ de in einer Speicherphase im Katalysator angesammelt und in einer Regenerationsphase durch einen fetten Betrieb im Be­ reich von λ < 0,95 durch die dann im Abgas die bestehenden hohen Konzentrationen an Kohlenwasserstoffen, Kohlenmonoxiden und Wasserstoff wieder regeneriert. Die sogenannte Anfettung wird bei homogenen Ottomotoren durch Anfettung des Brenn­ stoff-Luft-Gemisches im Brennraum erreicht. Diese Technik führt jedoch bei direkteinspritzenden Verbrennungsmotoren, die im Brennraum immer ein inhomogenes Gemisch vorliegen ha­ ben, zu nicht tolerierbaren Rußemissionen.Another option for reducing nitrogen oxides are Nitrogen oxide storage catalysts. Here the stickoxi de accumulated in a storage phase in the catalyst and in a regeneration phase through a rich operation in the Be range from λ <0.95 through which then exist in the exhaust gas high concentrations of hydrocarbons, carbon monoxides and regenerated hydrogen again. The so-called enrichment in homogeneous gasoline engines by enriching the combustion air-fuel mixture reached in the combustion chamber. This technique leads however with direct injection internal combustion engines, which always have an inhomogeneous mixture in the combustion chamber ben, on intolerable soot emissions.

Die Rußemission von Dieselmotoren kann mit Hilfe von Rußfil­ tern um bis zu 90% vermindert werden. Der Diesel-Rußfilter muß jedoch periodisch regeneriert werden. Dies kann thermisch durch einen Zusatzbrenner im Abgas erfolgen oder durch eine elektrische Zündung des im Rußfilter zurückgehaltenen Rußes. Es gibt auch die Möglichkeit, durch entsprechende Kraft­ stoffadditive die Regenerierung zu bewirken. Von Bedeutung ist jedoch für die Zündung und die Verbrennung des vom Ruß­ filter zurückgehaltenen Rußes, daß der Ruß eine genügend hohe adsorbierte Kohlenwasserstoffmenge hat, die zu einer einfa­ chen Zündung und zu einer verbesserten Flammenstabilität des brennenden Rußes im Filter notwendig ist.The soot emission from diesel engines can be achieved with the help of soot fil ters can be reduced by up to 90%. The diesel soot filter however, it must be regenerated periodically. This can be thermal by an additional burner in the exhaust gas or by a electrical ignition of the soot retained in the soot filter. There is also the option of using appropriate force Additives to effect regeneration. Significant is for the ignition and combustion of the soot retained soot that the soot is sufficiently high has adsorbed hydrocarbon amount, which leads to a simple Chen ignition and improved flame stability of the burning soot in the filter is necessary.

Zusammenfassend kann also festgestellt werden, daß sowohl zur Stickoxidverminderung im Abgas sogenannter Magermotoren als auch zur Partikelverminderung bei Dieselmotoren die Nachbe­ handlungseinrichtung intermittierend oder auch kontinuierlich regeneriert werden muß und daß hierzu ein bestimmter Kohlen­ wasserstoffgehalt im Abgas erforderlich ist und dementspre­ chend Kohlenwasserstoffe dem Abgas zugeführt werden müssen. Die bereits erwähnt Eindüsung von zusätzlichem Kraftstoff in die Abgasleitung stellt eine Möglichkeit dar, entsprechende zusätzliche Kohlenwasserstoffmengen dem Abgas zuzuführen. Der Nachteil besteht jedoch darin, daß die im heißen Abgasstrom liegende Düse zu Verkokungen neigt und daß hier neben einer zusätzlichen Düse auch eine zusätzliche Ansteuerung dieser Einspritzdüse vorgesehen werden muß.In summary, it can be said that both for Nitrogen oxide reduction in the exhaust gas of so-called lean engines as Nachbe also for particle reduction in diesel engines action facility intermittent or continuous must be regenerated and that this requires a certain coal hydrogen content in the exhaust gas is required and accordingly hydrocarbons must be added to the exhaust gas. The injection of additional fuel into the exhaust pipe is a possibility, corresponding  to supply additional amounts of hydrocarbon to the exhaust gas. Of the However, the disadvantage is that the hot exhaust gas flow lying nozzle tends to coke and that here next to one additional nozzle also an additional control of this Injector must be provided.

In der Veröffentlichung von Hiromitsu Ando et al in AVL-Tagung "Motor und Umwelt" '97, Seiten 55 bis 69, ist ein Ver­ fahren beschrieben, bei dem nach der Einspritzung der für den Arbeitstakt benötigten Kraftstoffmenge eine zusätzliche Kraftstoffmenge eingespritzt wird. Die Einspritzung wird hier­ bei jedoch so früh vorgenommen, daß die eingespritzten Kraft­ stoffmengen während des Expansionshubes im Zylinderraum ver­ brennen, um so die Abgastemperatur zu erhöhen und eine schnellere Aufwärmung der nachgeschalteten Abgasbehandlungs­ einrichtung während der Startphase zu erreichen. Da jedoch diese zusätzliche Kraftstoffmenge noch verbrannt wird, steht sie nicht als Reduktionsmittel für die nachgeschalteten Ab­ gasbehandlungseinrichtungen zur Verfügung, so daß ein Einsatz dieses Verfahrens den Dauerbetrieb mit dem Ziel der Schad­ stoffreduzierung ungeeignet ist. Diese Technik ist abgeleitet aus den in der Praxis eingesetzten Katalysatoraufheizungen im Kaltstart, bei denen durch Nachoxidation im Brennraum (späte Zündung) bzw. im Abgassystem die Katalysatortemperatur in kurzer Zeit auf die Katalysatoranspringtemperatur gebracht wird. Ziel ist die ausschließliche Verminderung aller Schad­ stoffe (NOx+HC+CO) beim Motorkaltstart.In the publication by Hiromitsu Ando et al in AVL conference "Motor und Umwelt"'97, pages 55 to 69, a method is described in which an additional quantity of fuel is injected after the injection of the quantity of fuel required for the work cycle. The injection is made here so early, however, that the injected fuel quantities burn ver during the expansion stroke in the cylinder chamber, so as to increase the exhaust gas temperature and achieve a faster warm-up of the downstream exhaust gas treatment device during the starting phase. However, since this additional amount of fuel is still burned, it is not available as a reducing agent for the downstream gas treatment devices, so that use of this method is unsuitable for continuous operation with the aim of reducing pollutants. This technology is derived from the catalyst heaters used in practice in the cold start, in which the catalyst temperature is brought up to the catalyst start-up temperature in a short time by post-oxidation in the combustion chamber (late ignition) or in the exhaust system. The goal is the exclusive reduction of all pollutants (NO x + HC + CO) when starting the engine cold.

Erfindungsgemäß werden die vorstehend genannten Probleme ge­ löst durch ein Verfahren zum Betrieb einer Kolbenbrennkraft­ maschine, bei der in die einzelnen Zylinder jeweils mittels einer Einspritzdüse die für den jeweiligen Arbeitstakt benö­ tigte Kraftstoffmenge in Abhängigkeit von der Lastanforderung über eine Motorsteuerung bemessen und direkt eingespritzt wird, und bei dem ferner nach der Einspritzung der für den Arbeitstakt bemessenen Kraftstoffmenge über die Einspritzdüse nach Abschluß der Verbrennungsphase eine zusätzliche Kraft­ stoffmenge eingespritzt wird, wenn der Kolben sich jeweils bei seinem Expansionshub im Bereich der unteren Totpunktstel­ lung befindet, und bei dem die aus dem Zylinder austretenden Abgase durch wenigstens eine mechanisch, chemisch und/oder katalytisch wirkende Abgasbehandlungseinrichtung zur Beseiti­ gung von Schadstoffanteilen hindurchgeleitet werden.According to the invention the above problems are ge solves by a method of operating a piston internal combustion engine machine, in which the individual cylinders each by means of an injector that is required for the respective work cycle amount of fuel depending on the load requirement dimensioned via an engine control and injected directly is, and furthermore after the injection of the for The fuel quantity measured via the injection nozzle an additional force after completion of the combustion phase amount of substance is injected when the piston is each  during its expansion stroke in the area of the bottom dead center lung, and in which the emerging from the cylinder Exhaust gases from at least one mechanically, chemically and / or Catalytic exhaust treatment device for elimination distribution of pollutants.

Der Vorteil dieser Verfahrensweise besteht zum einen darin, daß die Einführung zusätzlicher Kohlenwasserstoffe für die Abgasnachbehandlung nicht über eine zusätzliche Einspritzdüse sondern über die ohnehin vorhandene Einspritzdüse unter ent­ sprechender Ansteuerung über die vorhandene Motorsteuerung erfolgt. Ein weiterer Vorteil besteht dann darin, daß die zu­ sätzlichen Kraftstoffmengen taktweise, d. h. im Ausstoßtakt eines Zylinders im Abgas zugeführt werden, so daß hier auch die Möglichkeit besteht, die einzuspritzenden zusätzlichen Kraftstoffmengen jeweils an die für den Betrieb im jeweiligen Arbeitstakt zugemessenen Kraftstoffmengen anzupassen, so daß hier eine sehr viel genauere Dosierung möglich ist. Ein wei­ terer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß die zusätzlich zuzuführende Kraftstoffmenge erst nach der Verbrennungsphase eingeführt wird. Diese Phase ist je nach den Betriebsbedingungen zum Ende des Expansionshubes erreicht. Je nach Ansteuerung und Betriebsbedingungen kann noch bis in den Ausschubhub die zusätzliche Kraftstoffmenge eingeführt wer­ den. Die Gastemperaturen im Zylinder liegen in diesem Bereich unterhalb der Rußbildungstemperatur von 1300°K. Die zusätzli­ che Kraftstoffmenge muß so bemessen werden, daß diese Tempe­ ratur nicht überschritten wird, und zwar weder im Zylinder noch im Abgaskanal. Die zusätzlich eingespritzten Kraftstoff­ mengen werden hierbei im heißen Abgas gecrakt und aufberei­ tet, so daß im Abgas Kohlenwasserstoffe in entsprechenden Mengen und in einer Form zur Verfügung stehen, wie sie zur Regeneration von Stickoxidkatalysatoren oder von Partikelfil­ tern benötigt werden. Durch eine Beeinflussung des Einspritz­ zeitpunktes in bezug auf die Expansionsphase und die Aus­ schiebephase sowie durch die Einspritzdauer kann sowohl die Zusammensetzung wie auch die Menge an Kohlenwasserstoffen und an Wasserstoffen den jeweiligen Erfordernissen angepaßt wer­ den. Ein weiterer Vorteil besteht darin, daß die Einspritzdü­ se nicht verkoken kann, da sie vor der Nacheinspritzung die jeweilige viel größere Kraftstoffmenge zur Motorlasteinstel­ lung einspritzen und dadurch bei jedem Arbeitstakt die Düse durch die erhöhte Kraftstoffmenge von etwaigen Koksrückstän­ den befreit wird.The advantage of this procedure is on the one hand that the introduction of additional hydrocarbons for the Exhaust aftertreatment does not have an additional injection nozzle but via the already existing injection nozzle under ent speaking control via the existing motor control he follows. Another advantage is that the additional fuel quantities intermittently, d. H. in the exhaust stroke of a cylinder in the exhaust gas, so that here too there is the possibility of the additional injected Amounts of fuel each for operation in the respective Adjust the metered amount of fuel so that a much more precise dosage is possible here. A white Another advantage of the method according to the invention is that that the additional fuel to be supplied only after the Combustion phase is introduced. This phase depends on the Operating conditions reached at the end of the expansion stroke. Each after control and operating conditions can still be in the Extension stroke the additional fuel quantity introduced the. The gas temperatures in the cylinder are in this range below the soot formation temperature of 1300 ° K. The additional che amount of fuel must be measured so that this tempe temperature is not exceeded, neither in the cylinder still in the exhaust duct. The additionally injected fuel quantities are cracked and processed in the hot exhaust gas tet, so that hydrocarbons in corresponding in the exhaust gas Quantities and are available in a form as they are Regeneration of nitrogen oxide catalysts or particulate film tern are needed. By influencing the injection time in relation to the expansion phase and the out shift phase and through the injection duration can both Composition as well as the amount of hydrocarbons and of hydrogen adapted to the respective requirements  the. Another advantage is that the injector se can not coke, because before the post-injection much larger amount of fuel for each engine load setting Inject the lung and thereby the nozzle with every work cycle due to the increased fuel quantity of any coke residues which is being liberated.

Dies geschieht dadurch, daß für die Regeneration von Spei­ cherkatalysatoren ein Gesamt-λ von < 0,95 eingestellt wird, aber unter der Randbedingung, daß die Nacheinspritzmenge so gesteuert wird, daß die Gas-/Abgastemperatur < 1300 K bleibt. Bei DeNOx-Katalysatoren mit kontinuierlicher NOx-Reduktion durch Kohlenwasserstoffe wird die Nacheinspritzmenge so ein­ gestellt, daß das Kohlenwasserstoff-/NOx-Verhältnis ausge­ drückt durch die äquivalente C1-Menge der Gesamtkohlenwasser­ stoffe größer/gleich 2 ist. Für die Dieselfilterregeneration ist die Nacheinspritzmenge so zu bemessen, daß die Abgastem­ peratur vor Filter nicht 900°C übersteigt.This is done in that a total λ of <0.95 is set for the regeneration of storage catalysts, but under the boundary condition that the post-injection quantity is controlled so that the gas / exhaust gas temperature remains <1300 K. In DeNO x catalysts with continuous NO x reduction by hydrocarbons, the post-injection amount is set so that the hydrocarbon / NO x ratio is expressed by the equivalent C 1 amount of total hydrocarbons is greater than or equal to 2. For the diesel filter regeneration, the post-injection quantity must be dimensioned so that the exhaust gas temperature before the filter does not exceed 900 ° C.

Die jeweilig benötigte Nacheinspritzmenge kann durch entspre­ chende Abgassensoren geregelt werden. Es ist aber auch eine Kennfeldsteuerung möglich, bei der in der Motorsteuerung für jeden Last-/Drehzahlpunkt eine entsprechende Nacheinspritzmen­ ge in Abhängigkeit von der Abgasnachbehandlungseinrichtung abgespeichert wird.The required amount of post-injection can be made by corresponding exhaust gas sensors are regulated. But it is also one Map control possible in the engine control for a corresponding post-injection menu for each load / speed point ge depending on the exhaust gas aftertreatment device is saved.

Bei Dieselmotoren kann die Einspritzung der zusätzlichen Kraftstoffmengen auch derart erfolgen, daß diese zusätzlichen Kraftstoffmengen in der Expansionsphase während des Ausschie­ bevorganges verbrennen und somit zur thermischen Regeneration des Rußfilters die nötige Temperaturerhöhung bewirken.With diesel engines, the injection of the additional Amounts of fuel are also made so that these additional Amounts of fuel in the expansion phase during ejection burn before and thus for thermal regeneration of the soot filter cause the necessary temperature increase.

Hierdurch kann vermieden werden, daß die zusätzliche Kraft­ stoffmenge noch im Zylinder verbrennt. Es ist vielmehr si­ chergestellt, daß diese zusätzliche Kraftstoffmenge nur ge­ crakt wird und dementsprechend entsprechende Kohlenwasser­ stoffe und Wasserstoffe mit dem Abgasstrom in die Abgasbe­ handlungseinrichtung ausgetragen werden. Durch diese Wahl des Einspritzzeitpunktes ist sichergestellt, daß die in den Zy­ linder eingeführte zusätzliche Kraftstoffmenge auch vollstän­ dig mit dem Abgas in die Abgasleitung und damit zur Abgasbe­ handlungseinrichtung ausgetragen wird.This can prevent the additional force amount of substance still burns in the cylinder. Rather, it is si made that this additional amount of fuel only ge is cracked and corresponding hydrocarbon substances and hydrogen with the exhaust gas flow into the exhaust gas action facility are held. By choosing this  Injection time is ensured that the in the Zy Linder introduced additional amount of fuel also completely dig with the exhaust gas into the exhaust pipe and thus to the exhaust gas action facility is held.

Da für die Zuführung der zusätzlichen Kraftstoffmengen die ohnehin für jeden Zylinder vorhandene Einspritzdüse verwendet wird und die für den Arbeitstakt benötigten Kraftstoffmengen durch die Motorsteuerung vorgegeben werden, gibt die Erfin­ dung die Möglichkeit, die zusätzlich zuzuführende Kraftstoff­ menge an die für den jeweiligen Arbeitstakt benötigte Kraft­ stoffmenge anzupassen.As for the supply of the additional fuel quantities injection nozzle available for each cylinder anyway and the amount of fuel required for the work cycle are specified by the engine control, gives the inven the possibility of adding the additional fuel quantity of the power required for the respective work cycle adjust amount of fabric.

Das erfindungsgemäße Verfahren in seinen verschiedenen Ausge­ staltungen ermöglicht durch die Einspritzung von zusätzlichen Kraftstoffmengen zum Ende der Expansionsphase bis in die Aus­ schiebephase eine Bereitstellung von Kohlenwasserstoff/­ Wasserstoffgemischen im Abgas. Diese Gemische im Abgas lassen sich somit für die unterschiedlichsten Formen von Abgasbe­ handlungseinrichtungen verwenden, so zur intermittierenden Regeneration von Stickoxid-Speicherkatalysatoren, zur konti­ nuierlichen Reduktion von Stickoxiden in SCR-Katalysatoren (SCR = selected catalytic reduction), zur thermischen und/oder katalytischen Regeneration von Partikelfiltern, ebenso wie zur Unterstützung der Regeneration von Partikel­ filtern mit Hilfe von Fremdenergie.The method according to the invention in its various versions events made possible by the injection of additional Amounts of fuel at the end of the expansion phase until the end shift phase a supply of hydrocarbon / Hydrogen mixtures in the exhaust gas. Leave these mixtures in the exhaust gas thus for the most diverse forms of exhaust gas use action facilities, so for intermittent Regeneration of nitrogen oxide storage catalysts, for continuous Nuclear reduction of nitrogen oxides in SCR catalysts (SCR = selected catalytic reduction), for thermal and / or catalytic regeneration of particle filters, as well as to support the regeneration of particles filter with the help of external energy.

Die Erfindung wird anhand eines Fließschemas näher erläutert.The invention is explained in more detail with the aid of a flow diagram.

In der Zeichnung sind schematisch zwei Zylinder I, II einer Zylinder-Viertakt-Kolbenbrennkraftmaschine mit Fremdzündung dargestellt. Die einzelnen Zylinder sind dementsprechend je­ weils mit wenigstens einem Gaseinlaßkanal 1 und wenigstens einem Gasauslaßkanal 2 versehen. Der Gaseinlaßkanal 1 ist hierbei durch ein Gaseinlaßventil 3 und der Gasauslaßkanal 2 durch ein Gasauslaßventil 4 verschließbar. Die Gaseinlaßven­ tile 3 und Gasauslaßventile 4 eines jeden Zylinders sind hierbei mit einem entsprechend steuerbaren Antrieb verbunden, beispielsweise einer Nockenwelle oder auch einem elektroma­ gnetischen Aktuator, über den die Öffnungs- und Schließzeit der einzelnen Ventile frei variabel über eine Motorsteuerung 5 angesteuert werden kann.The drawing schematically shows two cylinders I, II of a four-stroke cylinder internal combustion engine with spark ignition. Accordingly, the individual cylinders are each provided with at least one gas inlet channel 1 and at least one gas outlet channel 2 . The gas inlet channel 1 can be closed by a gas inlet valve 3 and the gas outlet channel 2 by a gas outlet valve 4 . The Gaseinlaßven tile 3 and gas outlet valves 4 of each cylinder are connected to a correspondingly controllable drive, for example a camshaft or an electromagnetic actuator, via which the opening and closing times of the individual valves can be controlled freely via a motor controller 5 .

Jeder Zylinder weist ferner eine Zündeinrichtung 6 sowie eine als ansteuerbares Ventil ausgebildete Einspritzdüse 7 auf, deren Stellantrieb mit der Motorsteuerung 5 in Verbindung steht.Each cylinder also has an ignition device 6 and an injection nozzle 7 designed as a controllable valve, the actuator of which is connected to the engine control 5 .

Über die elektronische Motorsteuerung 5 wird entsprechend dem vorgegebenen Lastwunsch (beispielsweise durch das Gaspedal 8) die für den jeweiligen Betrieb benötigte Kraftstoffmenge durch entsprechende Betätigung des Einspritzventils 7 zuge­ führt. In der Motorsteuerung werden außer dem Lastwunsch durch das Gaspedal 8 üblicherweise noch weitere, für den Be­ trieb benötigte Informationen berücksichtigt, so beispiels­ weise die Kurbelwellendrehzahlen, die Motortemperatur etc., die zusätzlich zur Lastvorgabe des Gaspedals 8 bei der Kraft­ stoffbemessung über die Einspritzventile 7 mit berücksichtigt werden. Die Zündeinrichtung 6 der einzelnen Zylinder wird ebenfalls über die Motorsteuerung 5 angesteuert.Via the electronic engine control 5 , the amount of fuel required for the respective operation is supplied by corresponding actuation of the injection valve 7 in accordance with the predetermined load request (for example by the accelerator pedal 8 ). In the engine control system, other information required for operation is usually taken into account in addition to the load request by the accelerator pedal 8 , for example the crankshaft speeds, the engine temperature, etc., which, in addition to the load specification of the accelerator pedal 8, are also included in the fuel metering via the injection valves 7 be taken into account. The ignition device 6 of the individual cylinders is also controlled via the engine control 5 .

Die Abgasleitungen 2 der einzelnen Zylinder, die für weitere Zylinder nur angedeutet sind, werden zu einem Abgaskanal 9 zusammengefaßt, dem wenigstens eine Abgasbehandlungseinrich­ tung 10 zugeordnet ist. Bei Dieselmotoren ist dies beispiels­ weise eine Partikelfilter. Bei Ottomotoren ist dies ein Spei­ cherkatalysator oder ein SCR-Katalysator und ggf. zusätzlich ein nachgeschalteter Oxidationskatalysator 11.The exhaust pipes 2 of the individual cylinders, which are only indicated for further cylinders, are combined to form an exhaust duct 9 , to which at least one exhaust treatment device 10 is assigned. In diesel engines, for example, this is a particle filter. In the case of gasoline engines, this is a storage catalytic converter or an SCR catalytic converter and possibly also a downstream oxidation catalytic converter 11 .

Um nun die für den Betrieb der Abgasbehandlungseinrichtung im Abgas benötigten Kohlenwasserstoffmenge zur Verfügung zu stellen, werden über die Motorsteuerung 5 die einzelnen Ein­ spritzventile 7 eines jeden Zylinders oder auch nur selek­ tierter einzelner Zylinder im Anschluß an den jeweiligen Ar­ beitstakt oder auch alternierend im Anschluß an jeden zwei­ ten, dritten oder n-ten Arbeitstakt zusätzlich angesteuert, so daß eine zusätzliche Kraftstoffmenge in den jeweiligen Zy­ linder eingespritzt wird. Diese zusätzliche Kraftstoffmenge wird, wie vorstehend ausführlich beschrieben, erst dann in den jeweiligen Zylinder eingespritzt, wenn der Kolben nahezu das Ende des Expansionshubes erreicht hat oder bereits den Ausschubhub beginnt. Damit gelangen entsprechend dem durch die Motorsteuerung 5 vorgegebenen Einspritztakt nach jedem Arbeitshub eines jeden Zylinders, oder in einer entsprechend anderen Verteilung vorgebbare Mengen an Kohlenwasserstof­ fen/Wasserstoff/Kohlenmonoxiden über die Abgasleitungen in den Abgaskanal 9, so daß sie zur Regeneration der nachge­ schalteten Abgasbehandlungseinrichtung 10 zur Verfügung ste­ hen.In order to provide the amount of hydrocarbon required for the operation of the exhaust gas treatment device in the exhaust gas, the individual injection valves 7 of each cylinder or even just selected individual cylinders are connected to the respective operating cycle or alternatingly via the engine control 5 every two th, third or nth work cycle additionally controlled so that an additional amount of fuel is injected into the respective cylinder. As described in detail above, this additional quantity of fuel is only injected into the respective cylinder when the piston has almost reached the end of the expansion stroke or the extension stroke has already begun. Thus, according to the injection cycle predetermined by the engine control 5 after each working stroke of each cylinder, or in a correspondingly different distribution, predeterminable amounts of hydrocarbons / hydrogen / carbon monoxides via the exhaust gas lines into the exhaust gas channel 9 , so that they are used for regeneration of the downstream exhaust gas treatment device 10 be available.

Das Verhältnis der zusätzlich einzuspritzenden Kraftstoffmen­ ge zu der im jeweiligen Arbeitstakt dem Zylinder zugeführten, für den Arbeitshub benötigten Kraftstoffmenge kann nun über die Motorsteuerung fest vorgegeben werden. Es ist aber auch möglich, durch die Anordnung einer Stickoxidsonde 12 im Ab­ gaskanal 9 vor der Abgasbehandlungseinrichtung 10 den tatsäch­ lichen Gehalt an Stickoxiden im Abgas zu erfassen, so daß über die Motorsteuerung 5 sowohl der Einspritzzeitpunkt als auch die Einspritzdauer und damit auch die Einspritzmenge nicht mehr in Abhängigkeit von der für den Betrieb benötigten Kraftstoffmenge zusätzlich eingespritzt wird, sondern nur noch eine solche zusätzliche Kraftstoffmenge, die zur Regene­ ration der nachgeschalteten Abgasbehandlungseinrichtung 10 in Abhängigkeit vom erfaßten Stickoxidanteil im Abgas erforder­ lich ist. Dieses Verfahren ist insbesondere dann vorteilhaft, wenn als Abgasbehandlungseinrichtung ein SCR-Katalysator ein­ gesetzt ist, der kontinuierlich arbeitet.The ratio of the additional amount of fuel to be injected ge to the amount of fuel supplied to the cylinder in the respective work cycle and required for the work stroke can now be predefined via the engine control. However, it is also possible to detect the actual content of nitrogen oxides in the exhaust gas by the arrangement of a nitrogen oxide probe 12 in the gas duct 9 in front of the exhaust gas treatment device 10 , so that both the injection timing and the injection duration and thus also the injection quantity are not via the engine control 5 more is additionally injected depending on the amount of fuel required for operation, but only such an additional amount of fuel that is necessary for regeneration of the downstream exhaust gas treatment device 10 as a function of the detected nitrogen oxide content in the exhaust gas. This method is particularly advantageous when an SCR catalytic converter that works continuously is used as the exhaust gas treatment device.

Bei einem Dieselmotor als sogenanntem Selbstzündungsmotor entfällt die Zündeinrichtung und die Motorsteuerung sowie ein etwaiges Kennfeld sind an den Dieselprozeß entsprechend ange­ paßt.With a diesel engine as a so-called compression ignition engine the ignition device and the engine control as well as a any map are appropriate to the diesel process fits.

Claims (9)

1. Verfahren zum Betrieb einer Kolbenbrennkraftmaschine, bei dem in die einzelnen Zylinder jeweils mittels einer Ein­ spritzdüse die für den jeweiligen Arbeitstakt benötigte Kraftstoffmenge in Abhängigkeit von der Lastanforderung über eine Motorsteuerung bemessen und direkt eingespritzt wird und bei dem ferner nach der Einspritzung der für den Arbeitstakt bemessenen Kraftstoffmenge über die Einspritzdüse nach Ab­ schluß der Verbrennungsphase eine zusätzliche Kraftstoffmenge eingespritzt wird, wenn der Kolben sich jeweils bei seinem Expansionshub im Bereich der unteren Totpunktstellung befin­ det und bei dem die aus den Zylindern austretenden Abgase durch wenigstens eine mechanisch, chemisch und/oder kataly­ tisch wirkende Abgasbehandlungseinrichtung zur Beseitigung von Schadstoffanteilen durchgeleitet werden.1. Method for operating a piston internal combustion engine, at that in each cylinder by means of an on spray nozzle required for the respective work cycle Fuel quantity depending on the load request an engine control is dimensioned and directly injected and in which, furthermore, after the injection, for the work cycle the measured amount of fuel via the injector according to Ab end of the combustion phase an additional amount of fuel is injected when the piston is at his Expansion stroke in the area of the bottom dead center position det and in which the exhaust gases emerging from the cylinders by at least one mechanically, chemically and / or catalyzed Table-acting exhaust treatment device for elimination of pollutants are passed through. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die zusätzliche Kraftstoffmenge eingespritzt wird, wenn die mitt­ lere Gastemperatur im Zylinder unterhalb der Rußbildungstem­ peratur von 1300 K liegt.2. The method according to claim 1, characterized in that the additional fuel is injected when the mitt lower gas temperature in the cylinder below the soot formation temperature temperature of 1300 K. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zusätzliche Kraftstoffmenge zeitlich so bemessen wird, daß das Gas im Zylinder bzw. das Abgas nach dem Zylin­ der die Rußbildungstemperatur von 1300 K nicht erreicht.3. The method according to claim 1 or 2, characterized in that the additional amount of fuel is timed is that the gas in the cylinder or the exhaust gas after the Zylin which does not reach the soot formation temperature of 1300 K. 4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zusätzliche Kraftstoffmenge spätestens eingespritzt wird, wenn der Kolben eine Stellung erreicht hat, die maximal 110°KW nach der unteren Totpunktstellung entspricht.4. The method according to claim 1 or 2, characterized in that the additional amount of fuel is injected at the latest when the piston has reached a position that is the maximum 110 ° KW after the bottom dead center position. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch ge­ kennzeichnet, daß die zusätzliche Kraftstoffmenge so bemessen ist, daß sie - bezogen auf ein C1-Äquivalent - der doppelten NOx-Konzentration im Abgas entspricht. 5. The method according to any one of claims 1 to 4, characterized in that the additional amount of fuel is dimensioned so that it - based on a C 1 equivalent - corresponds to twice the NO x concentration in the exhaust gas. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch ge­ kennzeichnet, daß die zusätzliche Kraftstoffmenge so bemessen ist, daß das mittlere Kraftstoff-Luftverhältnis im Abgas λ < 0,95 beträgt.6. The method according to any one of claims 1 to 5, characterized ge indicates that the additional amount of fuel is measured in this way is that the average fuel-air ratio in the exhaust gas λ < Is 0.95. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch ge­ kennzeichnet, daß die zusätzliche Kraftstoffmenge so bemessen ist, daß die Abgastemperatur vor dem Rußfilter 850°C nicht überschreitet.7. The method according to any one of claims 1 to 6, characterized ge indicates that the additional amount of fuel is measured in this way is that the exhaust gas temperature upstream of the soot filter is not 850 ° C exceeds. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch ge­ kennzeichnet, daß von den im Abgasstrom enthaltenen Schad­ stoffen zumindest der Gehalt an Stickoxiden vor der Abgasbe­ handlungseinrichtung erfaßt und in Abhängigkeit davon über die Motorsteuerung die zusätzlich einzuspritzende Kraftstoff­ menge bemessen wird.8. The method according to any one of claims 1 to 7, characterized ge indicates that of the damage contained in the exhaust gas flow substances at least the content of nitrogen oxides before the exhaust gas action facility recorded and depending on it the engine control system the additional fuel to be injected amount is measured. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch ge­ kennzeichnet, daß die zusätzlich einzuspritzende Kraftstoff­ menge als Funktion der Abgasnachbehandlungseinrichtung für jeden Last/Drehzahlpunkt als Matrix in der Motorsteuerung ab­ gelegt wird.9. The method according to any one of claims 1 to 8, characterized ge indicates that the additional fuel to be injected quantity as a function of the exhaust gas aftertreatment device for each load / speed point as a matrix in the motor control is placed.
DE19746855A 1997-10-23 1997-10-23 Operation of lean-burn fuel-injected diesel and petrol engines Withdrawn DE19746855A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE19746855A DE19746855A1 (en) 1997-10-23 1997-10-23 Operation of lean-burn fuel-injected diesel and petrol engines
DE19881622T DE19881622D2 (en) 1997-10-23 1998-10-21 Exhaust gas aftertreatment method for piston internal combustion engines with direct fuel injection
PCT/DE1998/003081 WO1999022128A1 (en) 1997-10-23 1998-10-21 Method for secondary treatment of exhaust in piston internal combustion engines with direct fuel injection
PCT/DE1998/003082 WO1999022129A1 (en) 1997-10-23 1998-10-21 Method for operating a piston internal combustion engine with direct fuel injection and secondary treatment of exhaust
JP52298399A JP2001507103A (en) 1997-10-23 1998-10-21 Exhaust aftertreatment method for direct fuel injection type piston internal combustion engine
JP52298499A JP2001507104A (en) 1997-10-23 1998-10-21 Operating method of an internal combustion engine with direct fuel injection and exhaust gas reprocessing
DE19881623T DE19881623D2 (en) 1997-10-23 1998-10-21 Method for operating a piston internal combustion engine with direct fuel injection and exhaust gas aftertreatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19746855A DE19746855A1 (en) 1997-10-23 1997-10-23 Operation of lean-burn fuel-injected diesel and petrol engines

Publications (1)

Publication Number Publication Date
DE19746855A1 true DE19746855A1 (en) 1999-04-29

Family

ID=7846410

Family Applications (3)

Application Number Title Priority Date Filing Date
DE19746855A Withdrawn DE19746855A1 (en) 1997-10-23 1997-10-23 Operation of lean-burn fuel-injected diesel and petrol engines
DE19881622T Expired - Fee Related DE19881622D2 (en) 1997-10-23 1998-10-21 Exhaust gas aftertreatment method for piston internal combustion engines with direct fuel injection
DE19881623T Expired - Lifetime DE19881623D2 (en) 1997-10-23 1998-10-21 Method for operating a piston internal combustion engine with direct fuel injection and exhaust gas aftertreatment

Family Applications After (2)

Application Number Title Priority Date Filing Date
DE19881622T Expired - Fee Related DE19881622D2 (en) 1997-10-23 1998-10-21 Exhaust gas aftertreatment method for piston internal combustion engines with direct fuel injection
DE19881623T Expired - Lifetime DE19881623D2 (en) 1997-10-23 1998-10-21 Method for operating a piston internal combustion engine with direct fuel injection and exhaust gas aftertreatment

Country Status (3)

Country Link
JP (2) JP2001507104A (en)
DE (3) DE19746855A1 (en)
WO (2) WO1999022128A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071879A1 (en) * 1999-05-21 2000-11-30 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19932290A1 (en) * 1999-07-10 2001-01-11 Volkswagen Ag Method for controlling an operating mode of an internal combustion engine
EP1087122A2 (en) * 1999-09-22 2001-03-28 Mazda Motor Corporation System for controlling internal combustion engine
FR2804168A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for aiding the regeneration of the particulate filter in the exhaust system of a Diesel automotive vehicle engine
FR2804171A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa Automobile diesel engine pollution reducing exhaust particle filter with filter regeneration, has fuel controller to vary injection during filter regeneration to control level of nitrous dioxide in exhaust and optimize filter regeneration
FR2804166A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for aiding the regeneration of the particulate filter in the exhaust system of a Diesel automotive vehicle engine
FR2804170A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa Particle filter regeneration system for Diesel engine includes a control command, which can change the injected fuel amount between two values, for initiating or maintaining the catalysis
FR2804169A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for assisting regeneration of particle filter in diesel engine exhaust line has means for determining particle load of filter
FR2804167A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for aiding the regeneration of the particulate filter in the exhaust system of a Diesel automotive vehicle engine
EP1174612A1 (en) * 2000-07-21 2002-01-23 Renault Method to inject fuel
FR2812687A1 (en) * 2000-08-03 2002-02-08 Peugeot Citroen Automobiles Sa Regeneration system for integral exhaust catalyst for vehicle with diesel engine has controller initiating a regeneration phase when quantity of chemical species fixed on catalyst over preset value
FR2812690A1 (en) * 2000-08-03 2002-02-08 Peugeot Citroen Automobiles Sa System for aiding regeneration of catalyst fitted in vehicle engine exhaust by multiple fuel injections during cylinder expansion phase
WO2002038935A1 (en) * 2000-11-11 2002-05-16 Robert Bosch Gmbh Method and device for an exhaust gas aftertreatment system
WO2002038934A1 (en) * 2000-11-11 2002-05-16 Robert Bosch Gmbh Method and device for the control of an exhaust treatment system
WO2002038933A1 (en) * 2000-11-11 2002-05-16 Robert Bosch Gmbh Method and device for controlling an exhaust gas aftertreatment system
WO2002038932A1 (en) * 2000-11-11 2002-05-16 Robert Bosch Gmbh Method and device for controlling an exhaust gas aftertreatment system
FR2830569A1 (en) 2001-10-09 2003-04-11 Siemens Ag METHOD FOR HEATING A CATALYST LOCATED IN THE EXHAUST DEVICE OF AN INTERNAL COMBUSTION ENGINE
DE10145580A1 (en) * 2001-09-15 2003-04-17 Bosch Gmbh Robert Method for avoiding spray coking of spray holes in a multi-hole injection valve
DE10228643A1 (en) * 2002-06-26 2004-01-22 Siemens Ag Process for cleaning exhaust gas from an incinerator
EP1422393A1 (en) * 2002-11-23 2004-05-26 Adam Opel Ag Method for reducing emissions of spark ignition internal combustion engines
EP1798404A1 (en) * 2005-12-14 2007-06-20 Nissan Motor Co., Ltd. Post injection control of internal combustion engine
DE102007063325A1 (en) 2006-12-30 2008-07-10 Volkswagen Ag Exhaust gas cleaning device regeneration method for motor vehicle, involves performing post-injection as regeneration measure depending on operating point in cyclic distances for selected operating periods of cylinder of engine
EP2048342A2 (en) * 2007-10-08 2009-04-15 International Engine Intellectual Property Company, LLC. Late post-injection fueling strategy in a multi-cylinder diesel engine during regenerating of an exhaust after-treatment device
DE10001837B4 (en) * 1999-06-10 2009-09-03 Mitsubishi Denki K.K. Control for an exhaust gas purification device of an internal combustion engine
DE102008044309A1 (en) * 2008-12-03 2010-06-10 Ford Global Technologies, LLC, Dearborn Method for dynamic adjustment of temperature value for exhaust treatment unit, involves estimating amount of reducing agents in exhaust treatment unit, where reducing agent get absorbed in exhaust treatment unit
WO2013156603A1 (en) * 2012-04-19 2013-10-24 Faktorplus Green Technology Gmbh Method of emission reduction
GB2503468A (en) * 2012-06-27 2014-01-01 Perkins Engines Co Ltd Method of controlling fuel to be injected within a combustion engine
DE102008021708B4 (en) * 2007-05-04 2015-03-12 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method and device for generating a reducing agent in an exhaust gas of a compression-ignition internal combustion engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523482C2 (en) 2001-03-02 2004-04-20 Volvo Lastvagnar Ab Catalyst diesel engine
WO2003083020A2 (en) * 2002-03-28 2003-10-09 The Lubrizol Corporation Method of operating internal combustion engine by introducing detergent into combustion chamber
DE10359293B4 (en) * 2003-12-17 2006-02-09 J. Eberspächer GmbH & Co. KG Valve arrangement, in particular for adjusting the Heizmittel- / coolant flow in a motor vehicle
JP3945526B2 (en) * 2005-09-09 2007-07-18 トヨタ自動車株式会社 Fuel addition device
DE102012022712A1 (en) 2012-11-21 2014-05-22 Deutz Aktiengesellschaft Diesel particulate filter and method of regeneration thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786536A (en) * 1980-11-17 1982-05-29 Toyota Motor Corp Reproduction method of particle catcher and fuel supplier for diesel engine
JPS5968512A (en) * 1982-10-09 1984-04-18 Diesel Kiki Co Ltd Fuel supplying device by distributing type fuel injection pump for treatment of fine particle in exhaust gas of internal-combustion engine
JPS59131518U (en) * 1983-02-23 1984-09-04 株式会社ボッシュオートモーティブ システム Internal combustion engine exhaust particulate treatment device
JPH05156993A (en) * 1991-12-05 1993-06-22 Hino Motors Ltd Diesel engine
JP2845103B2 (en) * 1992-09-28 1999-01-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
EP0621400B1 (en) * 1993-04-23 1999-03-31 Daimler-Benz Aktiengesellschaft Air compressing injection internal combustion engine with an exhaust gas treating device for reducing nitrous oxides
IT1266889B1 (en) * 1994-07-22 1997-01-21 Fiat Ricerche METHOD OF SELF-PRIMING REGENERATION IN A PARTICULAR FILTER FOR A DIESEL ENGINE WITH COMMON MANIFOLD INJECTION SYSTEM.
KR0185697B1 (en) * 1995-01-20 1999-03-20 와다 아키히로 Exhaust purification method of internal combustion engine
JP3663663B2 (en) * 1995-03-24 2005-06-22 株式会社デンソー Nitrogen oxide purification device for internal combustion engine
JPH10510027A (en) * 1995-09-22 1998-09-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Control method and apparatus for internal combustion engine

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071879A1 (en) * 1999-05-21 2000-11-30 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE10001837B4 (en) * 1999-06-10 2009-09-03 Mitsubishi Denki K.K. Control for an exhaust gas purification device of an internal combustion engine
DE19932290A1 (en) * 1999-07-10 2001-01-11 Volkswagen Ag Method for controlling an operating mode of an internal combustion engine
EP1087122A3 (en) * 1999-09-22 2002-10-23 Mazda Motor Corporation System for controlling internal combustion engine
EP1087122A2 (en) * 1999-09-22 2001-03-28 Mazda Motor Corporation System for controlling internal combustion engine
EP1130227A1 (en) * 2000-01-20 2001-09-05 Peugeot Citroen Automobiles SA System to regenerate an exhaust particle filter in a diesel engine
FR2804166A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for aiding the regeneration of the particulate filter in the exhaust system of a Diesel automotive vehicle engine
FR2804169A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for assisting regeneration of particle filter in diesel engine exhaust line has means for determining particle load of filter
FR2804167A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for aiding the regeneration of the particulate filter in the exhaust system of a Diesel automotive vehicle engine
EP1130228A1 (en) * 2000-01-20 2001-09-05 Peugeot Citroen Automobiles SA System to regenerate an exhaust particle filter in a diesel engine
EP1130229A1 (en) * 2000-01-20 2001-09-05 Peugeot Citroen Automobiles SA System to regenerate an exhaust particle filter in a diesel engine
EP1130230A1 (en) * 2000-01-20 2001-09-05 Peugeot Citroen Automobiles SA System to regenerate an exhaust particle filter in a diesel engine
FR2804168A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa System for aiding the regeneration of the particulate filter in the exhaust system of a Diesel automotive vehicle engine
FR2804171A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa Automobile diesel engine pollution reducing exhaust particle filter with filter regeneration, has fuel controller to vary injection during filter regeneration to control level of nitrous dioxide in exhaust and optimize filter regeneration
US6484496B2 (en) 2000-01-20 2002-11-26 Peugeot Citroen Automobiles S.A. System for assisting the regeneration of a particle filter integrated into an exhaust line of a motor vehicle diesel engine
FR2804170A1 (en) * 2000-01-20 2001-07-27 Peugeot Citroen Automobiles Sa Particle filter regeneration system for Diesel engine includes a control command, which can change the injected fuel amount between two values, for initiating or maintaining the catalysis
FR2812034A1 (en) * 2000-07-21 2002-01-25 Renault FUEL INJECTION PROCESS
EP1174612A1 (en) * 2000-07-21 2002-01-23 Renault Method to inject fuel
FR2812690A1 (en) * 2000-08-03 2002-02-08 Peugeot Citroen Automobiles Sa System for aiding regeneration of catalyst fitted in vehicle engine exhaust by multiple fuel injections during cylinder expansion phase
FR2812687A1 (en) * 2000-08-03 2002-02-08 Peugeot Citroen Automobiles Sa Regeneration system for integral exhaust catalyst for vehicle with diesel engine has controller initiating a regeneration phase when quantity of chemical species fixed on catalyst over preset value
WO2002038935A1 (en) * 2000-11-11 2002-05-16 Robert Bosch Gmbh Method and device for an exhaust gas aftertreatment system
WO2002038934A1 (en) * 2000-11-11 2002-05-16 Robert Bosch Gmbh Method and device for the control of an exhaust treatment system
WO2002038933A1 (en) * 2000-11-11 2002-05-16 Robert Bosch Gmbh Method and device for controlling an exhaust gas aftertreatment system
WO2002038932A1 (en) * 2000-11-11 2002-05-16 Robert Bosch Gmbh Method and device for controlling an exhaust gas aftertreatment system
US6722120B2 (en) 2000-11-11 2004-04-20 Robert Bosch Gmbh Method and device for the control of an exhaust gas treatment system
US7017337B2 (en) 2000-11-11 2006-03-28 Robert Bosch Gmbh Method and device for controlling an exhaust gas aftertreatment system
US6948311B2 (en) 2000-11-11 2005-09-27 Robert Bosch Gmbh Method and device for controlling an exhaust gas aftertreatment system
DE10145580A1 (en) * 2001-09-15 2003-04-17 Bosch Gmbh Robert Method for avoiding spray coking of spray holes in a multi-hole injection valve
DE10149745C1 (en) * 2001-10-09 2003-05-08 Siemens Ag Method for heating a catalyst in the exhaust system of an internal combustion engine
FR2830569A1 (en) 2001-10-09 2003-04-11 Siemens Ag METHOD FOR HEATING A CATALYST LOCATED IN THE EXHAUST DEVICE OF AN INTERNAL COMBUSTION ENGINE
DE10228643A1 (en) * 2002-06-26 2004-01-22 Siemens Ag Process for cleaning exhaust gas from an incinerator
EP1422393A1 (en) * 2002-11-23 2004-05-26 Adam Opel Ag Method for reducing emissions of spark ignition internal combustion engines
US7779622B2 (en) 2005-12-14 2010-08-24 Nissan Motor Co., Ltd. Post injection control of internal combustion engine
EP1798404A1 (en) * 2005-12-14 2007-06-20 Nissan Motor Co., Ltd. Post injection control of internal combustion engine
DE102007063325A1 (en) 2006-12-30 2008-07-10 Volkswagen Ag Exhaust gas cleaning device regeneration method for motor vehicle, involves performing post-injection as regeneration measure depending on operating point in cyclic distances for selected operating periods of cylinder of engine
DE102008021708B4 (en) * 2007-05-04 2015-03-12 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method and device for generating a reducing agent in an exhaust gas of a compression-ignition internal combustion engine
EP2048342A3 (en) * 2007-10-08 2010-04-07 International Engine Intellectual Property Company, LLC. Late post-injection fueling strategy in a multi-cylinder diesel engine during regenerating of an exhaust after-treatment device
EP2048342A2 (en) * 2007-10-08 2009-04-15 International Engine Intellectual Property Company, LLC. Late post-injection fueling strategy in a multi-cylinder diesel engine during regenerating of an exhaust after-treatment device
DE102008044309A1 (en) * 2008-12-03 2010-06-10 Ford Global Technologies, LLC, Dearborn Method for dynamic adjustment of temperature value for exhaust treatment unit, involves estimating amount of reducing agents in exhaust treatment unit, where reducing agent get absorbed in exhaust treatment unit
CN101749091A (en) * 2008-12-03 2010-06-23 福特环球技术公司 Nominal temperature value based on model dynamic adjustment exhaust post-processing apparatus
CN101749091B (en) * 2008-12-03 2014-07-16 福特环球技术公司 Nominal temperature value based on model dynamic adjustment exhaust post-processing apparatus
DE102008044309B4 (en) * 2008-12-03 2016-08-18 Ford Global Technologies, Llc Model-based dynamic adaptation of the setpoint temperature value of an exhaust aftertreatment device
WO2013156603A1 (en) * 2012-04-19 2013-10-24 Faktorplus Green Technology Gmbh Method of emission reduction
GB2503468A (en) * 2012-06-27 2014-01-01 Perkins Engines Co Ltd Method of controlling fuel to be injected within a combustion engine
GB2503468B (en) * 2012-06-27 2015-02-11 Perkins Engines Co Ltd Method of controlling fuel to be injected within a combustion engine
CN104471220A (en) * 2012-06-27 2015-03-25 珀金斯发动机有限公司 Method of controlling fuel to be injected within a combustion engine
CN104471220B (en) * 2012-06-27 2017-05-31 珀金斯发动机有限公司 The method that control fuel sprays in explosive motor
US9879632B2 (en) 2012-06-27 2018-01-30 Perkins Engines Company Limited Method of controlling fuel to be injected within a combustion engine

Also Published As

Publication number Publication date
WO1999022129A1 (en) 1999-05-06
DE19881623D2 (en) 1999-12-23
WO1999022128A1 (en) 1999-05-06
JP2001507103A (en) 2001-05-29
JP2001507104A (en) 2001-05-29
DE19881622D2 (en) 2000-04-27

Similar Documents

Publication Publication Date Title
DE19746855A1 (en) Operation of lean-burn fuel-injected diesel and petrol engines
DE10359693B4 (en) exhaust aftertreatment
EP3921520B1 (en) Exhaust gas aftertreatment system, and method for the exhaust gas aftertreatment of an internal combustion engine
EP0893154B1 (en) Process and apparatus for desulphating of NOx-traps for DI-Diesel engines
DE19644407C2 (en) Process for reducing the emissions of an internal combustion engine
EP3502428A1 (en) Exhaust gas treatment system and method for treating the exhaust gas of a combustion engine
DE102010017575B4 (en) Method for operating a spark-ignited internal combustion engine and internal combustion engine for carrying out such a method
WO2000042302A1 (en) Method and arrangement for purifying an exhaust gas stream of a spark ignition engine flowing in an exhaust gas line
EP3344863B1 (en) Method and apparatus for exhaust gas treatment of an internal combustion engine
DE102019121428A1 (en) Method for heating up a catalytic converter and exhaust aftertreatment system
DE102021111152A1 (en) Motor arrangement and procedure
DE4126705C2 (en) Method and device for reducing nitrogen oxide emissions from internal combustion engines
DE102006028436A1 (en) Method for operating an exhaust gas cleaning system arranged in an exhaust area of an internal combustion engine
EP1292763B1 (en) Method for operating a diesel engine
EP3770386A1 (en) Exhaust gas aftertreatment system and method for exhaust gas aftertreatment of an internal combustion engine
EP1180584B1 (en) Method and device for reduction of emissions during warming up of a direct injection internal combustion engine
EP3569850A1 (en) Method for reducing particle emissions during a cold start of a combustion engine
DE102021111331A1 (en) Desulfurization of a three-way catalytic converter of an internal combustion engine
DE102017101610A1 (en) Method for reducing cold-start emissions in a spark-ignited internal combustion engine
DE19962024B4 (en) Internal combustion engine and method for alternating gasoline and diesel operation
DE102017219508B4 (en) Method for enriching the exhaust gas of a direct-injection internal combustion engine with reducing agent
DE19812829A1 (en) Control procedure for internal combustion engine
WO2001050002A2 (en) Method for operating an internal combustion engine in particular in a motor vehicle
DE102021105722A1 (en) Internal combustion engine with catalytic converter device with different specific amounts of catalytic converter material
WO2023084015A2 (en) Method for operating an internal combustion engine, a system for carrying out the method and an internal combustion engine

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: FEV MOTORENTECHNIK GMBH, 52078 AACHEN, DE

8143 Withdrawn due to claiming internal priority