DE19730003B4 - An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component - Google Patents
An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component Download PDFInfo
- Publication number
- DE19730003B4 DE19730003B4 DE19730003A DE19730003A DE19730003B4 DE 19730003 B4 DE19730003 B4 DE 19730003B4 DE 19730003 A DE19730003 A DE 19730003A DE 19730003 A DE19730003 A DE 19730003A DE 19730003 B4 DE19730003 B4 DE 19730003B4
- Authority
- DE
- Germany
- Prior art keywords
- fuel cell
- temperature fuel
- cell component
- metal
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8621—Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Ceramic Engineering (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Elektrisch leitfähiges Hochtemperaturbrennstoffzellenbauteil, das aus einem Metall-Keramik-Verbundwerkstoff besteht, wobei das Metall Aluminium und die Keramik Aluminiumoxid ist.electrical conductive High temperature fuel cell component made of a metal-ceramic composite material where the metal is aluminum and the ceramic is alumina is.
Description
Hochtemperaturbrennstoffzellen, wie Festoxidbrennstoffzellen oder Schmelzkarbonatbrennstoffzellen, enthalten bekanntlich elektrisch leitfähige Komponenten, wie insbesondere die beiden Elektroden (Anode und Kathode) oder Bipolarplatten. Bipolarplatten bestehen aus dem Trennblech und den gewellten Stromsammlern, von denen letztere an den Anoden bzw. Kathoden anliegen. An solche elektrisch leitfähigen Komponenten von Hochtemperaturbrennstoffzellen werden hohe Anforderungen gestellt. Sie müssen nämlich eine hinreichende mechanische Festigkeit besitzen, so dass während des Betriebs weder Deformationen noch Risse oder Brüche eintreten. Insbesondere ist natürlich ein Zusammenfallen der porösen Struktur von Anode und Kathode zu vermeiden. Des Weiteren wird Korrosionsbeständigkeit gefordert und zwar unter reduzierender Atmosphäre auf der Anodenseite und oxidierender Atmosphäre auf der Kathodenseite. Bei Schmelzkarbonatbrennstoffzellen wird zudem Beständigkeit gegenüber dem aggressiven Elektrolyten verlangt. Um hohe elektrische Wirkungsgrade und eine gute Energiedichte der Zellen zu erreichen, ist im Weiteren eine gute elektrische Leitfähigkeit der entsprechenden Bauteile Voraussetzung.High-temperature fuel cells, such as solid oxide fuel cells or molten carbonate fuel cells, known to contain electrically conductive components, in particular the two electrodes (anode and cathode) or bipolar plates. bipolar plates consist of the separating plate and the corrugated current collectors, from the latter abut the anodes or cathodes. At such electrical conductive Components of high-temperature fuel cells are demanding posed. You need to namely have a sufficient mechanical strength, so that during the Operation, neither deformations nor cracks or breaks occur. Especially is natural a coincidence of the porous Structure of anode and cathode to avoid. Furthermore, it becomes corrosion resistant demanded and under reducing atmosphere on the anode side and oxidizing atmosphere on the cathode side. For molten carbonate fuel cells also resistance across from demanding the aggressive electrolyte. To high electrical efficiencies and to achieve a good energy density of the cells is one more good electrical conductivity the corresponding components requirement.
Bis heute gibt es keinen Werkstoff, der alle diese Anforderungen in der Summe in befriedigender Weise erfüllt. Es wird versucht, durch die unterschiedlichsten Kombinationen von Werkstoffen, Schutzschichten und Behandlungsmethoden den obigen Anforderungen nachzukommen. Beispielsweise wird bei Schmelzkarbonatbrennstoffzellen die Kathodenseite der Bipolarplatte aus Chromnickelstahl hergestellt. Die Anodenseite der Bipolarplatte besteht aus Nickel, das aus Steifigkeitsgründen auf einer Metallschicht aufgebracht ist. Für die Kathode wird lithiiertes Nickeloxid verwendet. Die Anode besteht aus Nickel mit den Legierungsbestandteilen Chrom oder Aluminium für erhöhte mechanische Festigkeit.To Today there is no material that meets all these requirements the sum satisfactorily fulfilled. It is trying through the most diverse combinations of materials, protective layers and treatment methods to meet the above requirements. For example in molten carbonate fuel cells, the cathode side of the bipolar plate made of stainless steel. The anode side of the bipolar plate is made Made of nickel, for rigidity reasons on a metal layer is applied. For the cathode uses lithiated nickel oxide. The anode exists made of nickel with the alloying constituents chromium or aluminum for increased mechanical strength.
Aus
der
In der Zeitschrift TR Transfer Nr. 26, 1996, Seiten 44 und 45 ist ein neuer Al2O3/Al-Verbundwerkstoff beschrieben, der bei Raumtemperatur über eine gute elektrische und thermische Leitfähigkeit verfügt, mit Stahl vergleichbare Festigkeitseigenschaften besitzt und in der Fertigung zu geringen Verzügen neigt. Über die Anwendungsmöglichkeiten des Werkstoffs finden sich jedoch keine Hinweise.In the journal TR Transfer No. 26, 1996, pages 44 and 45, a new Al 2 O 3 / Al composite material is described, which has good electrical and thermal conductivity at room temperature, has steel properties comparable to strength properties and in the production of slight delays. However, there are no indications about the possible applications of the material.
Aus
dem Anspruch 1 der
Aus
dem Anspruch 1 der
Aus der DE-OS 2 363 328 ist es bekannt, einen Verbundwerkstoff aus Aluminium und Aluminiumoxid durch gemeinsames Verpressen von pulverförmigen Teilchen beider Komponenten und anschließender Wärmebehandlung herzustellen.Out DE-OS 2 363 328 it is known, a composite material of aluminum and alumina by co-pressing powdery particles both components and subsequent heat treatment manufacture.
Die
Obwohl eine Vielzahl von Werkstoffen und Werkstoffkombinationen zur Darstellung von Brennstoffzellen und deren Komponenten betrachtet worden sind, so ist es dennoch bis heute nicht gelungen, insbesondere Schmelzkarbonatbrennstoffzellen mit ausreichender Korrosionsbeständigkeit und damit entsprechender Lebensdauer, guter innerer Leitfähigkeit und geringen ohmschen Verlusten zu niedrigen Kosten herzustellen.Even though a variety of materials and material combinations for illustration of fuel cells and their components have been considered, however, it has not yet succeeded, especially molten carbonate fuel cells with sufficient corrosion resistance and thus adequate life, good internal conductivity and to produce low ohmic losses at a low cost.
Der Erfindung liegt das Problem zugrunde, ein elektrisch leitfähiges Hochtemperaturbrennstoffzellenbauteil und die Verwendung eines Metall-Keramik-Verbundformteils zur Herstellung des Hochtemperaturbrennstoffzellenbauteils anzugeben, das den Brennstoffzellen eine hohe Lebensdauer und hohe Leistung bei niedrigen Herstellkosten verleiht.Of the The invention is based on the problem of an electrically conductive high-temperature fuel cell component and the use of a metal-ceramic composite molding for the manufacture of Specify high-temperature fuel cell component, the fuel cells a long service life and high performance with low production costs gives.
Dieses Problem wird durch die im Patentanspruch 1 bzw. 3 bzw. 4 aufgeführten Merkmale gelöst. Danach besteht der Werkstoff für die elektrisch leitfähigen Komponenten der Hochtemperaturbrennstoffzelle aus einem Metall-Keramik-Verbundwerkstoff, der ein Metall, nämlich Aluminium und ein Metalloxid, nämlich Al2O3 enthält. Der Werkstoff besitzt ein feines, homogenes und mechanisch stabiles Gefüge, in dem die Ausgangswerkstoffe vermengt sind. Al2O3 entsteht bei hohen Temperaturen, wie beispielsweise in der oben zitierten Zeitschrift dargestellt. Vorzugsweise besteht der für Brennstoffzellen verwendete Werkstoff zu 2/3 aus Aluminiumoxid und zu 1/3 aus Aluminiummetall. Sowohl die keramische als auch die metallische Phase haben eine durchgehende dreidimensionale Struktur. Der Werkstoff besitzt, im Gegensatz zu rein keramischen Werkstoffen, eine bei Raumtemperatur gute elektrische und thermische Leitfähigkeit, sowie eine sehr hohe Festigkeit und deutlich bessere Duktilität als rein keramische Werkstoffe. Aufgrund der Einbettung des Aluminiums in die Keramikmatrix erhält der Verbundwerkstoff seine Formstabilität auch bei Temperaturen, die weit oberhalb des Schmelzpunktes von Aluminium liegen. Außerdem bleibt das Aluminium, wie in Untersuchungen jetzt nachgewiesen werden konnte, auch bei hohen Temperaturen in oxidierender Atmosphäre in metallischem Zustand, so dass auch die elektrische Leitfähigkeit bei diesen hohen Temperaturen erhalten bleibt. So lassen sich die Anforderungen, die an elektrisch leitfähige Komponenten von Hochtemperaturbrennstoffzellen gestellt werden, mit diesem Material erfüllen.This problem is solved by the features listed in claim 1 or 3 and 4 respectively. Thereafter, the material for the electrically conductive components of the high-temperature fuel cell consists of a metal-ceramic composite material containing a metal, namely aluminum and a metal oxide, namely Al 2 O 3 . The material has a fine, homogeneous and mechanically stable Ge in which the starting materials are mixed. Al 2 O 3 is formed at high temperatures, as shown for example in the above-cited journal. Preferably, the material used for fuel cells is 2/3 of alumina and 1/3 of aluminum metal. Both the ceramic and the metallic phase have a continuous three-dimensional structure. The material has, in contrast to pure ceramic materials, good electrical and thermal conductivity at room temperature, as well as a very high strength and significantly better ductility than purely ceramic materials. Due to the embedding of the aluminum in the ceramic matrix, the composite material maintains its dimensional stability even at temperatures that are far above the melting point of aluminum. In addition, the aluminum remains, as can now be demonstrated in studies, even at high temperatures in an oxidizing atmosphere in a metallic state, so that the electrical conductivity is maintained at these high temperatures. Thus, the requirements that are placed on electrically conductive components of high-temperature fuel cells, meet with this material.
Als Herstellverfahren für die elektrisch leitfähigen Komponenten kommen bevorzugt pulvermetallurgische Prozesse in Frage. Hierbei wird beispielsweise feinkörniges Aluminiumoxidpulver unter hohen Drücken in die gewünschte Form verpresst und das Pressteil anschließend in einer Aluminiumschmelze mit Aluminium gesättigt. Aluminiumoxidpulver und Aluminiumpulver können auch miteinander vermischt sein, wenn sie zur endgültigen Raumform verpresst werden. Das entstandene Pressteil wird dann bei hohen Temperaturen gesintert. Zur Herstellung von porösen Elektroden sind Porenbildner beigesetzt, die sich beim Sintern verflüchtigen. Wenn eine Elektrode nach dem Foliengießverfahren hergestellt werden soll, so sind die entsprechenden Pulver aus Aluminium und Aluminiumoxid mit einem Lösungsmittel und einem Binder zu versetzen, die eine breiförmige Masse ergeben, die zu Folien gegossen werden kann. Nach dem Trocknen und Sintern entstehen poröse Elektroden aus dem erfindungsgemäßen Verbundwerkstoff.When Manufacturing process for the electrically conductive Components are preferably powder metallurgical processes in question. Here, for example, fine-grained alumina powder under high pressure in the desired Pressed mold and then the pressed part in an aluminum melt with Aluminum saturated. Alumina powder and aluminum powder may also be mixed together, when they are final Room shape are pressed. The resulting pressed part is then at sintered at high temperatures. For the production of porous electrodes Pore formers are buried, which volatilize during sintering. If an electrode is to be produced by the film casting process, so are the corresponding powders of aluminum and alumina with a solvent and a binder that give a pulp-like mass to Foils can be cast. After drying and sintering arise porous electrodes from the composite material according to the invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19730003A DE19730003B4 (en) | 1997-07-12 | 1997-07-12 | An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19730003A DE19730003B4 (en) | 1997-07-12 | 1997-07-12 | An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component |
Publications (2)
Publication Number | Publication Date |
---|---|
DE19730003A1 DE19730003A1 (en) | 1999-01-14 |
DE19730003B4 true DE19730003B4 (en) | 2007-06-21 |
Family
ID=7835572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19730003A Expired - Fee Related DE19730003B4 (en) | 1997-07-12 | 1997-07-12 | An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19730003B4 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10134129A1 (en) * | 2001-07-13 | 2003-02-13 | Siemens Ag | Coating used for a gas diffusion electrode, especially for an anode or cathode of a high temperature fuel cell, has a porosity which maintains its value after applying an electrolyte and subsequently sintering |
DE10156033C2 (en) * | 2001-11-15 | 2003-10-30 | Mtu Cfc Solutions Gmbh | Current collector and use of a current collector in a molten carbonate fuel cell |
JP2007506256A (en) * | 2003-09-17 | 2007-03-15 | タイアックス エルエルシー | Electrochemical equipment and its components |
DE102010029782A1 (en) | 2010-06-08 | 2011-12-08 | Robert Bosch Gmbh | Power source contacting device and power source with metal infiltrated ceramic |
CN106636712B (en) * | 2016-12-26 | 2018-08-31 | 河南和成无机新材料股份有限公司 | A kind of plastic deformation is combined Fine Grain Alumina Ceramics and the preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2363328A1 (en) * | 1972-12-21 | 1974-07-11 | Nippon Telegraph & Telephone | CONDUCTIVE COMPOSITE MATERIALS BASED ON ALUMINUM / ALUMINUM OXIDE DISPERSIONS, PROCESS FOR THEIR PRODUCTION AND THEIR USE FOR DRAWING WIRE |
EP0115742A1 (en) * | 1982-12-30 | 1984-08-15 | Eltech Systems Corporation | Aluminum production cell components |
DD300725A5 (en) * | 1990-07-19 | 1992-07-09 | Vaw Ver Aluminium Werke Ag | CERAMIC-METAL COMPOSITES |
EP0840388B1 (en) * | 1996-10-30 | 2005-08-24 | Sulzer Hexis AG | Battery of planar high-temperature fuel cells |
-
1997
- 1997-07-12 DE DE19730003A patent/DE19730003B4/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2363328A1 (en) * | 1972-12-21 | 1974-07-11 | Nippon Telegraph & Telephone | CONDUCTIVE COMPOSITE MATERIALS BASED ON ALUMINUM / ALUMINUM OXIDE DISPERSIONS, PROCESS FOR THEIR PRODUCTION AND THEIR USE FOR DRAWING WIRE |
EP0115742A1 (en) * | 1982-12-30 | 1984-08-15 | Eltech Systems Corporation | Aluminum production cell components |
DD300725A5 (en) * | 1990-07-19 | 1992-07-09 | Vaw Ver Aluminium Werke Ag | CERAMIC-METAL COMPOSITES |
EP0840388B1 (en) * | 1996-10-30 | 2005-08-24 | Sulzer Hexis AG | Battery of planar high-temperature fuel cells |
Also Published As
Publication number | Publication date |
---|---|
DE19730003A1 (en) | 1999-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68901782T2 (en) | FUEL CELL, ELECTRODE FOR THE CELL AND METHOD FOR PRODUCING THE SAME. | |
DE60300858T2 (en) | PEN OF A SOLID OXYGEN CELL | |
DE19710345C1 (en) | Material for electrical contact layers between an electrode of a high-temperature fuel cell and a connecting element | |
DE3718921C2 (en) | Process for producing a cathode, a cathode obtainable by this process and use of the cathode in an electrochemical cell | |
EP0459351B1 (en) | Method of manufacturing electrodes of molten carbonate fuel cell and electrode manufactured thereby | |
EP1989338B1 (en) | Porous body containing mixed oxides made from an iron/chrome alloy for fuel cells | |
DE2163185A1 (en) | Process for the production of electrode structures for chemoelectric cells | |
EP0682816B1 (en) | Process for producing the cathode layer of molten carbonate fuel cells | |
EP2335312B1 (en) | Method for producing an interconnector for high temperature fuel cells, associated high temperature fuel cell and thus built fuel cell assembly | |
DE1303549B (en) | Process for producing a sintered composite for heavy-duty electrical contacts | |
DE2357333C3 (en) | Penetration composite metal as contact material for vacuum switches | |
DE2716370A1 (en) | ELECTRODE COMPOSITION | |
DE19730003B4 (en) | An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component | |
DE2710697A1 (en) | METHOD OF MANUFACTURING AN ELECTROCHEMICAL CELL | |
DE3543586A1 (en) | CONTACT MATERIAL FOR VACUUM SWITCHES | |
DE69411803T2 (en) | Electrode and method of making an electrode material | |
DE2924669C2 (en) | Process for the production of a porous electrode for fuel cells | |
DE69909471T2 (en) | ELECTROCHEMICAL CELL WITH Sintered Anode Made Of Metal Particles And Oxides | |
DE4030944A1 (en) | CARBONATE MELT FUEL CELL | |
DE69110581T2 (en) | Process for the production of cathodes for cells with molten carbonate electrolytes. | |
DE102017218012A1 (en) | Electrolysis and / or fuel cell comprising an electrode material containing a metallocene ceramic composite material and method for producing this | |
DE102018205483A1 (en) | Solid electrolyte material | |
DE19620504C2 (en) | Electrode for a molten carbonate fuel cell and method for producing such and their use | |
DE102021107865A1 (en) | Components made from a ceramic material composite and method for its manufacture | |
DE19637261C2 (en) | Process for producing an anode for high-temperature fuel cells using the sol-gel method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8127 | New person/name/address of the applicant |
Owner name: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, D |
|
8127 | New person/name/address of the applicant |
Owner name: MTU CFC SOLUTIONS GMBH, 88045 FRIEDRICHSHAFEN, DE |
|
8110 | Request for examination paragraph 44 | ||
8364 | No opposition during term of opposition | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: CFC SOLUTIONS GMBH, 88045 FRIEDRICHSHAFEN, DE |
|
8327 | Change in the person/name/address of the patent owner |
Owner name: MTU ONSITE ENERGY GMBH, 88045 FRIEDRICHSHAFEN, DE |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20140201 |