[go: up one dir, main page]

DE19717368A1 - Wire bonding system for semiconductor component - Google Patents

Wire bonding system for semiconductor component

Info

Publication number
DE19717368A1
DE19717368A1 DE19717368A DE19717368A DE19717368A1 DE 19717368 A1 DE19717368 A1 DE 19717368A1 DE 19717368 A DE19717368 A DE 19717368A DE 19717368 A DE19717368 A DE 19717368A DE 19717368 A1 DE19717368 A1 DE 19717368A1
Authority
DE
Germany
Prior art keywords
load
bond
metal wire
semiconductor element
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19717368A
Other languages
German (de)
Inventor
Hiroshi Horibe
Kazuko Nakamura
Shinji Toyosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of DE19717368A1 publication Critical patent/DE19717368A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05669Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45669Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4807Shape of bonding interfaces, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48507Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48647Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48669Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48739Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48744Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48738Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48747Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48763Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48769Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48839Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48847Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48863Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48869Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85095Temperature settings
    • H01L2224/85099Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20106Temperature range 200 C=<T<250 C, 473.15 K =<T < 523.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20107Temperature range 250 C=<T<300 C, 523.15K =<T< 573.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/203Ultrasonic frequency ranges, i.e. KHz
    • H01L2924/20303Ultrasonic frequency [f] 50 Khz=<f< 75 KHz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S228/00Metal fusion bonding
    • Y10S228/904Wire bonding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The component contains a semiconductor element (1) coupled to a connecting frame (4) by a chip bonding material, and a metal wire (3a) connecting the frame to the semiconductor element. A bonding point between a contact spot (2) on the element a metal wire has a number of island-shaped bonding points, and a strip-shaped coupling point, surrounding the bonding point. Preferably the frame is of Cu as its main component, while the main component of the chip bonding material. The main component of the metal wire is Au, and that of the contact spot is Al.

Description

Die vorliegenden Erfindung betrifft ein Drahtbondverfahren bzw. Drahtkontaktierverfahren zur Verbesserung der Zuverläs­ sigkeit der Bondzusammenfügung bzw. Bondverbindung mit feinem Draht, eine Drahtbondvorrichtung sowie eine unter Verwendung des Drahtbondverfahrens und der Drahtbondvorrichtung ausge­ bildete Halbleitereinrichtung.The present invention relates to a wire bonding process or wire contacting process to improve reliability liquid bonding or bond connection with fine Wire, a wire bonding device as well as using one the wire bonding method and the wire bonding device formed semiconductor device.

Bisher wurde bei dem Aufbauvorgang von Halbleitereinrichtun­ gen ein Verfahren weitverbreitet verwendet, das sowohl ein Thermokompressions-Bondverfahren als auch ein Verfahren mit­ tels Ultraschallvibration als Verfahren zum Bonden eines Me­ talldrahts an ein Bondpad bzw. einen Kontaktfleck auf einer Halbleitereinrichtung verwendet. Um dem Trend der letzten Jahre hinsichtlich Verkleinerung von Größe und Abstand des Kontaktflecks nachzukommen, besteht die Notwendigkeit, das Drahtbondverfahren zum Erhalt des Bondens mit höherer Zuver­ lässigkeit zu schaffen. Fig. 24 zeigt eine Beziehung zwischen der Belastung und dem zeitlichen Verlauf der angelegten Ul­ traschallvibration und der Bondzeit bei dem beispielsweise in der japanischen ungeprüften Patentanmeldung Nr. 279 040/1992 dargestellten Drahtbondverfahren. Gemäß dem Ausführungsbei­ spiel wird eine mehrstufige Belastung durch derartige Anwen­ dung einer geringen Belastung A zwischen der hohen Belastung und der geringen Belastung B aufgenommen, daß die geringe Be­ lastung A leichter als die geringe Belastung B ist. Die An­ wendung der Ultraschallvibration wird zum Zeitpunkt der hohen Belastung begonnen.So far, a method has been widely used in the construction process of semiconductor devices, which uses both a thermocompression bonding method and a method using ultrasonic vibration as a method for bonding a metal wire to a bond pad or a pad on a semiconductor device. In order to meet the trend of the past few years in terms of reducing the size and spacing of the contact pad, there is a need to create the wire bonding method for maintaining the bonding with greater reliability. Fig. 24 shows a relationship between the load and the time history of the applied ultrasonic vibration and the bonding time in the wire bonding method shown in Japanese Unexamined Patent Application No. 279 040/1992, for example. According to the embodiment, a multi-stage load is added by such an application of a low load A between the high load and the low load B that the low load A is lighter than the low load B. The application of ultrasonic vibration is started at the time of high stress.

Wie vorstehend beschrieben, ist die Bondbelastungsmenge gemäß dem herkömmlichen Drahtbondverfahren während der Dauer vom Kontakt des Metalldrahts mit dem Kontaktfleck bis zu dem Zeitpunkt konstant, an dem die Ultraschallvibration angelegt wird. Aus diesem Grund haben sich derartige Probleme ergeben, daß die Verformung des Metalldrahts übermäßig groß wird, wenn die Belastungsmenge zu einem derartigen Zeitpunkt auf eine hohe Menge eines solchen Grades gesetzt wird, daß Bondkerne ausgebildet werden, während andererseits die Bondkerne nicht ausreichend ausgebildet werden können, wenn die Verformungs­ menge auf ein geringes Niveau eines derartigen Grades einge­ stellt wird, daß die Verformungsmenge unterdrückt werden kann. Da weiterhin die Ultraschallvibration zusätzlich wäh­ rend der Belastungsanwendung angewandt wird, wird die Neigung zur übermäßig großen Verformung des Metalldrahts weiter be­ schleunigt, so daß sich das Problem ergeben hat, daß die Aus­ bildung einer Bondverbindung mit feinem Draht unmöglich wird.As described above, the bond load amount is according to the conventional wire bonding process during the period from Contact the metal wire with the pad up to the Constant time at which the ultrasonic vibration is applied  becomes. Because of this, problems have arisen that the deformation of the metal wire becomes excessive if the amount of load at such a time to a high amount of such a degree is set that bond cores are formed while, on the other hand, the bond cores are not can be trained sufficiently if the deformation quantity at a low level of such a degree is that the amount of deformation is suppressed can. Since the ultrasonic vibration continues to be selected When the load application is applied, the slope for excessive deformation of the metal wire accelerated, so that the problem arose that the out formation of a bond with fine wire becomes impossible.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die vorstehend beschriebenen Probleme zu lösen und ein Drahtbond­ verfahren sowie eine Drahtbondvorrichtung zu schaffen, wobei der Bondkern an der Verbindungsstelle zwischen dem Metall­ draht und dem Kontaktfleck ausreichend ausgebildet wird und die Verformungsmenge des Metalldrahts auf ein moderates Ni­ veau eingestellt werden kann, so daß die Zuverlässigkeit ei­ ner Bondverbindung mit feinem Draht verbessert wird, sowie unter Verwendung des vorstehenden Verfahrens und Vorrichtung eine Halbleitereinrichtung hoher Qualität mit hochzuverlässi­ ger Bondverbindung zu erhalten.The present invention is based on the object Solve the problems described above and a wire bond process and to create a wire bonding device, wherein the bond core at the junction between the metal wire and the pad is sufficiently formed and the amount of deformation of the metal wire to a moderate Ni veau can be set so that the reliability ei ner bond connection is improved with fine wire, as well using the above method and apparatus a high quality semiconductor device with high reliability ger bond connection.

Diese Aufgabe wird erfindungsgemäß durch die Bereitstellung einer Halbleitereinrichtung mit einem Halbleiterelement, ei­ nem an das Halbleiterelement mit einem Chip-Verbindungs­ material angeschlossenen Anschlußrahmen und einem Metalldraht gelöst, der das Halbleiterelement und den Anschlußrahmen elektrisch verbindet, wobei eine Verbindungsstelle zwischen dem auf dem Halbleiterelement angebrachten Kontaktfleck und dem Metalldraht eine Vielzahl von inselförmigen Verbindungs­ stellen und eine die gesamten inselförmigen Verbindungsstel­ len umgebende bandförmige Verbindungsstelle aufweist. This object is achieved by the provision a semiconductor device with a semiconductor element, ei nem to the semiconductor element with a chip connection material connected lead frame and a metal wire solved the semiconductor element and the lead frame electrically connects, with a junction between the pad attached to the semiconductor element and the metal wire a variety of island-shaped connection and the entire island-shaped connection point len surrounding band-shaped connection point.  

Ferner enthält der Anschlußrahmen Kupfer als eine Hauptkompo­ nente und das CHip-Verbindungsmaterial Harz als eine Haupt­ komponente.The lead frame also contains copper as a main compo and the chip connecting material resin as a main component.

Weiterhin enthält der Metalldraht Gold als eine Hauptkompo­ nente und der Kontaktfleck Aluminium als eine Hauptkomponen­ te.The metal wire also contains gold as a main compo and the aluminum contact pad as a main component te.

Erfindungsgemäß wird ebenso ein Drahtbondverfahren zur Ver­ bindung eines Metalldrahts mit einem auf einem Halbleiter­ element angeordneten Kontaktfleck unter Verwendung einer Be­ lastung und von Ultraschallvibration während einer Zeitdauer vom Kontakt des Metalldrahts mit dem Kontaktfleck bis zur An­ wendung der Ultraschallvibration durch eine kontinuierliche Anwendung einer ersten Bondbelastung und einer zweiten Bond­ belastung, die geringer als die erste Bondbelastung ist, und eine nach der Anwendung der Ultraschallvibration kontinuier­ liche Anwendung einer gegenüber der zweiten Bondbelastung et­ wa 50%-großen dritten Bondbelastung und einer vierten Bondbe­ lastung bereitgestellt, die geringer als die erste Bondbela­ stung und größer als die dritte Bondbelastung ist.According to the invention, a wire bonding method for Ver Binding a metal wire to one on a semiconductor element arranged contact pad using a Be load and ultrasonic vibration for a period of time from the contact of the metal wire with the pad to the contact application of ultrasonic vibration through a continuous Apply a first bond load and a second bond load that is less than the first bond load, and one continuously after using the ultrasonic vibration Liche application of a compared to the second bond load et wa 50% third bond load and a fourth bond load provided less than the first Bondbela and greater than the third bond load.

Ebenso weist der Metalldraht an einem Endabschnitt bzw. Spit­ zenbereich des Metalldrahts eine mit dem Kontaktfleck zu ver­ bindende Metallkugel auf.Likewise, the metal wire has an end section or spit area of the metal wire to ver with the contact patch binding metal ball.

Die durch die Querschnittsfläche vor der Verformung der Me­ tallkugel geteilte Bondbelastungsmenge wird zur Zeit der er­ sten Bondbelastung auf 392.10⁻6 bis 589.10⁻6 N/µm2 (40 bis 60 mgf/µm2), zur Zeit der zweiten Bondbelastung auf 98.10⁻6 bis 196.10⁻6 N/µm2 (10 bis 20 mgf/µm2), zur Zeit der dritten Bondbelastung auf 39.10⁻6 bis 98.10⁻6 N/µm2 (4 bis 10 mgf/µm2) und zur Zeit der vierten Bondbelastung auf 98.10⁻6 bis 196.10⁻6 N/µm2 (10 bis 20 mgf/µm2) gesetzt. The bond load quantity divided by the cross-sectional area before the deformation of the metal ball becomes 392.10⁻ 6 to 589.10⁻ 6 N / µm 2 (40 to 60 mgf / µm 2 ) at the time of the first bond load, and 98.10⁻ 6 at the time of the second bond load up to 196.10⁻ 6 N / µm 2 (10 to 20 mgf / µm 2 ), at the time of the third bond load to 39.10⁻ 6 to 98.10⁻ 6 N / µm 2 (4 to 10 mgf / µm 2 ) and at the time of the fourth bond load set to 98.10⁻ 6 to 196.10⁻ 6 N / µm 2 (10 to 20 mgf / µm 2 ).

Ferner beträgt der zeitliche Verlauf der ersten Bondbelastung nicht mehr als 3 ms, der zeitliche Verlauf der dritten Bond­ belastung 5 bis 15 ms und der zeitliche Verlauf der vierten Bondbelastung 1 bis 5 ms.Furthermore, the time course of the first bond load is not more than 3 ms, the time course of the third bond load is 5 to 15 ms and the time course of the fourth bond load is 1 to 5 ms.

Erfindungsgemäß wird weiterhin eine Drahtbondvorrichtung zur Verbindung eines Metalldrahts mit einem auf einem Halbleiter­ element angeordneten Kontaktfleck unter Verwendung einer Be­ lastung und Ultraschallvibration mit einem Objekttisch zum Anbringen einer das Halbleiterelement umfassenden Halbleiter­ einrichtung, einem Bondkopf zur Positionierung des Metall­ drahts auf dem Kontaktfleck, wobei der Metalldraht (3a) ge­ halten wird, und zur Anwendung einer Belastung und Ultra­ schallvibration, einem Überwachungsmechanismus der zeitlichen Veränderung der Belastungsmenge des Bondkopfes sowie einem Mechanismus zur Belastungssteuerung und einem Ultraschall­ amplituden-Steuermechanismus mit einer Umwandlungsfunktion oder Umwandlungstabelle geschaffen, um die Wechselwirkung zwischen der zeitlichen Veränderung der Belastungsmenge und der Festigkeit und Verformung der Verbindungsstelle aufzuzei­ gen, sowie zur Berechnung einer nachfolgenden Belastungsmenge und Amplitude der Ultraschallvibration anhand des von dem Überwachungsmechanismus empfangenen Ergebnisses, um den Bond­ kopf zu steuern.According to the invention, a wire bonding device for connecting a metal wire to a contact pad arranged on a semiconductor element using a load and ultrasonic vibration with an object table for attaching a semiconductor device comprising the semiconductor device, a bonding head for positioning the metal wire on the contact pad, the metal wire ( 3 a) is maintained, and for the application of a load and ultrasonic vibration, a monitoring mechanism for the temporal change in the load quantity of the bondhead as well as a mechanism for load control and an ultrasound amplitude control mechanism with a conversion function or conversion table created to the interaction between the temporal Changes in the load quantity and the strength and deformation of the connection point aufzei gene, as well as to calculate a subsequent load quantity and amplitude of the ultrasonic vibration based on the result received from the monitoring mechanism to control the bond head.

Die Erfindung wird nachstehend anhand von Ausführungsbeispie­ len unter Bezugnahme auf die beiliegende Zeichnung beschrie­ ben. Es zeigen:The invention is described below with reference to exemplary embodiments len with reference to the accompanying drawing ben. Show it:

Fig. 1(a) und 1(b) einen Aufbau einer Halbleitereinrichtung zur Darstellung eines Drahtbondverfahrens gemäß einem ersten erfindungsgemäßen Ausführungsbeispiel, wobei Fig. 1(a) eine Seitenansicht und Fig. 1(b) eine Teil-Querschnittsansicht des Verbindungsbereichs darstellt, Fig. 1 (a) and 1 (b) a structure of a semiconductor device illustrating a wire bonding method according to a first embodiment of the invention, wherein Fig. 1 (a) is a side view, and FIG. 1 (b) is a fragmentary cross-sectional view illustrating the connecting region,

Fig. 2 eine Ansicht zur Darstellung der Beziehung zwischen Belastung und dem zeitlichen Verlauf der angelegten Ultra­ schallvibration sowie einer Verbindungszeit bei dem Draht­ bondverfahren gemäß dem ersten erfindungsgemäßen Ausführungs­ beispiel, Fig. 2 sonic vibration is a view showing the relationship between load and the time course of the applied ultra as well as a connection time in the wire bonding method according to the first example of execution according to the invention,

Fig. 3 eine Ansicht der Verbindungsbedingung beim ersten Aus­ führungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 210°C, Fig. 3 is a view of the connection condition from the first operation example according to the application of the third load at a temperature of 210 ° C,

Fig. 4 eine Ansicht der Verbindungsbedingung beim ersten Aus­ führungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 230°C, Fig. 4 is a view of the connection condition from the first operation example according to the application of the third load at a temperature of 230 ° C,

Fig. 5 eine Ansicht der Verbindungsbedingung beim ersten Aus­ führungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 250°C, Fig. 5 is a view of the connection condition from the first operation example according to the application of the third load at a temperature of 250 ° C,

Fig. 6 eine Ansicht der Verbindungsbedingung beim ersten Aus­ führungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 280°C, Fig. 6 is a view of the connection condition from the first operation example according to the application of the third load at a temperature of 280 ° C,

Fig. 7 eine Ansicht der Verbindungsbedingung beim ersten Aus­ führungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 210°C in dem Fall, daß die Ultraschall­ amplitude um 40% verkleinert wird, Fig. 7 is a view of the connection condition from the first operation example according to the application of the third load at a temperature of 210 ° C in the case that the ultrasonic amplitude is decreased by 40%,

Fig. 8 eine Ansicht der Verbindungsbedingung beim ersten Aus­ führungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 280°C in dem Fall, daß die Ultraschal­ lamplitude um 40% verkleinert wird, Fig. 8 is a view of the connection condition from the first operation example according to the application of the third load at a temperature of 280 ° C in the case that the ultrasonic lamplitude is reduced by 40%,

Fig. 9 eine Ansicht der Verbindungsbedingung beim ersten Aus­ führungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 210°C in dem Fall, daß der zeitliche Verlauf der dritten Belastung 3 ms beträgt, Fig. 9 is a view of the connection condition from the first operation example according to the application of the third load at a temperature of 210 ° C in the case that the timing of the third load is 3 ms,

Fig. 10 eine Ansicht der Verbindungsbedingung beim ersten Ausführungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 210°C in dem Fall, daß der zeitli­ che Verlauf der dritten Belastung 5 ms beträgt, Fig. 10 is a view of the connection condition in the first embodiment according to the application of the third load at a temperature of 210 ° C in the case that the zeitli che course of the third load is 5 ms,

Fig. 11 eine Ansicht der Verbindungsbedingung beim ersten Ausführungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 210°C in dem Fall, daß der zeitli­ che Verlauf der dritten Belastung 10 ms beträgt, Fig. 11 is a view of the connection condition in the first embodiment according to the application of the third load at a temperature of 210 ° C in the case that the zeitli che course of the third load is 10 ms,

Fig. 12 eine Ansicht der Verbindungsbedingung beim ersten Ausführungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 210°C in dem Fall, daß der zeitli­ che Verlauf der dritten Belastung 30 ms beträgt, Fig. 12 is a view of the connection condition in the first embodiment according to the application of the third load at a temperature of 210 ° C in the case that the zeitli che course of the third load is 30 ms,

Fig. 13 eine Ansicht der Verbindungsbedingung beim ersten Ausführungsbeispiel nach der Anwendung der dritten Belastung bei einer Temperatur von 210°C in dem Fall, daß der zeitli­ che Verlauf der dritten Belastung 50 ms beträgt, Fig. 13 is a view of the connection condition in the first embodiment according to the application of the third load at a temperature of 210 ° C in the case that the zeitli che course of the third load is 50 ms,

Fig. 14 eine Ansicht der Verbindungsbedingung beim ersten Ausführungsbeispiel nach der Anwendung der dritten Belastung in dem Fall, daß die erste Belastung auf 981.10⁻3 N (100 gf) und die zweite Belastung auf 294.10⁻3 N (30 gf) verringert wird, Fig. 14 is a view of the connection condition in the first embodiment according to the application of the third load in the event that the first load on 981.10⁻ 3 N is reduced (100 gf) and the second load on 294.10⁻ 3 N (30 gf),

Fig. 15 eine Ansicht der Verbindungsbedingung beim ersten Ausführungsbeispiel nach der Anwendung der dritten Belastung in dem Fall, daß die dritte Belastung auf 294.10⁻3 N (30 gf) vergrößert wird, Fig. 15 is a view of the connection condition in the first embodiment according to the application of the third load in the case that the third load on 294.10⁻ 3 N is increased (30 gf),

Fig. 16 eine Ansicht der Verbindungsbedingung in dem Fall, daß die in Fig. 3 dargestellte Probe von 210°C 15 Stunden lang bei einer Temperatur von 150°C aufbewahrt wird, Fig. 16 is a view of the connection condition in the case where the 210 ° C sample shown in Fig. 3 is kept at a temperature of 150 ° C for 15 hours.

Fig. 17 eine Ansicht der Verbindungsbedingung in dem Fall, daß die in Fig. 3 dargestellte Probe von 280°C 15 Stunden lang bei einer Temperatur von 150°C aufbewahrt wird, Fig. 17 is a view of the connection condition in the case where the 280 ° C sample shown in Fig. 3 is kept at a temperature of 150 ° C for 15 hours.

Fig. 18 eine Ansicht der Verbindungsbedingung nach Anwendung der vierten Belastung durch das Drahtbondverfahren gemäß dem ersten erfindungsgemäßen Ausführungsbeispiel, Fig. 18 is a view of the connection condition to the application of the fourth load by wire bonding method according to the first embodiment of the invention,

Fig. 19 eine Ansicht einer Verbindungsbedingung aus Fig. 18, Fig. 19 is a view of a connection condition of Fig. 18,

Fig. 20 eine Ansicht der Verbindungsbedingung durch ein Drahtbondverfahren gemäß einem zweiten erfindungsgemäßen Aus­ führungsbeispiel, Shows a view of the connection condition management, for example. 20 by a wire bonding method according to a second inventive Off

Fig. 21 eine Ansicht der Verbindungsbedingung durch das Drahtbondverfahren gemäß dem zweiten erfindungsgemäßen Aus­ führungsbeispiel, Fig. 21 is a view of the connection condition management, for example by the wire bonding method according to the second invention Off

Fig. 22 eine Ansicht der Beziehung zwischen der Zeit der Be­ lastungsanwendung und den Ausbildungsbedingungen der interme­ tallischen Verbindung an der Verbindungsstelle bei einem Drahtbondverfahren gemäß dem dritten erfindungsgemäßen Aus­ führungsbeispiel, Fig. Lastungsanwendung 22 is a view of the relationship between the time of loading and guide for the formation conditions of the interme-metallic compound at the junction with a wire bonding method according to the third invention Off

Fig. 23 eine Ansicht des Aufbaus einer Drahtbondvorrichtung gemäß einem vierten erfindungsgemäßen Ausführungsbeispiel und Fig. 23 is a structural view of a wire bonding apparatus according to a fourth embodiment of the invention and

Fig. 24 eine Ansicht zur Darstellung der Beziehung zwischen Belastung und dem zeitlichen Verlauf der angelegten Ultra­ schallvibration sowie der Verbindungszeit bei dem herkömmli­ chen Drahtbondverfahren. Fig. 24 is a view showing the relationship between the load and the time course of the applied ultrasonic vibration as well as the connection time in the conventional wire bonding method.

Ausführungsbeispiel 1 Embodiment 1

Nachstehend wird das erste erfindungsgemäße Ausführungsbei­ spiel unter Bezugnahme auf die Zeichnung beschrieben. Fig. 1(a) zeigt eine Seitenansicht des Aufbaus der Halbleiterein­ richtung zur Darstellung des Drahtbondverfahrens gemäß dem ersten erfindungsgemäßen Ausführungsbeispiel, und Fig. 1(b) zeigt eine Teil-Querschnittsansicht des Verbindungsbereichs. Ferner zeigt Fig. 2 eine Ansicht zur Darstellung der Bezie­ hung zwischen der Belastung und dem zeitlichen Verlauf der angelegten Ultraschallvibration sowie einer Verbindungszeit bei dem Drahtbondverfahren gemäß diesem Ausführungsbeispiel. In der Zeichnung bezeichnet jeweils das Bezugszeichen 1 ein Halbleiterelement, 2 ein auf dem Halbleiterelement 1 ange­ brachtes Bondpad bzw. Kontaktfleck, 3a einen Metalldraht, 3b eine an der Spitze bzw. am Ende des Metalldrahts 3a ausgebil­ dete Metallkugel, 4 einen Anschlußrahmen, 5 ein Chip-Verbin­ dungsmaterial zur Verbindung des Halbleiterelements 1 mit dem Anschlußrahmen 4 und 8 eine Kapillare.The first exemplary embodiment according to the invention is described below with reference to the drawing. Fig. 1 (a) shows a side view of the structure of the semiconductor device for illustrating the wire bonding method according to the first embodiment of the present invention, and Fig. 1 (b) shows a partial cross-sectional view of the connection area. Further, FIG. 2 is a view showing the relation ship between the load and the time profile of the applied ultrasonic vibration as well as a connection time in the wire bonding method according to the embodiment. In the drawing, each reference numeral 1 denotes a semiconductor element, 2 a is on the semiconductor element 1 mounted bond pad or pad, 3a a metal wire 3b is a a lead frame at the top or at the end of the metal wire 3 a ausgebil finished metal ball, 4, 5 a chip connec tion material for connecting the semiconductor element 1 to the lead frame 4 and 8 a capillary.

Bei diesem Ausführungsbeispiel ist das Halbleiterelement 1 mit dem hauptsächlich Kupfer aufweisenden Anschlußrahmen 4 unter Verwendung eines Chip-Verbindungsmaterials 5, das hauptsächlich aus Polyimid- und Epoxidharz besteht, welches Phenol als Härtungsmittel hat und das mit Silberpulver ge­ füllt ist, mechanisch und elektrisch verbunden. Die nachste­ hende Erklärung erfolgt für den Fall, daß ein Metalldraht 3a hauptsächlich Gold mit einem Durchmesser von 30 µm und einer Metallkugel 3b von etwa 55 µm Durchmesser aufweist, die durch Schmelzen und Erstarren des Endes des Metalldrahts 3a ent­ steht, und mit einem hauptsächlich Aluminium aufweisenden und auf einem Halbleiterelement 1 ausgebildeten Kontaktfleck 2 von 80 µm auf einer Seite unter Verwendung der Belastung und der über die Kapillare 8 zugeführten Ultraschallenergie von etwa 60 kHz und von der unteren Oberfläche des Halbleiterele­ ments 1 zugeführten Wärme zusammengefügt bzw. verbunden wird. Fig. 3 bis 19 zeigen Ansichten zur Darstellung der Ausbil­ dungsbedingungen der intermetallischen Verbindungen an dem Verbindungsbereich zwischen der Metallkugel 3b und dem Kon­ taktfleck 2. In Fig. 19 bezeichnet das Bezugszeichen 6a ein zur Verbindung als Startpunkt dienender Verbindungskern, 6b eine inselförmige Verbindungsstelle und 7 eine bandförmige Verbindungsstelle, die derart ausgebildet ist, daß sie die gesamte Verbindungsstelle 6b umgibt. Ferner zeigt in jeder der Fig. 3 bis 18 sowie Fig. 20 und 21 die obere Figur (a), die in der Mitte linke Figur (b), die in der Mitte rechte Fi­ gur (c) und die untere Figur (d) jeweils einen typischen Ver­ bindungsbereich auf der oberen Seite, einen typischen Verbin­ dungsbereich auf der mittleren linken Seite, einen typischen Verbindungsbereich auf der mittleren rechten Seite sowie ei­ nen typischen Verbindungsbereich auf der unteren Seite einer rechteckigen Halbleitereinrichtung. In Fig. 3 bis 18 sowie Fig. 20 und 21 zeigen weißliche oder graue Abschnitte in etwa der Mitte der Figuren (vgl. Fig. 19) inselförmige Verbin­ dungsstellen.In this embodiment, the semiconductor element 1 is mechanically and electrically connected to the mainly copper lead frame 4 using a chip bonding material 5 mainly composed of polyimide and epoxy resin which has phenol as a hardening agent and which is filled with silver powder. The following explanation is given in the event that a metal wire 3 a has mainly gold with a diameter of 30 microns and a metal ball 3 b of about 55 microns in diameter, which is ent by melting and solidification of the end of the metal wire 3 a, and with a mainly aluminum and formed on a semiconductor element 1 contact patch 2 of 80 microns on one side using the load and the ultrasound energy supplied via the capillary 8 of about 60 kHz and from the lower surface of the semiconductor element 1 heat is joined or connected . FIGS. 3 to 19 show views for illustrating the Ausbil-making conditions of the intermetallic compounds at the joint portion between the metal ball 3 b and the con tact stain. 2 In Fig. 19, reference numeral 6 denotes a one serving for connection as a starting point link core, 6b an island-shaped junction and 7, a band-shaped joint which is formed so as to surround the entire joint 6 b. Furthermore, in each of FIGS. 3 to 18 and FIGS. 20 and 21 the upper figure (a), the figure on the left in the middle (b), the figure on the right in the middle (c) and the lower figure (d) each have a typical connection area on the upper side, a typical connection area on the middle left side, a typical connection area on the middle right side and a typical connection area on the lower side of a rectangular semiconductor device. In FIGS. 3 through 18 and Fig. 20 and 21 show whitish or gray portions in about the middle of the figures (see. Fig. 19) binding sites island-shaped Verbin.

Zuerst wird nach dem Kontakt der Metallkugel 3b mit dem Kon­ taktfleck 2 die erste Bondbelastungsmenge mit einem starken Anstiegsgradienten auf etwa 1,177 N (120 gf) zur Erzeugung eines beiderseitig abrupten plastischen Flusses auf einer Verbindungsgrenzfläche zwischen dem Metalldraht 3a und dem Kontaktfleck 2 angelegt. Der starke Belastungsanstiegsgra­ dient kann durch die Abwärtsbewegung der Kapillare 8 mit ho­ her Geschwindigkeit verwirklicht werden. Durch diesen plasti­ schen Fluß ist es möglich, einen lokalen Oxidfilm und der­ gleichen auf der Materialoberfläche lediglich durch die Bela­ stung ohne Zufuhr von Gleit- bzw. Reibungsenergie an der Kon­ taktgrenzfläche auszuschließen und an der Kontaktgrenzfläche einen Verbindungskern 6a gleich auszubilden, welcher der Startpunkt der Verbindungsstelle wird. In einem derartigen Fall kann die Oberfläche des Kontaktflecks 2 zur Vereinfa­ chung der Ausbildung des Verbindungskerns 6a mit einem Vor­ sprung von einigen µm versehen sein. Zur Ausbildung des Vor­ sprungs kann ein Verfahren zum Aufwachsen eines Aluminium-Ein­ kristallvorsprungs angewandt werden, beispielsweise indem der Kontaktfleck 2 einer Wärmebehandlung unterzogen wird. First, after the contact of the metal ball 3 b with the contact spot 2, the first amount of bond load with a strong gradient to about 1.177 N (120 gf) is applied to generate a mutually abrupt plastic flow on a connection interface between the metal wire 3 a and the contact spot 2 . The strong loading increase gra serves can be realized by the downward movement of the capillary 8 at high speed. Due to this plastic flow, it is possible to exclude a local oxide film and the same on the material surface only by loading without the supply of sliding or frictional energy at the contact interface and form a connection core 6 a at the contact interface, which is the starting point the junction. In such a case, the surface of the contact pad 2 can be provided with a jump of a few μm to simplify the formation of the connecting core 6 a. A method for growing an aluminum single crystal projection can be used to form the lead, for example, by subjecting the contact pad 2 to a heat treatment.

Danach wird bis zum Anlegen der Ultraschallvibration die zweite Bondbelastungsmenge auf eine kleine Menge von etwa 392.10⁻3 N (40 gf) gesteuert, bei der die Schwingungen des den oberen Abschnitt der Kapillare 8 haltenden Schalltrich­ ters unterdrückt werden können. Durch diesen Schritt wird der Kontakt zwischen der Metallkugel 3b und dem Kontaktfleck 2 an dem Verbindungsbereich 6a gesichert und eine Rekontaminierung der Oberfläche des Verbindungskerns 6a durch Oxidation und dergleichen kann unterdrückt werden.Thereafter, until the ultrasonic vibration is applied, the second amount of bond load is controlled to a small amount of about 392.10⁻ 3 N (40 gf), at which the vibrations of the sound funnel holding the upper portion of the capillary 8 can be suppressed. Through this step, the contact between the metal ball 3 b and the contact spot 2 at the connection region 6 a is secured and recontamination of the surface of the connection core 6 a by oxidation and the like can be suppressed.

Danach wird zu der Zeit, während der die Ultraschallvibration angelegt ist, die dritte Bondbelastung im Bereich von etwa 98.10⁻3 bis 196.10⁻3 N (10 bis 20 gf) während einer Dauer von etwa 10 ms angelegt, um die Energie der Ultraschallvibration im Bereich von nicht mehr als einige µm im Umkreis jedes Ver­ bindungskerns 6a konzentriert zu nutzen, wodurch die Unter­ drückung weiterer Schwingungen an der Kontaktgrenzfläche zwi­ schen der Metallkugel 3b und dem Kontaktfleck 2 sowie ein gleichförmiges Aufwachsen mehrerer inselförmiger Verbindungs­ stellen 6b mit annähernd elliptischer Form im Zentrum auf den Verbindungskern 6a ermöglicht wird. Fig. 3 bis 6 zeigen Be­ dingungen der Verbindungsstellen in den Fällen, daß die An­ wendung der ersten bis dritten Bondbelastungsmengen bei den jeweiligen Verbindungstemperaturen von 210, 230, 250 und 280°C erfolgt. Die Größe der auszubildenden inselförmigen Verbindungsstelle 6b ist entsprechend der Verbindungstempera­ tur veränderlich. In dem Temperaturbereich des vorliegenden Versuchs ergibt sich die Tendenz, daß je geringer die Tempe­ ratur ist, desto kleiner werden die einzelnen Größen der in­ selförmigen Verbindungsstellen 6b. Ferner wird selbst bei 210°C die inselförmige Verbindungsstelle 6b ausreichend aus­ gebildet.Thereafter, at the time the ultrasonic vibration is applied, the third bond load in the range of about 98.10 -3 to 196.10 -3 N (10 to 20 gf) is applied for a period of about 10 ms to the energy of the ultrasonic vibration in the range of no more than a few microns in the vicinity of each connecting core 6 a concentrated use, whereby the suppression of further vibrations at the contact interface between the metal ball 3 b and the contact pad 2 and a uniform growth of several island-shaped connection places 6 b with an approximately elliptical shape in the center on the connecting core 6 a is made possible. FIGS. 3 to 6 show loading conditions of the joints in the cases that the application to the first takes place through the third bonding load amounts at the respective bonding temperatures of 210, 230, 250 and 280 ° C. The size of the island-shaped junction 6 b to be trained is variable in accordance with the connection temperature. In the temperature range of the present experiment, there is a tendency that the lower the temperature, the smaller the individual sizes of the self-shaped connection points 6 b. Furthermore, even at 210 ° C, the island-shaped junction 6 b is sufficiently formed.

Fig. 7 und 8 zeigen die Fälle, bei denen Amplituden der Ul­ traschallvibration bei den Verbindungstemperaturen von 210°C und 280°C um 40% verkleinert werden, wobei die anderen Be­ dingungen auf demselben Niveau wie bei den Proben aus Fig. 3 bis 6 gehalten werden. Im Vergleich der beiden Fälle wird er­ sichtlich, daß bei den Fällen mit der größeren Amplitude der Ultraschallvibration (vgl. Fig. 3 bis 6) die inselförmige Verbindungsstelle 6b eine große Größe aufweist. Ferner zeigen FIGS. 7 and 8 show the cases in which amplitudes of the Ul traschallvibration at the bonding temperatures of 210 ° C and 280 ° C can be reduced by 40%, the other loading conditions at the same level as in the samples of FIG. 3 to 6 being held. In a comparison of the two cases, it becomes apparent that in the cases with the larger amplitude of the ultrasonic vibration (cf. FIGS. 3 to 6) the island-shaped connection point 6 b has a large size. Also show

Fig. 9 bis 13 die Fälle, bei denen der zeitliche Verlauf der dritten Bondbelastung bei 210°C auf 3, 5, 10, 30 und 60 ms verändert wurde, wodurch veranschaulicht wird, daß je länger der zeitliche Verlauf ist, desto größer wächst die inselför­ mige Verbindungsstelle 6b. Wie in Fig. 3 bis 13 gezeigt, kann die einzelne Größe der inselförmigen Verbindungsstelle 6b ebenso durch die Amplitude der Ultraschallvibration sowie dem zeitlichen Verlauf der dritten Bondbelastung gesteuert wer­ den. FIGS. 9 through 13, the cases in which the timing of the third bonding load at 210 ° C for 3, 5, 10, 30 and 60 ms was changed, is illustrated thereby, that increases the longer the time course, the greater the inselför shaped junction 6 b. As shown in Fig. 3 to 13, the individual size of the island-shaped junction 6 b can also be controlled by the amplitude of the ultrasonic vibration and the time course of the third bond load.

Fig. 14 zeigt eine Ansicht der Verbindungsbedingung in dem Fall, daß die erste Bondbelastung und die zweite Bondbela­ stung jeweils auf 981.10⁻3 N (100 gf) sowie 294.10⁻3 N (30 gf) verringert werden und die dritte Bondbelastung im Bereich von 98.10⁻3 bis 196.10⁻3 N (10 bis 20 gf) angewandt wird. Selbst in einem derartigen Fall wird die inselförmige Verbindungs­ stelle 6b ausgebildet. Wenn jedoch wie in Fig. 15 gezeigt die erste Bondbelastung auf 1,177 N (120 gf) und die zweite Bond­ belastung auf 392.10⁻3 N (40 gf) zurückgesetzt sowie die dritte Bondbelastung auf 294.10⁻3 N (30 gf) erhöht wird, wird es unmöglich, genügend Ultraschallenergie an die Umgebung des Verbindungskerns 6a abzugeben, wodurch eine ungenügende Ver­ bindung geschaffen wird. Ferner zeigen Fig. 16 und 17 Ansich­ ten der Bedingungen in dem Fall, daß die Proben mit Verbin­ dungstemperaturen von 210°C und 280°C wie in Fig. 3 gezeigt 15 Stunden lang bei 150°C aufbewahrt werden, wobei die in­ selförmige Verbindungsstelle 6b selbst nach der Aufbewahrung bei einer hohen Temperatur beobachtet werden konnte. Fig. 14 shows a view of the connection condition in the event that the first bond load and the second bond load are reduced to 981.10⁻ 3 N (100 gf) and 294.10⁻ 3 N (30 gf), respectively, and the third bond load in the range of 98.10 ⁻ 3 to 196.10⁻ 3 N (10 to 20 gf) is used. Even in such a case, the island-shaped connection point 6 b is formed. However, as shown in Fig. 15, if the first bond load is reset to 1.177 N (120 gf) and the second bond load is reset to 392.10⁻ 3 N (40 gf) and the third bond load is increased to 294.10⁻ 3 N (30 gf), the bond is increased it is impossible to deliver enough ultrasonic energy to the surroundings of the connecting core 6 a, whereby an insufficient connection is created. Furthermore, FIGS. 16 and 17 show views of the conditions in the case where the samples having the connection temperatures of 210 ° C. and 280 ° C. as shown in FIG. 3 are kept at 150 ° C. for 15 hours, the self-shaped junction 6 b could be observed even after storage at a high temperature.

Ferner wird bei dem letzten Objekttisch die vierte Bondbela­ stung 3 bis 5 ms lang mit einer hohen Menge von etwa 245.10⁻3 N bis 392.10⁻3 N (25 bis 40 gf) angewandt, um die Energie der Ultraschallvibration im Außenbereich der Verbindungsstelle der Metallkugel 3b konzentriert zu nutzen, wodurch plastische Verformungen der Metallkugel 3b und des Kontaktflecks 2 im Außenbereich der Metallkugel 3b verursacht werden, und die bandförmige Verbindungsstelle 7 wie in Fig. 16 bis 19 darge­ stellt derart ausgebildet werden kann, daß sie die gesamte Vielzahl an inselförmigen Verbindungsstellen 6b umgibt.Furthermore, in the last stage, the fourth bond load is applied for 3 to 5 ms with a high amount of about 245.10⁻ 3 N to 392.10⁻ 3 N (25 to 40 gf) to the energy of the ultrasonic vibration in the outer region of the connection point of the metal ball 3rd b concentrated use, causing plastic deformations of the metal ball 3 b and the contact pad 2 in the outer region of the metal ball 3 b, and the band-shaped connection point 7 as shown in FIGS . 16 to 19 Darge can be designed such that it the entire variety surrounds island-shaped junctions 6 b.

Bei der vorstehenden Erklärung sind die bei dem vorliegenden Ausführungsbeispiel gezeigten ersten bis vierten Bondbela­ stungsmengen die Mengen, die an eine an einem Ende eines Me­ talldrahts 3a mit 30 µm Durchmesser ausgebildete Metallkugel 3b von etwa 55 µm Durchmesser anwendbar sind, und in dem Fall, daß sich die Größe der Metallkugel 3b unterscheidet, ist entsprechend der Größe eine Veränderung der Bondbela­ stungsmenge erforderlich. Das heißt, indem die Menge, die durch Division der Bondbelastungsmenge durch die Quer­ schnittsfläche vor der Verformung der Metallkugel 3b erhalten wird, zur Zeit der ersten Bondbelastung auf 392.10⁻6 bis 491.10⁻6 N/µm2 (40 bis 50 mgf/µm2), zur Zeit der zweiten Bondbelastung auf 98.10⁻6 bis 196.10⁻6 N/µm2 (10 bis 20 mgf/µm2), zur Zeit der dritten Bondbelastung auf 39.10⁻6 bis 98.10⁻6 N/µm2 (4 bis 10 mgf/µm2) und zur Zeit der vierten Bondbelastung auf 98.10⁻6 bis 196.10⁻6 N/µm2 (10 bis 20 mgf/µm2) gesetzt wird, wird eine Verbindung mit einer Viel­ zahl von inselförmigen Verbindungsstellen 6b und einer die Gesamtheit der inselförmigen Verbindungsstellen 6b umgebende bandförmigen Verbindungsstelle 7 auf dieselbe Weise wie bei diesem Ausführungsbeispiel erhalten. Auf diese Weise wird es möglich, hochzuverlässiges Drahtbonden durchzuführen. In ei­ nem derartigen Fall beträgt der zeitliche Verlauf der ersten Bondbelastung nicht mehr als 3 ms, der zeitliche Verlauf der dritten Bondbelastung 5 bis 15 ms und der zeitliche Verlauf der vierten Bondbelastung 1 bis 5 ms.In the above explanation, the first shown in the present embodiment to fourth bonding Bela stungsmengen the amounts which are applicable of approximately 55 microns diameter on a one end of a Me talldrahts 3 a trained with 30 micron diameter metal ball 3 b, and in the case that the size of the metal ball 3 b differs, a change in the amount of Bondbela is required. That is, by making the amount obtained by dividing the bond load amount by the cross-sectional area before the deformation of the metal ball 3 b at the time of the first bond load to 392.10⁻ 6 to 491.10⁻ 6 N / µm 2 (40 to 50 mgf / µm 2 ), at the time of the second bond load to 98.10⁻ 6 to 196.10⁻ 6 N / µm 2 (10 to 20 mgf / µm 2 ), at the time of the third bond load to 39.10⁻ 6 to 98.10⁻ 6 N / µm 2 (4 to 10 mgf / µm 2 ) and at the time of the fourth bond loading to 98.10⁻ 6 to 196.10⁻ 6 N / µm 2 (10 to 20 mgf / µm 2 ), a connection with a large number of island-shaped connection points 6 b and one the whole of the island-shaped connection points 6 b surrounding band-shaped connection point 7 in the same manner as in this embodiment. In this way, it becomes possible to perform highly reliable wire bonding. In such a case, the time course of the first bond load is not more than 3 ms, the time course of the third bond load is 5 to 15 ms and the time course of the fourth bond load is 1 to 5 ms.

Bei diesem Ausführungsbeispiel wird ein aus Polyimid- und Epoxidharz als Hauptmaterial bestehendes CHip-Verbindungs­ material verwendet, welches Phenol als Härtungsmittel hat und
das mit Silberpulver gefüllt ist. Jedoch sollten die Kompo­ nenten des Harzmaterials nicht beschränkt werden.
In this embodiment, a chip material consisting of polyimide and epoxy resin as the main material is used, which has phenol as a curing agent and
that is filled with silver powder. However, the components of the resin material should not be limited.

Wie vorstehend beschrieben, wird entsprechend dem Drahtbond­ verfahren gemäß dem vorliegenden Ausführungsbeispiel der Ver­ bindungskern 6a an der Verbindungsstelle zwischen der Metall­ kugel 3b und dem Kontaktfleck 2 ausreichend ausgebildet. Die Verformungsmenge der Metallkugel 3b kann genau eingestellt werden. Es ist möglich, die Zuverlässigkeit der Bondzusammen­ fügungen bzw. Bondverbindungen mit feinem Draht wie bei­ spielsweise bei Plastikgehäusen mit feinem Feldabstand und Mehrfachanschlüssen, merklich zu verbessern und die Halblei­ tereinrichtung mit hoher Qualität zu geringen Kosten zu schaffen.As described above, according to the wire bond process according to the present embodiment, the Ver connecting core 6 a at the connection point between the metal ball 3 b and the contact pad 2 is sufficiently formed. The amount of deformation of the metal ball 3 b can be adjusted precisely. It is possible to noticeably improve the reliability of the bond assemblies or bond connections with fine wire, such as, for example, in plastic housings with fine field spacing and multiple connections, and to create the semiconductor device with high quality at low cost.

Ausführungsbeispiel 2 Embodiment 2

Nachstehend wird das Drahtbondverfahren gemäß dem zweiten er­ findungsgemäßen Ausführungsbeispiel beschrieben. Da der Auf­ bau der bei diesem Ausführungsbeispiel zu verwendenden Halb­ leitereinrichtung derselbe wie der aus dem ersten Ausfüh­ rungsbeispiel ist, wird bei der nachstehenden Erklärung auf Fig. 1 und 2 bezug genommen. Ein Halbleiterelement 1 wird un­ ter Verwendung eines Lötmittel als Hauptkomponente aufweisen­ den CHip-Verbindungsmaterials 5 an einen hauptsächlich aus Eisen und Nickel bestehenden Anschlußrahmen 4 angeschlossen. Die nachstehende Erklärung erfolgt für den Fall, daß ein hauptsächlich aus Gold bestehender Metalldraht 3a mit einem Durchmesser von 30 µm und einer durch Schmelzen und Erstarren des Endes des Metalldrahts 3a entstandenen Metallkugel 3b von etwa 55 µm Durchmesser mit einem hauptsächlich Aluminium auf­ weisenden und auf einem Halbleiterelement 1 ausgebildeten Kontaktfleck 2 von 80 µm auf einer Seite unter Verwendung der Belastung und der über die Kapillare 8 zugeführten Ultra­ schallenergie von etwa 60 kHz und der von der unteren Ober­ fläche des Halbleiterelements 1 zugeführten Wärme verbunden wird.The wire bonding method according to the second embodiment of the present invention is described below. Since the construction of the semiconductor device to be used in this embodiment is the same as that of the first embodiment, reference is made to FIGS . 1 and 2 in the following explanation. A semiconductor element 1 is connected using a solder as the main component, the chip connection material 5 is connected to a lead frame 4 consisting mainly of iron and nickel. The following explanation is given in the event that a metal wire 3 a consisting mainly of gold with a diameter of 30 μm and a metal ball 3 b formed by melting and solidifying the end of the metal wire 3 a of approximately 55 μm diameter with a mainly aluminum pointing and formed on a semiconductor element 1 pad 2 of 80 microns on a side using the load and the supplied via the capillary tube 8 ultrasound energy of 60 kHz and the surface of the lower top of the semiconductor element is connected to one heat supplied.

Wie bei diesem Ausführungsbeispiel weist in dem Fall, daß das CHip-Verbindungsmaterial 5 ein Lötmittel ist, ein derartiges Material ein um etwa eine Größeneinheit größeres Elastizi­ tätsmodul als das Harz auf, so daß es eine hohe Übertragungs­ effizienz der Ultraschallwellen aufweist. Aufgrund dessen wird die bandförmige Verbindungsstelle 7 (vgl. Fig. 19) durch die Verformung der Metallkugel 3b mit weniger Ultraschall­ energie selbst unter gleichen Temperaturbedingungen leichter ausgebildet als in dem Fall des Harz-CHip-Verbindungs­ materials. Dementsprechend wird durch Unterdrückung der Am­ plitude der Ultraschallvibration zu dem zeitlichen Verlauf der dritten Bondbelastung auf etwa 60% des Falls, daß der An­ schlußrahmen 4 wie beim ersten Ausführungsbeispiel gezeigt hauptsächlich Kupfer enthält, die Ausbildung der inselförmi­ gen Verbindungsstelle 6b (vgl. Fig. 19) wie in Fig. 20 und 21 gezeigt über die gesamte Verbindungsoberfläche ermöglicht. Bei diesem Ausführungsbeispiel wird bei den Verbindungstempe­ raturen von 210°C (vgl. Fig. 20) und 280°C (vgl. Fig. 21) die Größe der jeweiligen inselförmigen Verbindungsstellen 6b bei geringer Temperatur klein. Anschließend kann durch Anwen­ dung der vierten Bondbelastung auf dieselbe Art und Weise wie im Fall des Ausführungsbeispiels 1 die bandförmige Verbin­ dungsstelle 7 derart ausgebildet werden, daß sie die gesamte Vielzahl an inselförmigen Verbindungsstellen 6b umgibt. Fer­ ner bleibt die Form der Verbindungsstelle selbst nach der Aufbewahrung bei einer hohen Temperatur derart wie beim er­ sten Ausführungsbeispiel erhalten. As in this embodiment, in the case where the chip connecting material 5 is a solder, such a material has an elasticity module about one size larger than that of the resin, so that it has a high transmission efficiency of the ultrasonic waves. Because of this, the band-shaped connection point 7 (see FIG. 19) is formed more easily by the deformation of the metal ball 3 b with less ultrasound energy even under the same temperature conditions than in the case of the resin-chip connection material. Accordingly, by suppressing the amplitude of the ultrasonic vibration at the time course of the third bond load to approximately 60% of the case that the connection frame 4, as shown in the first exemplary embodiment, contains mainly copper, the formation of the island-shaped connection point 6 b (see FIG. 19) as shown in FIGS. 20 and 21 over the entire connection surface. In this embodiment, the connection temperatures of 210 ° C (see FIG. 20) and 280 ° C (see FIG. 21) make the size of the respective island-shaped connection points 6 b small at a low temperature. Then, by applying the fourth bond load in the same manner as in the case of embodiment 1, the band-shaped connection point 7 is formed such that it surrounds the entire plurality of island-shaped connection points 6 b. Fer ner remains the shape of the joint even after storage at a high temperature such as in the first embodiment.

Bei dem vorstehend beschriebenen ersten und zweiten Ausfüh­ rungsbeispiel kann jede der ersten bis vierten Bondbela­ stungsmengen weiterhin in dem bei der Erklärung der Bondbela­ stungsmenge beschriebenen Rahmen zur Erzeugung der optionalen bzw. gewünschten Wellenformen fein aufgeteilt werden. Während die Frequenz der Ultraschallvibration mit etwa 60 kHz angege­ ben ist, kann die Frequenz ferner etwa mehrere hundert kHz betragen. Es ist ebenso möglich, die Frequenz und Amplitude in einer Verbindungs-Ausbildungsperiode zu ändern. Während der Fall als Beispiel hergenommen wurde, bei dem der Gold als Hauptkomponente aufweisende Materialdraht 3a mit dem Alumini­ um als Hauptkomponente aufweisenden Kontaktfleck 2 verbunden wird, können derartige Metalle wie Gold, Silber, Kupfer, Alu­ minium und Platin, deren Legierungen und Verbindungen als Ma­ terial für den Metalldraht 3a und den Kontaktfleck 2 verwen­ det werden. Ferner ist der Drahtdurchmesser des Metalldrahts sowie die Größe des Kontaktflecks nicht begrenzt. Bei dem vorstehend beschriebenen ersten und zweiten Ausführungsbei­ spiel wird eine Bondtechnik der Verbindung der Metallkugel 3b mit dem Kontaktfleck 2 nach der durch Schmelzen und Erstarren des Endes des Metalldrahts 3a erfolgenden Ausbildung der Me­ tallkugel 3b beschrieben. Jedoch ist die vorliegende Erfin­ dung ebenso auf eine Wedge-Bondtechnik bzw. Keil-Bondtechnik zur direkten Verbindung des Metalldrahts 3a mit dem Kontakt­ fleck 2 anwendbar. Zudem ist sie auf die Verbindung bei Raum­ temperatur anwendbar.In the first and second embodiments described above, each of the first to fourth bond load amounts can be further finely divided in the frame described in the explanation of the bond load amount to generate the optional or desired waveforms. While the frequency of the ultrasonic vibration is specified at approximately 60 kHz, the frequency can also be approximately several hundred kHz. It is also possible to change the frequency and amplitude in a connection training period. While the case was taken as an example in which the gold as the main component material wire 3 a is connected to the aluminum as the main component contact pad 2 , such metals as gold, silver, copper, aluminum and platinum, their alloys and compounds as Ma material for the metal wire 3 a and the contact pad 2 are used. Furthermore, the wire diameter of the metal wire and the size of the contact spot are not limited. In the above described first and second Ausführungsbei play a bonding technique of connecting the metal ball 3 b is connected to the land 2 according to the described by melting and solidification of the end of the metal wire 3 a forming the taking place Me tallkugel 3 b. However, the present inven tion is also applicable to a wedge bonding technique or wedge bonding technique for direct connection of the metal wire 3 a with the contact spot 2 . It is also applicable to the connection at room temperature.

Ausführungsbeispiel 3 Embodiment 3

Nachstehend wird das Drahtbondverfahren gemäß dem dritten er­ findungsgemäßen Ausführungsbeispiel beschrieben. Dieses Aus­ führungsbeispiel dient zur Steuerung des Verhältnisses einer bandförmigen Verbindungsstelle 7 gegenüber der Vielzahl el­ liptischer inselförmiger Verbindungsstellen 6b, die entspre­ chend der Verbindungsvermögen des Kontaktflecks 2 wie in Fig. 1, 2 und 22 dargestellt an einer Grenzfläche zwischen einer Metallkugel 3b und einem Kontaktfleck 2 ausgebildet werden. Die Steuerung des Verhältnisses kann durch die Einstellung der dritten und vierten Bondlasten sowie des zeitlichen Ver­ laufs der angelegten Ultraschallvibration verwirklicht wer­ den. Beispielsweise kann in dem Fall, daß der Kontaktfleck dünn ist, die Verbindung durch Erhöhung des Verhältnisses des zeitlichen Verlaufs der dritten Bondbelastung, wie in Fig. 22(a) dargestellt, erreicht werden ohne durch eine große pla­ stische Verformungsmenge die Ausschließung des Kontaktflecks 2 zu verursachen. Das Verhältnis der inselförmigen Verbin­ dungsstelle 6b ist in seinem Querschnitt größer und das der bandförmigen Verbindungsstelle 7 kleiner. Wird das Verhältnis des zeitlichen Verlaufs der vierten Bondbelastung wie in Fig. 22(b) dargestellt erhöht, kann unter Verwendung der großen plastische Verformungsmenge eine Verbindung zu dem Kontakt­ fleck 2 mit einem geringen Verbindungsvermögen erreicht wer­ den. Das Verhältnis der inselförmigen Verbindungsstelle 6b ist in seinem Querschnitt kleiner und das der bandförmigen Verbindungsstelle 7 größer.The wire bonding method according to the third embodiment of the present invention is described below. This exemplary embodiment is used to control the ratio of a band-shaped connection point 7 to the multiplicity of elliptical island-shaped connection points 6 b, which accordingly corresponds to the connectivity of the contact patch 2 as shown in FIGS. 1, 2 and 22 at an interface between a metal ball 3 b and one Pad 2 are formed. The control of the ratio can be realized by setting the third and fourth bond loads and the time course of the applied ultrasonic vibration. For example, in the case where the pad is thin, the connection can be achieved by increasing the ratio of the time history of the third bond load, as shown in Fig. 22 (a), without excluding the pad 2 by a large amount of plastic deformation cause. The ratio of the island-shaped connec tion point 6 b is larger in cross section and that of the band-shaped connection point 7 is smaller. If the ratio of the time course of the fourth bond load is increased as shown in FIG. 22 (b), a connection to the contact spot 2 with a low connection capacity can be achieved using the large amount of plastic deformation. The ratio of the island-shaped connection point 6 b is smaller in its cross section and that of the band-shaped connection point 7 is larger.

Ausführungsbeispiel 4 Embodiment 4

Fig. 23 zeigt eine Ansicht zur Darstellung des Aufbaus der Drahtbondvorrichtung gemäß dem vierten erfindungsgemäßen Aus­ führungsbeispiel. Die vorliegende Vorrichtung ist eine Vor­ richtung zur Verbindung eines Metalldrahts mit einem auf dem Halbleiterelement angebrachten Kontaktfleck unter Verwendung einer Belastung und Ultraschallvibration. Durch einen (nicht gezeigte) Objekttisch zur Positionierung einer Halbleiterein­ richtung mit einem Halbleiterelement und einem Anschlußrahmen ist zur Positionierung der Metalldrahts auf dem Kontaktfleck des Halbleiterelements ein Bondkopf 11 mit einer Metalldraht­ halterung, einem Überwachungsmechanismus 12 des Belastungs­ profils zur Überwachung des Belastungsprofils des Bondkopfes 11, einer Umwandlungsfunktion oder einer Umwandlungstabelle 13 zur Darstellung der Wechselwirkung zwischen dem Bela­ stungsprofil und der Festigkeit und der Verformungsmenge der Drahtbondverbindung, einem Mechanismus 14 zur Belastungs­ steuerung und einem Ultraschallamplituden-Steuermechanismus 15 zur Berechnung der nachfolgenden Belastungsmenge und der Amplitude der Ultraschallvibration anhand dem von dem Überwa­ chungsmechanismus 12 empfangenen Ergebnis dargestellt, um den Bondkopf zu steuern. Fig. 23 is a view showing the structure of the wire bonding device according to the fourth exemplary embodiment from the invention. The present device is a device for connecting a metal wire to a pad attached to the semiconductor element using a load and ultrasonic vibration. Through a (not shown) stage for positioning a semiconductor device with a semiconductor element and a lead frame for positioning the metal wire on the contact pad of the semiconductor element, a bondhead 11 with a metal wire holder, a monitoring mechanism 12 of the load profile for monitoring the load profile of the bondhead 11 , a conversion function or a conversion table 13 to show the interaction between the load profile and the strength and the amount of deformation of the wire bond, a mechanism 14 for load control and an ultrasonic amplitude control mechanism 15 for calculating the subsequent load amount and the amplitude of the ultrasonic vibration based on that from the monitoring Mechanism 12 received result shown to control the bondhead.

Nachstehend erfolgt die Beschreibung der Vorgangsverarbeitung der Drahtbondvorrichtung gemäß diesem Ausführungsbeispiel. Diese Vorrichtung weist, wie in Fig. 1 dargestellt, nachdem die Metallkugel 3b mit dem Kontaktfleck 2 in Kontakt getreten ist, eine Funktion zur Beurteilung der Ausbildungsmenge eines Verbindungskerns 6a (vgl. Fig. 19) auf dem Objekttisch hin­ sichtlich der Erhöhung der ersten Bondbelastung bei einem starken Gradientenanstieg auf. Hinsichtlich dem Beurteilungs­ verfahren wird ein Belastungsprofil anhand einer unterhalb des Bondobjekttisches installierten Belastungsmeßeinrichtung gemessen und beruhend auf dem Belastungsprofil Bezug auf eine die Wechselwirkung zwischen dem vorstehend gespeicherten Be­ lastungsprofil und der Verformungsmenge und der Verbindungs­ festigkeit darstellende Umwandlungsfunktion oder Umwandlungs­ tabelle 13 genommen sowie eine Berechnung zur Ausgabe der Be­ urteilungsergebnisse durchgeführt. Diese Bezugs- und Beurtei­ lungsergebnisse werden zur Steuerung des Bondkopfes an einen Mechanismus 14 zur Belastungssteuerung sowie einen Ultra­ schallamplituden-Steuermechanismus 15 übertragen. Zu einem derartigen Zeitpunkt kann zur Erhöhung der Beurteilungsgenau­ igkeit gleichzeitig ein Überwachungsmechanismus eines Durch­ messers der Metallkugel 3b verwendet werden. Zur Überwachung des Durchmessers der Metallkugel 3b kann beispielsweise eine Überwachung der zum Ausbildungszeitpunkt der Metallkugel 3b aufgenommenen elektrischen Energie erfolgen.Operation processing of the wire bonding device according to this embodiment will be described below. This device has, as shown in Fig. 1, after the metal ball 3 b has come into contact with the contact pad 2 , a function for assessing the amount of formation of a connecting core 6 a (see FIG. 19) on the stage visibly increasing the first bond load with a strong gradient increase. With regard to the evaluation method, a load profile is measured using a load measuring device installed below the bond object table and, based on the load profile, reference is made to a conversion function or conversion table 13 representing the interaction between the load profile stored above and the amount of deformation and the connection strength, as well as a calculation for output of the results of the assessment. These reference and assessment results are transmitted to control the bondhead to a mechanism 14 for load control and an ultrasonic amplitude control mechanism 15 . At such a time, a monitoring mechanism of a diameter of the metal ball 3 b can be used at the same time to increase the assessment accuracy. For monitoring of the diameter of the metal ball 3 b b a monitoring of the captured to the formation timing of the metal ball 3 electrical energy can for example take place.

Ist die Installation einer Belastungsmeßeinrichtung schwie­ rig, können die Überwachungsergebnisse der Verformungsrate der Metallkugel 3b verwendet werden. Als Überwachungsvorgang der Verformungsrate kann eine Laserverschiebungsmeßeinrich­ tung verwendet werden, die die Verschiebung der Kapillare kontaktlos messen kann. In dem Fall, daß der Mechanismus zur Verschiebung der Kapillare einen Mechanismus zur Verschie­ bungsmessung wie eine Kodiereinrichtung aufweist, können der­ artige Mittel zum Lesen der Verschiebungsrate verwendet wer­ den. Aus derartigen Verschiebungsinformationen und der die Wechselwirkung zwischen der vorstehend gespeicherten Ver­ schiebungsmenge und der Verschiebungsmenge und der Verbin­ dungsfestigkeit darstellende Umwandlungsfunktion oder Umwand­ lungstabelle können nachfolgend eine passende dritte und vierte Bondbelastungsmenge und Ultraschallamplitude bestimmt werden.If the installation of a load measuring device is difficult, the monitoring results of the deformation rate of the metal ball 3 b can be used. A laser displacement measuring device can be used as the monitoring process of the deformation rate and can measure the displacement of the capillary without contact. In the event that the capillary displacement mechanism includes a displacement measurement mechanism such as an encoder, such means can be used to read the displacement rate. From such shift information and the conversion function or conversion table representing the interaction between the previously stored shift amount and the shift amount and the connection strength, a suitable third and fourth bond load amount and ultrasonic amplitude can subsequently be determined.

Wie vorstehend beschrieben, können gemäß dem erfindungsgemä­ ßen Drahtbondverfahren und der Drahtbondvorrichtung durch An­ wendung der ersten bis vierten Bondbelastungsmengen während einer optionalen Dauer die Verbindungskerne an dem Verb in­ dungsbereich zwischen dem Metalldraht und dem Kontaktfleck ausreichend ausgebildet werden und die Verformungsmenge des Metalldrahts kann derart passend eingestellt werden, daß es möglich ist, die Zuverlässigkeit der Bondverbindung mit fei­ nem Draht um einen bemerkenswerten Grad zu verbessern sowie eine Halbleitereinrichtung hoher Qualität zu geringen Kosten zu schaffen.As described above, according to the invention wire bonding process and the wire bonding device by An application of the first to fourth bond load amounts during an optional duration the connection cores to the verb in area between the metal wire and the pad sufficiently trained and the amount of deformation of the Metal wire can be adjusted so that it is possible, the reliability of the bond connection with fei wire to improve to a remarkable degree as well a high quality semiconductor device at low cost to accomplish.

Wie vorstehend beschrieben, wird ein Drahtbondverfahren zur Verbindung eines Metalldrahts mit einem auf einem Halbleiter­ element angeordneten Kontaktfleck unter Verwendung einer Be­ lastung und von Ultraschallvibration während einer Zeitdauer vom Kontakt des Metalldrahts mit dem Kontaktfleck bis zur An­ wendung der Ultraschallvibration durch eine kontinuierliche Anwendung einer ersten Bondbelastung und einer zweiten Bond­ belastung, die geringer als die erste Bondbelastung ist, und eine nach der Anwendung der Ultraschallvibration kontinuier­ liche Anwendung einer gegenüber der zweiten Bondbelastung et­ wa 50%-großen dritten Bondbelastung und einer vierten Bondbe­ lastung geschaffen, die geringer als die erste Bondbelastung und größer als die dritte Bondbelastung ist. Die Zuverlässig­ keit der Bondverbindung mit feinem Draht wird um einen bemer­ kenswerten Grad verbessert, wodurch eine Halbleitereinrich­ tung hoher Qualität zu geringen Kosten hergestellt werden kann.As described above, a wire bonding process for Connection of a metal wire to one on a semiconductor element arranged contact pad using a Be load and ultrasonic vibration for a period of time from the contact of the metal wire with the pad to the contact application of ultrasonic vibration through a continuous Apply a first bond load and a second bond load that is less than the first bond load, and one continuously after using the ultrasonic vibration  Liche application of a compared to the second bond load et wa 50% third bond load and a fourth bond load created less than the first bond load and is greater than the third bond load. The reliable speed of the bond with fine wire is reduced by one noteworthy degree improved, making a semiconductor device high quality at low cost can.

Claims (8)

1. Halbleitereinrichtung mit einem Halbleiterelement (1), einem an das Halbleiterelement (1) mit einem CHip-Verbin­ dungsmaterial (5) angeschlossenen Anschlußrahmen (4) und ei­ nem Metalldraht (3a), der das Halbleiterelement (1) und den Anschlußrahmen (4) elektrisch verbindet, gekennzeichnet durch eine Verbindungsstelle zwischen dem auf dem Halbleiter­ element (1) angebrachten Kontaktfleck (2) und dem Metalldraht (3a), die eine Vielzahl von inselförmigen Verbindungsstellen (6b) und eine die gesamten inselförmigen Verbindungsstellen (6b) umgebende bandförmige Verbindungsstelle (7) aufweist. 1. Semiconductor device with a semiconductor element ( 1 ), a to the semiconductor element ( 1 ) with a CHip connec tion material ( 5 ) connected lead frame ( 4 ) and egg nem metal wire ( 3 a), the semiconductor element ( 1 ) and the lead frame ( 4 ) electrically connects, characterized by a connection point between the on the semiconductor element ( 1 ) attached contact pad ( 2 ) and the metal wire ( 3 a), which has a plurality of island-shaped connection points ( 6 b) and the entire island-shaped connection points ( 6 b ) surrounding band-shaped connection point ( 7 ). 2. Halbleitereinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Anschlußrahmen (4) Kupfer als eine Hauptkomponente und das CHip-Verbindungsmaterial (5) Harz als eine Hauptkom­ ponente aufweist.2. A semiconductor device according to claim 1, characterized in that the lead frame ( 4 ) has copper as a main component and the chip connecting material ( 5 ) resin as a main component. 3. Halbleitereinrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Metalldraht (3a) Gold als eine Hauptkomponente und der Kontaktfleck (2) Aluminium als eine Hauptkomponente auf­ weist.3. Semiconductor device according to one of claims 1 or 2, characterized in that the metal wire ( 3 a) gold as a main component and the contact pad ( 2 ) aluminum as a main component. 4. Drahtbondverfahren zur Verbindung eines Metalldrahts (3a) mit einem auf einem Halbleiterelement (1) angeordneten Kontaktfleck (2) unter Verwendung einer Belastung und von Ul­ traschallvibration, gekennzeichnet durch die Schritte:
kontinuierliches Anwenden einer ersten Bondbelastung und einer zweiten Bondbelastung, die geringer als die erste Bond­ belastung ist, während einer Zeitdauer vom Kontakt des Me­ talldrahts (3a) mit dem Kontaktfleck (2) bis zum Anwenden der Ultraschallvibration und
nach dem Anwenden der Ultraschallvibration kontinuierli­ ches Anwenden einer gegenüber der zweiten Bondbelastung etwa 50%-großen dritten Bondbelastung und einer vierten Bondbela­ stung, die geringer als die erste Bondbelastung und größer als die dritte Bondbelastung ist.
4. Wire bonding method for connecting a metal wire ( 3 a) with a contact spot ( 2 ) arranged on a semiconductor element ( 1 ) using a load and ultrasonic vibration, characterized by the steps:
continuously applying a first bond load and a second bond load, which is lower than the first bond load, during a period from the contact of the metal wire ( 3 a) with the contact pad ( 2 ) to the application of the ultrasonic vibration and
after applying the ultrasonic vibration, continuously applying a third bond load approximately 50% greater than the second bond load and a fourth bond load which is less than the first bond load and greater than the third bond load.
5. Drahtbondverfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Metalldraht (3a) an einem Endabschnitt des Metall­ drahts (3a) eine mit dem Kontaktfleck (2) zu verbindende Me­ tallkugel (3b) aufweist. 5. Wire bonding method according to claim 4, characterized in that the metal wire ( 3 a) at one end portion of the metal wire ( 3 a) with a contact pad ( 2 ) to be connected Me tallkugel ( 3 b). 6. Drahtbondverfahren nach Anspruch 5, dadurch gekennzeichnet, daß die durch die Querschnittsfläche vor der Verformung der Metallkugel (3b) geteilte Bondbelastungsmenge zur Zeit der er­ sten Bondbelastung auf 392.10⁻6 bis 589.10⁻6 N/µm2, zur Zeit der zweiten Bondbelastung auf 98.10⁻6 bis 196.10⁻6 N/µm2, zur Zeit der dritten Bondbelastung auf 39.10⁻6 bis 98.10⁻6 N/µm2 und zur Zeit der vierten Bondbelastung auf 98.10⁻6 bis 196.10⁻6 N/µm2 gesetzt wird.6. Wire bonding method according to claim 5, characterized in that by the cross-sectional area before the deformation of the metal ball ( 3 b) divided bond load amount at the time of the most bond load to 392.10⁻ 6 to 589.10⁻ 6 N / µm 2 , at the time of the second bond load is set to 98.10⁻ 6 to 196.10⁻ 6 N / µm 2 , at the time of the third bond load to 39.10⁻ 6 to 98.10⁻ 6 N / µm 2 and at the time of the fourth bond load to 98.10⁻ 6 to 196.10⁻ 6 N / µm 2 . 7. Drahtbondverfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der zeitliche Verlauf der ersten Bondbelastung nicht mehr als 3 ms, der zeitliche Verlauf der dritten Bondbela­ stung 5 bis 15 ms und der zeitliche Verlauf der vierten Bond­ belastung 1 bis 5 ms beträgt.7. Wire bonding method according to one of claims 4 to 6, characterized in that the time course of the first bond load is not more than 3 ms, the time course of the third bond load stung 5 to 15 ms and the time course of the fourth bond load 1 to 5 ms is. 8. Drahtbondvorrichtung zur Verbindung eines Metalldrahts (3a) mit einem auf einem Halbleiterelement (1) angeordneten Kontaktfleck (2) unter Verwendung einer Belastung und Ultra­ schallvibration, gekennzeichnet durch
einen Objekttisch zum Anbringen einer das Halbleiterele­ ment (1) umfassenden Halbleitereinrichtung,
einen Bondkopf (11) zur Positionierung des Metalldrahts (3a) auf dem Kontaktfleck (2), wobei der Metalldraht (3a) ge­ halten wird, und zur Anwendung einer Belastung und Ultra­ schallvibration,
einen Überwachungsmechanismus (12) der zeitlichen Verän­ derung der Belastungsmenge des Bondkopfes (11) und
einen Mechanismus (14) zur Belastungssteuerung und einen Ultraschall-Amplitudensteuermechanismus (15) mit einer Umwand­ lungsfunktion oder Umwandlungstabelle (13), um die Wechsel­ wirkung zwischen der zeitlichen Veränderung der Belastungs­ menge und der Festigkeit und Verformung der Verbindungsstelle aufzuzeigen, sowie zur Berechnung einer nachfolgenden Bela­ stungsmenge und Amplitude der Ultraschallvibration anhand des von dem Überwachungsmechanismus (12) empfangenen Ergebnisses, um den Bondkopf (11) zu steuern.
8. wire bonding device for connecting a metal wire ( 3 a) with a on a semiconductor element ( 1 ) arranged contact pad ( 2 ) using a load and ultrasonic vibration, characterized by
an object table for attaching a semiconductor device comprising the semiconductor element ( 1 ),
a bonding head ( 11 ) for positioning the metal wire ( 3 a) on the contact pad ( 2 ), the metal wire ( 3 a) being held, and for applying a load and ultrasonic vibration,
a monitoring mechanism ( 12 ) of the temporal change in the load quantity of the bonding head ( 11 ) and
a mechanism ( 14 ) for load control and an ultrasonic amplitude control mechanism ( 15 ) with a conversion function or conversion table ( 13 ) to show the interaction between the change over time of the load quantity and the strength and deformation of the connection point, and for calculating a subsequent one Load amount and amplitude of the ultrasonic vibration based on the result received by the monitoring mechanism ( 12 ) to control the bonding head ( 11 ).
DE19717368A 1996-10-17 1997-04-24 Wire bonding system for semiconductor component Ceased DE19717368A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29714696A JP3504448B2 (en) 1996-10-17 1996-10-17 Semiconductor device

Publications (1)

Publication Number Publication Date
DE19717368A1 true DE19717368A1 (en) 1998-04-30

Family

ID=17842804

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19717368A Ceased DE19717368A1 (en) 1996-10-17 1997-04-24 Wire bonding system for semiconductor component

Country Status (6)

Country Link
US (3) US5838071A (en)
JP (1) JP3504448B2 (en)
KR (1) KR100255435B1 (en)
CN (1) CN1104046C (en)
DE (1) DE19717368A1 (en)
TW (1) TW328158B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210131A1 (en) * 2016-06-02 2017-12-07 Knowles Electronics, Llc Method for protecting bond pads from corrosion and corresponding device
US20220278060A1 (en) * 2020-12-07 2022-09-01 Infineon Technologies Ag Molded semiconductor package with high voltage isolation

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019107A1 (en) * 1997-10-13 1999-04-22 Hesse & Knipps Gmbh Quality control method
US6926796B1 (en) * 1999-01-29 2005-08-09 Matsushita Electric Industrial Co., Ltd. Electronic parts mounting method and device therefor
CN101404262A (en) * 1999-05-28 2009-04-08 富士通株式会社 Semiconductor device and method of manufacturing integrated circuit chip
JP3474132B2 (en) 1999-09-28 2003-12-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Wire bonding method and apparatus
EP1224997B8 (en) 1999-10-04 2008-05-21 Matsushita Electric Industrial Co., Ltd. Method and device for frictional connection, and holding tool used for the frictional connection device
JP4000743B2 (en) * 2000-03-13 2007-10-31 株式会社デンソー Electronic component mounting method
JP4265461B2 (en) * 2003-06-03 2009-05-20 パナソニック株式会社 Electronic component mounting device
JP4403955B2 (en) * 2004-03-05 2010-01-27 セイコーエプソン株式会社 Wire bonding method
JP2006135207A (en) * 2004-11-09 2006-05-25 Fujitsu Ltd Flip chip bonding method
TWI380380B (en) * 2005-06-13 2012-12-21 Panasonic Corp Semiconductor device bonding apparatus and method for bonding semiconductor device using the same
CN101443151B (en) * 2007-03-13 2014-03-12 库利克和索夫工业公司 Eyespot exercitation method for thread welding and relevant semiconductor processing operation
JP5135164B2 (en) * 2008-10-22 2013-01-30 株式会社東芝 Bonding method
US8381967B1 (en) * 2012-01-05 2013-02-26 Texas Instruments Incorporated Bonding a solder bump to a lead using compression and retraction forces
US8800846B2 (en) * 2012-01-27 2014-08-12 Apple Inc. Ultrasonic bonding
KR101417252B1 (en) * 2012-02-24 2014-07-08 엘지이노텍 주식회사 Device for bonding pcb to module
JP6688725B2 (en) * 2016-12-26 2020-04-28 ルネサスエレクトロニクス株式会社 Method for manufacturing semiconductor device
JP6680239B2 (en) * 2017-02-20 2020-04-15 日亜化学工業株式会社 Method for manufacturing light emitting device
US11517977B2 (en) * 2017-09-15 2022-12-06 Tech-Sonic, Inc. Dual cam servo weld splicer

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575333A (en) * 1968-11-21 1971-04-20 Kulicke & Soffa Ind Inc Beam-lead bonding apparatus
DE2104207C3 (en) * 1971-01-29 1974-04-11 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for connecting a bonding wire
US3997100A (en) * 1973-09-10 1976-12-14 Raytheon Company Method of beam lead bonding
US4067039A (en) * 1975-03-17 1978-01-03 Motorola, Inc. Ultrasonic bonding head
JPS5282183A (en) * 1975-12-29 1977-07-09 Nec Corp Connecting wires for semiconductor devices
DE2945670C2 (en) * 1979-11-12 1982-02-11 Siemens AG, 1000 Berlin und 8000 München Electrically conductive connection of the active parts of an electrical component or an integrated circuit with connection points
US4444349A (en) * 1981-05-04 1984-04-24 Kulicke & Soffa Industries, Inc. Wire bonding apparatus
US4845543A (en) * 1983-09-28 1989-07-04 Hitachi, Ltd. Semiconductor device and method of manufacturing the same
US4603802A (en) * 1984-02-27 1986-08-05 Fairchild Camera & Instrument Corporation Variation and control of bond force
US4676492A (en) * 1985-07-01 1987-06-30 Shamir Arye H Shallow X-Y table positioning device having large travel capability
JPS62150838A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Detection method and device
JPS63148646A (en) * 1986-12-12 1988-06-21 Toshiba Corp Semiconductor device
EP0279216A1 (en) * 1987-02-09 1988-08-24 Siemens Aktiengesellschaft Apparatus for measuring bonding parameters
JPS63194343A (en) * 1987-02-09 1988-08-11 Toshiba Corp Method of controlling wire bonding apparatus
JPH0249447A (en) * 1988-05-20 1990-02-19 Hitachi Ltd Semiconductor device and its manufacturing method
JPH0290640A (en) * 1988-09-28 1990-03-30 Nec Corp Wire-bonding process
US4907734A (en) * 1988-10-28 1990-03-13 International Business Machines Corporation Method of bonding gold or gold alloy wire to lead tin solder
US5176310A (en) * 1988-11-28 1993-01-05 Hitachi, Ltd. Method and apparatus for wire bond
JPH0817189B2 (en) * 1989-01-13 1996-02-21 三菱電機株式会社 Method for manufacturing semiconductor device
US5229646A (en) * 1989-01-13 1993-07-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with a copper wires ball bonded to aluminum electrodes
JP2516806B2 (en) * 1989-02-27 1996-07-24 株式会社新川 Wire bonding method and apparatus
JP2736914B2 (en) * 1989-03-06 1998-04-08 株式会社新川 Wire bonding method
JP2563652B2 (en) * 1990-07-17 1996-12-11 株式会社東芝 Semiconductor device and manufacturing method thereof
JPH04279040A (en) * 1991-01-08 1992-10-05 Nec Corp Wire-bonding method
JP2588068B2 (en) * 1991-02-27 1997-03-05 株式会社カイジョー Wire bonding apparatus and method
US5192015A (en) * 1991-11-20 1993-03-09 Santa Barbara Research Center Method for wire bonding
JP2705423B2 (en) * 1992-01-24 1998-01-28 株式会社日立製作所 Ultrasonic bonding equipment and quality monitoring method
US5455461A (en) * 1992-09-21 1995-10-03 Fujitsu Limited Semiconductor device having reformed pad
JP3178567B2 (en) * 1993-07-16 2001-06-18 株式会社カイジョー Wire bonding apparatus and method
US5443200A (en) * 1993-10-13 1995-08-22 Matsushita Electric Industrial Co., Ltd. Bonding apparatus and bonding method
JP3005789B2 (en) * 1993-11-25 2000-02-07 株式会社新川 Wire bonding equipment
US5495667A (en) * 1994-11-07 1996-03-05 Micron Technology, Inc. Method for forming contact pins for semiconductor dice and interconnects
US5525839A (en) * 1994-12-30 1996-06-11 Vlsi Technology, Inc. Method of packing an IC die in a molded plastic employing an ultra-thin die coating process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210131A1 (en) * 2016-06-02 2017-12-07 Knowles Electronics, Llc Method for protecting bond pads from corrosion and corresponding device
US20220278060A1 (en) * 2020-12-07 2022-09-01 Infineon Technologies Ag Molded semiconductor package with high voltage isolation
US11817407B2 (en) * 2020-12-07 2023-11-14 Infineon Technologies Ag Molded semiconductor package with high voltage isolation

Also Published As

Publication number Publication date
US5838071A (en) 1998-11-17
JPH10125711A (en) 1998-05-15
US6112969A (en) 2000-09-05
TW328158B (en) 1998-03-11
CN1104046C (en) 2003-03-26
CN1180929A (en) 1998-05-06
US6105848A (en) 2000-08-22
KR19980032070A (en) 1998-07-25
JP3504448B2 (en) 2004-03-08
KR100255435B1 (en) 2000-05-01

Similar Documents

Publication Publication Date Title
DE19717368A1 (en) Wire bonding system for semiconductor component
DE69837224T2 (en) Electronic device connected to lead-free solder
DE102006017042B4 (en) Lead frame for a semiconductor device
DE69837690T2 (en) Device for removing foreign matter adhered to a probe tip end surface
DE69414929T2 (en) Lead frame for an integrated circuit arrangement
DE69930433T2 (en) Method and device for &#34;flip-chip&#34; mounting of an electronic component
DE69401233T2 (en) Capillary for a wire welding device and method for forming electrical bumps by means of capillaries
DE69514750T2 (en) Stranded wire with solidified end
DE60119270T2 (en) CONDUCTIVE ADHESIVE, APPARATUS FOR MANUFACTURING AN ELECTRONIC COMPONENT AND METHOD FOR PRODUCTION THEREOF
DE69426090T2 (en) Method of manufacturing an optical semiconductor device
DE112004000360T5 (en) Two-metal stud bumping for flip-chip applications
DE3446780A1 (en) METHOD AND JOINING MATERIAL FOR METALLICALLY CONNECTING COMPONENTS
DE4313980B4 (en) Integrated hybrid circuit and method for its manufacture
DE10236689A1 (en) Semiconductor device
DE112013003902B4 (en) Semiconductor device and method for its manufacture
DE102007052111B4 (en) Electronic device with busbar assembly and mounted thereon by means of soldering electronic component
DE102008046724A1 (en) Semiconductor device for converting alternating current into direct current produced by alternator arranged in vehicle, has solder connection section connecting part of device with semiconductor element
DE69003333T2 (en) Thermocompression connection for I.C. packaging.
DE3938152A1 (en) METHOD FOR PRODUCING A SEMICONDUCTOR COMPONENT
EP0867932B1 (en) Method for making wire connections
DE19709912A1 (en) Ultrasonic bonding method and apparatus
DE60300669T2 (en) Lead-free soldering alloy
DE10011368A1 (en) Semiconductor device has copper-tin alloy layer formed on junction portion of solder ball consisting of tin, and wiring consisting of copper
DE3300549A1 (en) PRINTED CIRCUIT BOARD AND METHOD FOR THEIR PRODUCTION
DE19924239A1 (en) Method to produce contact point on conductor, for electrical contacting to electric part

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection