DE19617939A1 - Chiral amphiphilic compounds used as e.g. surfactants, emulsifiers or aqueous hydrogenation reaction auxiliary aids - Google Patents
Chiral amphiphilic compounds used as e.g. surfactants, emulsifiers or aqueous hydrogenation reaction auxiliary aidsInfo
- Publication number
- DE19617939A1 DE19617939A1 DE19617939A DE19617939A DE19617939A1 DE 19617939 A1 DE19617939 A1 DE 19617939A1 DE 19617939 A DE19617939 A DE 19617939A DE 19617939 A DE19617939 A DE 19617939A DE 19617939 A1 DE19617939 A1 DE 19617939A1
- Authority
- DE
- Germany
- Prior art keywords
- general formula
- chiral
- acetyl
- solvent
- surfactants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/42—Ethers, e.g. polyglycol ethers of alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/02—Acyclic radicals, not substituted by cyclic structures
- C07H15/04—Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
- C07H15/08—Polyoxyalkylene derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B53/00—Asymmetric syntheses
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/56—Glucosides; Mucilage; Saponins
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
Die Erfindung betrifft neue chirale Amphiphile und ein Verfahren zu ihrer Herstellung sowie die Verwendung dieser Micellbildner.The invention relates to new chiral amphiphiles and a process for their preparation as well the use of these micelle formers.
Es ist seit Jahrzehnten bekannt, daß die Verknüpfung natürlicher Öle und Fette mit Kohlenhydraten der Darstellung von Tensiden dient (Ames, G. R., Chem. Rev. 1960, 60, 541). Aufgrund der amphiphilen Eigenschaften, der leichten biologischen Abbaubarkeit, der unbe grenzten Verfügbarkeit und der toxikologischen Unbedenklichkeit gewinnen nichtionische Tenside auf Kohlenhydratbasis gerade heute immer mehr an Bedeutung. Sie werden als Emulgatoren in der Lebensmittelindustrie und Kosmetikbranche und auch als Spezialtenside, Netzmittel, Lösungsvermittler oder membranaktive Spezies für biologische Systeme eingesetzt. Bekannte Kohlenhydrattenside sind beispielsweise Sorbitanfettsäureester (Tween) (Biermann, M., Lange, F., Piorr, R., Ploog, U., Rutzen, H., Schindler, J., Schmid, R. in Synthesis of Surfactants. In.: Falbe (Hrsg): Surfactants in Consumer Products-Theory, Technology and Application, Springer-Verlag, Heidelberg 1987, S. 23-132), die leicht durch Veresterungen an Sorbitol gewonnen werden können. Durch zusätzliche Ethoxylierungsreaktionen wird die Wasserlöslichkeit dieses Verbindungstyps noch erhöht. Allerdings sind mehrere Reaktions schritte zum Zielprodukt notwendig, und es können Verbindungen unterschiedlicher Ethoxylierungsgrade nebeneinander auftreten.It has been known for decades that the linkage of natural oils and fats with Carbohydrates are used to prepare surfactants (Ames, G. R., Chem. Rev. 1960, 60, 541). Due to the amphiphilic properties, the easy biodegradability, the unbe Limited availability and toxicological safety gain non-ionic Carbohydrate-based surfactants are becoming increasingly important today. They are considered Emulsifiers in the food and cosmetic industries and also as specialty surfactants, Wetting agents, solubilizers or membrane-active species used for biological systems. Known carbohydrate surfactants are, for example, sorbitan fatty acid esters (Tween) (Biermann, M., Lange, F., Piorr, R., Ploog, U., Rutzen, H., Schindler, J., Schmid, R. in Synthesis of Surfactants. In .: Falbe (ed.): Surfactants in Consumer Products-Theory, Technology and Application, Springer-Verlag, Heidelberg 1987, pp. 23-132), which are easily caused by esterifications Sorbitol can be obtained. Through additional ethoxylation reactions Water solubility of this type of compound increased. However, there are several reactions steps to the target product are necessary, and connections can be different Degrees of ethoxylation occur side by side.
Es ist auch bekannt, daß Saccharosemonofettsäureester, deren regioselektive Darstellung allerdings Schwierigkeiten bereitet und somit schwierige Trennverfahren notwendig macht, oberflächenaktive Substanzen mit interessanten Eigenschaften sind. Sie werden für Spezial anwendungen eingesetzt (Desai, N. B., Lowicki, N., Parfuem. Kosmet. 1983, 64, 463). Daneben spielen Fettacylglucamine und Fettacylglucamide aufgrund der Schwierigkeiten in ihrer Herstellung nur eine eingeschränkte Rolle.It is also known that sucrose mono fatty acid esters, their regioselective preparation however, creates difficulties and thus necessitates difficult separation processes, are surface-active substances with interesting properties. You will be special applications used (Desai, N.B., Lowicki, N., Parfuem. Kosmet. 1983, 64, 463). In addition, fatty acylglucamines and fatty acylglucamides play in due to the difficulties in their manufacture has only a limited role.
Durch die hohe Verfügbarkeit und des geringen Preises von Glucose stoßen die Alkylglucoside (Raths, H.-Ch., Endres, H., Hensen, H., Tesmann, H., Vortrag 3.-Tensid-Weltkongreß, London 1992) und Alkylpolyglucoside (Hughes, F. A., Lew, B. W., J Am. Oil Chem. Soc. 1970, 47, 162) auf besonderes Interesse. Es ist bekannt, daß diese gegenüber den ethoxylierten Fettalkoholen schaumstärker sind und sehr gut mit anderen Waschmittelinhaltsstoffen korrelieren. Sie sind hautmild und besitzen gute ökotoxikologische Daten (Schulz, P. T., BACS Symposium 33, 1991). Due to the high availability and low price of glucose, the alkyl glucosides come across (Raths, H.-Ch., Endres, H., Hensen, H., Tesmann, H., Lecture 3rd World Surfactant Congress, London 1992) and alkyl polyglucosides (Hughes, F.A., Lew, B.W., J Am. Oil Chem. Soc. 1970, 47, 162) of particular interest. It is known that these are ethoxylated Fatty alcohols are thicker and very good with other detergent ingredients correlate. They are mild on the skin and have good ecotoxicological data (Schulz, P. T., BACS Symposium 33, 1991).
Bekannt ist weiterhin, daß Fettalkoholpolyglycolether hinter den Seifen und Alkylbenzol sulfaten im Tensidverbrauch den 3. Platz einnehmen.It is also known that fatty alcohol polyglycol ethers are behind the soaps and alkylbenzene Take 3rd place in sulfate consumption.
Eine Kombination von Fettalkoholpolyglycerolethern und Kohlenhydraten, wie im Beispiel der Sorbitane beschrieben, kann zu optimalen Tensideigenschaften führen.A combination of fatty alcohol polyglycerol ethers and carbohydrates, as in the example of Described sorbitans can lead to optimal surfactant properties.
Aufgabe der Erfindung ist es, neue Tensidstrukturen aus Kohlenhydratbausteinen und Fettalkoholpolyglycolethern bereitzustellen, wobei ein Syntheseverfahren zu entwickeln ist, welches, im Gegensatz zu den Sorbitanen, die Zielverbindungen in einem einfachen chemo- und regioselektiven, durch wenige Syntheseschritte gekennzeichneten Verfahren gestattet und die oben erwähnten Nachteile vermeidet.The object of the invention is to create new surfactant structures from carbohydrate building blocks and To provide fatty alcohol polyglycol ethers, a synthetic process to be developed, which, in contrast to sorbitans, the target compounds in a simple chemo- and regioselective methods, characterized by a few synthetic steps, and avoids the disadvantages mentioned above.
Diese Aufgabe wird anspruchsgemäß gelöst.This task is solved according to the requirements.
Die neuen Verbindungen besitzen die allgemeine Formel I:The new compounds have the general formula I:
in der
R¹=R²=COAlkyl, COAryl oder H ist
oder
R¹=COAlkyl, COAryl oder H und
R²=α-D-Glucopyranosyl (Maltose), β-D-Galactopyranosyl (Lactose) oder β-D-Gluco
pyranosyl (Cellobiose) sind
und
n eine ganze Zahl 4 sowie
m eine ganze Zahl 8
darstellen.
in the
R1 = R2 = CO alkyl, CO aryl or H.
or
R¹ = COAlkyl, COAryl or H and
R² = α-D-glucopyranosyl (maltose), β-D-galactopyranosyl (lactose) or β-D-glucopyranosyl (cellobiose) and
n is an integer 4 and
m is an integer 8
represent.
Diese neuen Verbindungen können auch in hydrierter Form vorliegen (siehe Beispiel 9); sie haben dann die allgemeine Formel IIThese new compounds can also be in hydrogenated form (see Example 9); she then have the general formula II
mit den oben angegebenen Bedeutungen.with the meanings given above.
Diese neuen Amphiphile werden erfindungsgemäß in wenigen Schritten, ausgehend von kommerziell erhältlichen Ausgangsstoffen, gemäß Schema 1 erhalten.According to the invention, these new amphiphiles are started in a few steps from commercially available starting materials, obtained according to Scheme 1.
Der erste Reaktionsschritt (Lewissäure-katalysierte Allylumlagerungsreaktion) wird bei Temperaturen zwischen -10°C und 50°C, vorzugsweise bei 25°C durchgeführt. Zur Anwendung können alle dem Fachmann geläufigen und gängigen Lewissäuren kommen, vorzugsweise Zinntetrachlorid. Als Reaktionsmedium dienen aprotische polare Lösungsmittel, mit Vorteil wird Acetonitril eingesetzt, wobei es zu kurzen Reaktionszeiten kommt und sich die Aufarbeitung besonders einfach gestaltet. Weiterhin kann das Lösungsmittel zurückgewonnen werden. The first reaction step (Lewis acid catalyzed allyl rearrangement reaction) is carried out at Temperatures between -10 ° C and 50 ° C, preferably carried out at 25 ° C. For All Lewis acids familiar to the person skilled in the art can be used, preferably tin tetrachloride. Aprotic polar solvents serve as reaction medium, acetonitrile is used with advantage, with short reaction times processing is particularly easy. Furthermore, the solvent be recovered.
Die so erfindungsgemäß erhaltenen und durch hydrophile und hydrophobe Gruppen ausgezeichneten Verbindungen erlauben stöchiometrische und katalytische Reaktionen in Wasser als begünstigtes Reaktionsmedium. Da ihre Chiralität im hydrophilen Teil liegt, was eine chirale Erkennung möglich macht, sind sie sowohl chemisch als auch physiologisch von großer Bedeutung.The so obtained according to the invention and by hydrophilic and hydrophobic groups excellent compounds allow stoichiometric and catalytic reactions in Water as a favored reaction medium. Since their chirality is in the hydrophilic part, what chiral recognition is possible, they are both chemically and physiologically of great importance.
Folgende chirale Formen der neuen Micellbildner werden hergestellt:The following chiral forms of the new micelle formers are produced:
wobei R₃=O(CH₂CH₂O)nCmH2m+1 mit n 4 und m 8 ist.where R₃ = O (CH₂CH₂O) n C m H 2m + 1 with n 4 and m 8.
Aufgrund der optischen Transparenz der Micellbildner in Lösung sind sie auch für photochemische Reaktionen geeignet. So ist bekannt, daß Amphiphile stereoselektive Reaktionen in Wasser beschleunigen (I. Grassert, E. Paetzold, G. Oehme, Tefrahedron 1993, 49, 6605). Es ist weiterhin bekannt, daß Wasserstoffbrückenbindungen die Micellbildung begünstigen (P. Venkatesan, Y. Cheng, D. Kahne, J Am. Chem. Soc. 1994, 116, 6955) und daß Aggregate dieser Art Chiralität auf das Substrat übertragen können (I. Grassert, V. Vill, G. Oehme, J. Mol. Catal. A im Druck). Due to the optical transparency of the micelle in solution, they are also suitable for suitable for photochemical reactions. So it is known that amphiphiles are stereoselective Accelerate reactions in water (I. Grassert, E. Paetzold, G. Oehme, Tefrahedron 1993, 49, 6605). It is also known that hydrogen bonds cause micelle formation favor (P. Venkatesan, Y. Cheng, D. Kahne, J Am. Chem. Soc. 1994, 116, 6955) and that aggregates of this kind can transfer chirality to the substrate (I. Grassert, V. Vill, G. Oehme, J. Mol. Catal. A in press).
Auch die erfindungsgemäß hergestellten amphiphilen Verbindungen bilden in Wasser Micellen, die den Ablauf von organischen Reaktionen, die das Lösungsmittel Wasser tolerieren, wie Streckersynthesen, Michaeladditionen, Hydrierungen, Hydroformylierungen und andere, erlauben.The amphiphilic compounds prepared according to the invention also form micelles in water, which like organic reactions that tolerate the solvent water Extensor syntheses, Michael additions, hydrogenations, hydroformylations and others, allow.
In ihrer Gegenwart werden Hydrierreaktionen gegenüber reinem Wasser extrem beschleunigt und bei der Hydrierung von Dehydroaminosäurederivaten Enantiomerenüberschüsse erreicht, die denen in Methanol als Lösungsmittel vergleichbar sind oder sie übertreffen. So ist beispielsweise beim direkten Vergleich von Beispiel 10 mit den Beispielen 11 bis 17 eine deutliche Aktivierungssteigerung von 90 min. auf bis zu 5 min. Halbwertszeit (t/2) und eine Enantioselektivitätserhöhung von 78% ee auf bis zu 97% ee mit dem Zusatz von Amphiphilen festzustellen. Der Prozeß der Hydrierung wird dabei bei Temperaturen zwischen 0°C und 50°C, vorzugsweise bei 25°C und einem Wasserstoffdruck zwischen 0.01 MPa bis 10 MPa, vorzugsweise bei 0.1 MPa, durchgeführt. Das Katalysator/Amphiphil-Verhältnis liegt vorzugsweise bei 1/20, was über der kritischen Micellkonzentration liegt. Dieser Prozeß bringt darüber hinaus den besonderen Vorteil einer leichten Abtrennbarkeit von Katalysator aus dem Katalysator-Produktgemisch mit sich, der sich beispielweise infolge der Katalysatorkonzentrierung im amphiphilen Bereich durch die Abtrennung z. B. durch Membranen besonders effizient gestalten läßt, aber auch durch einfache Extraktionsprozesse realisiert wird.In their presence, hydrogenation reactions to pure water are extremely accelerated and achieved enantiomeric excesses in the hydrogenation of dehydroamino acid derivatives, which are comparable to or exceed those in methanol as a solvent. So is for example, a direct comparison of Example 10 with Examples 11 to 17 significant activation increase of 90 min. up to 5 min. Half-life (t / 2) and a Enantioselectivity increase from 78% ee up to 97% ee with the addition of amphiphiles ascertain. The process of hydrogenation is carried out at temperatures between 0 ° C and 50 ° C, preferably at 25 ° C and a hydrogen pressure between 0.01 MPa to 10 MPa, preferably carried out at 0.1 MPa. The catalyst / amphiphile ratio is preferably 1/20, which is above the critical micelle concentration. This process also has the particular advantage of easy separability from the catalyst the catalyst product mixture with it, for example, due to the Catalyst concentration in the amphiphilic range by separating z. B. by Can make membranes particularly efficient, but also by simple extraction processes is realized.
Bei den dargestellten Verbindungen handelt es sich um biologisch abbaubare Tenside, die besonders in der kosmetischen Industrie und im medizinischen Bereich Anwendung finden können.The compounds shown are biodegradable surfactants that are used particularly in the cosmetic industry and in the medical field can.
Die Erfindung wird durch nachfolgende Beispiele erläutert, ohne sie jedoch einzuengen.The invention is illustrated by the following examples, but without restricting it.
Zu einer Lösung aus 9.1 mmol acetylgeschütztem 1,2-Didesoxyzucker und 9 mmol Polyoxy ethylenether in 50 ml Acetonitril werden unter Rühren 0.5 ml Zinntetrachlorid getropft. Die Reaktionsverfolgung erfolgt mittels Dünnschichtchromatographie (Toluen/Ethylacetat=4/1). Nach 30 min. ist die Reaktion beendet. Zur Aufarbeitung wird mit 5 g Kaliumcarbonat neutralisiert, die festen Bestandteile werden abfiltriert und das Lösungsmittel abgezogen. Die Reinigung des Produktes erfolgt säulenchromatographisch (Chloroform/Methanol=9/1). Das Laufmittel wird abgezogen und das Produkt am Ölpumpenvakuum getrocknet. To a solution of 9.1 mmol acetyl-protected 1,2-dideoxy sugar and 9 mmol polyoxy Ethylene ether in 50 ml of acetonitrile, 0.5 ml of tin tetrachloride are added dropwise with stirring. The The reaction is monitored by means of thin layer chromatography (toluene / ethyl acetate = 4/1). After 30 min. the reaction is over. For working up with 5 g of potassium carbonate neutralized, the solid constituents are filtered off and the solvent is stripped off. The The product is purified by column chromatography (chloroform / methanol = 9/1). The Mobile solvent is drawn off and the product is dried under an oil pump vacuum.
Mit Tri-O-acetyl-D-glucal und Decaoxyethylendodecylether.Ausbeute; 10.5 g (68%), gelber Sirup, [α]=+38.2° (CHCl₃, c=0.96), IR (kapillar) cm-1:
1745 (C=O).
C₄₂H₇₈O₁₆ (839.07 g/mol), Ber.: C, 60.12; H, 9.37. Gef: C, 60.37; H, 9.52.
¹H-NMR (CDCl₃): δ=5.84 ppm (m, 2H, H-2,3), 5.30 (m, 1H, H-4), 5.05 (s, 1H, H-1), 4.24
(dd, 1H, H-6a, J6a,6b=12.2, J6a,5=5.2), 4.14 (dd, 1H, H-6b, J6b.5=2.4), 4.08 (m, 1H, H-5), 3.70-
3.40 (m, 10 CH₂CH₂O, αCH₂), 2.07 (s, 3H, H-Acetyl), 2.05 (s, 3H, H-Acetyl), 1.60 (m, 2H,
βCH₂), 1.20 (m, 18H, CH₂), 0.85 (t, 3H, CH₃, JCH2,CH3=7.0).
¹³C-NMR (CH₃Cl): δ=70.60 (C=O), 170.12 (C=O), 129.11 (C-2), 127.80 (C-3), 94.61 (C-1),
66.95 (C-4), 65.35(C-5), 70.46-61.62 (C-6, OCH₂), 31.80-22.56 (CH₂), 20.84 (acetyl-CH₃),
20.66 (acetyl-CH₃), 13.99 (CH₃) ppm.With tri-O-acetyl-D-glucal and decaoxyethylene dodecyl ether. Yield; 10.5 g (68%), yellow syrup, [α] = + 38.2 ° (CHCl₃, c = 0.96), IR (capillary) cm -1 :
1745 (C = O).
C₄₂H₇₈O₁₆ (839.07 g / mol), calc .: C, 60.12; H, 9.37. Found: C, 60.37; H, 9.52.
1 H-NMR (CDCl₃): δ = 5.84 ppm (m, 2H, H-2,3), 5.30 (m, 1H, H-4), 5.05 (s, 1H, H-1), 4.24 (dd, 1H , H-6a, J 6a, 6b = 12.2, J 6a, 5 = 5.2), 4.14 (dd, 1H, H-6b, J 6b.5 = 2.4), 4.08 (m, 1H, H-5), 3.70 - 3.40 (m, 10 CH₂CH₂O, αCH₂), 2.07 (s, 3H, H-acetyl), 2.05 (s, 3H, H-acetyl), 1.60 (m, 2H, βCH₂), 1.20 (m, 18H, CH₂) , 0.85 (t, 3H, CH₃, J CH2, CH3 = 7.0).
13 C-NMR (CH₃Cl): δ = 70.60 (C = O), 170.12 (C = O), 129.11 (C-2), 127.80 (C-3), 94.61 (C-1), 66.95 (C-4) , 65.35 (C-5), 70.46-61.62 (C-6, OCH₂), 31.80-22.56 (CH₂), 20.84 (acetyl-CH₃), 20.66 (acetyl-CH₃), 13.99 (CH₃) ppm.
Mit Tri-O-acetyl-D-glucal und Eicosaoxyethylencetylether.Ausbeute: 15.2 g (62%), gelber Sirup, [α] = + 23.4° (CHCl₃, c=1.15), IR (kapillar) cm-1:
1743(C=O).
C₆₆H₁₂₆O₂₆ (1335.71 g/mol), Ber.: C, 59.34; H, 9.51. Gef: C, 58.96; H, 9.49. ¹H-NMR
(CD₃OD): δ=5.84 ppm (m, 2H, H-2,3), 5.25 (m, 1H, H-4), 5.05 (s, 1H, H-1), 4.20 (dd, 1H,
H-6a, J6a,6b=12.2, J6a,5=5.2), 4.14 (dd, 1H, H-6b, J6b,5=2.4), 4.08 (m, 1H, H-5), 3.70-3.40 (m,
20 CH₂CH₂O, αCH₂), 2.07 (s, 3H, H-Acetyl), 2.05 (s, 3H, H-Acetyl), 1.60 (m, 2H, βCH₂),
1.20 (m, 18H, CH₂), 0.85 (t, 3H, CH₃, JCH2,CH3=7.0).
¹³C-NMR(CH₃Cl): δ=170.60 (C=O), 170.12 (C=O), 129.02 (C-2), 127.69 (C-3), 94.51 (C-1),
67.71 (C-4), 63.33(C-5), 70.46-61.62 (C-6, OCH₂), 31.80-22.56 (CH₂), 20.84 (acetyl-CH₃),
20.66 (acetyl-CH₃), 13.99 (CH₃) ppm.With tri-O-acetyl-D-glucal and eicosaoxyethylene cetyl ether. Yield: 15.2 g (62%), yellow syrup, [α] = + 23.4 ° (CHCl₃, c = 1.15), IR (capillary) cm -1 :
1743 (C = O).
C₆₆H₁₂₆O₂₆ (1335.71 g / mol), calc .: C, 59.34; H, 9.51. Found: C, 58.96; H, 9.49. 1 H-NMR (CD₃OD): δ = 5.84 ppm (m, 2H, H-2,3), 5.25 (m, 1H, H-4), 5.05 (s, 1H, H-1), 4.20 (dd, 1H , H-6a, J 6a, 6b = 12.2, J 6a, 5 = 5.2), 4.14 (dd, 1H, H-6b, J 6b, 5 = 2.4), 4.08 (m, 1H, H-5), 3.70 -3.40 (m, 20 CH₂CH₂O, αCH₂), 2.07 (s, 3H, H-acetyl), 2.05 (s, 3H, H-acetyl), 1.60 (m, 2H, βCH₂), 1.20 (m, 18H, CH₂) , 0.85 (t, 3H, CH₃, J CH2, CH3 = 7.0).
13 C-NMR (CH₃Cl): δ = 170.60 (C = O), 170.12 (C = O), 129.02 (C-2), 127.69 (C-3), 94.51 (C-1), 67.71 (C-4) , 63.33 (C-5), 70.46-61.62 (C-6, OCH₂), 31.80-22.56 (CH₂), 20.84 (acetyl-CH₃), 20.66 (acetyl-CH₃), 13.99 (CH₃) ppm.
Mit Tri-O-acetyl-D-glucal und Tricosaoxyethylendodecylether.Ausbeute: 13.6 g (52%), gelber Sirup, [α] = +14.1° (CHCl₃, c=0.923), IR (kapillar) cm-1:
1744(C=O).
C₆₃H₁₃₀O₂₉ (1411.76 g/mol), Ber.: C, 57.85; H, 9.28. Gef: C, 58.86; H, 9.39. ¹H-NMR
(CDCl₃): δ=5.84 ppm (m, 2H, H-2,3), 5.30 (m, 1H, H-4), 5.05 (s, 1H, H-1), 4.24 (dd, 1H, H-
6a, J6a,6b=12.2, J6a,5=5.2), 4.14 (dd, 1H, H-6b, J6b,5=2.4), 4.08 (m, 1H, H-5), 3.70-3.40 (m, 23
CH₂CH₂O, αCH₂), 2.07 (s, 3H, H-Acetyl), 2.05 (s, 3H, H-Acetyl), 1.60 (m, 2H, βCH₂), 1.20
(m, 18H, CH₂), 0.85 (t, 3H, CH₃, JCH2,CH3=7.0).With tri-O-acetyl-D-glucal and tricosaoxyethylene dodecyl ether. Yield: 13.6 g (52%), yellow syrup, [α] = + 14.1 ° (CHCl₃, c = 0.923), IR (capillary) cm -1 :
1744 (C = O).
C₆₃H₁₃₀O₂₉ (1411.76 g / mol), calc .: C, 57.85; H, 9.28. Found: C, 58.86; H, 9.39. 1 H-NMR (CDCl₃): δ = 5.84 ppm (m, 2H, H-2,3), 5.30 (m, 1H, H-4), 5.05 (s, 1H, H-1), 4.24 (dd, 1H , H- 6a, J 6a, 6b = 12.2, J 6a, 5 = 5.2), 4.14 (dd, 1H, H-6b, J 6b, 5 = 2.4), 4.08 (m, 1H, H-5), 3.70 -3.40 (m, 23 CH₂CH₂O, αCH₂), 2.07 (s, 3H, H-acetyl), 2.05 (s, 3H, H-acetyl), 1.60 (m, 2H, βCH₂), 1.20 (m, 18H, CH₂) , 0.85 (t, 3H, CH₃, J CH2, CH3 = 7.0).
Mit Hexa-O-acetyl-D-maltal und Tricosaoxyethylendodecylether.Ausbeute: 4.8 g (32%), gelber Sirup, [α] = +48.6° (CHCl₃, c=0.92), IR (kapillar) cm-1:
1750(C=O).
C₈₀H₁₄₆O₃₇ (1700.02 g/mol), Ber.: C, 56.52; H, 8.65. Gef: C, 55.85; H, 8.06. ¹H-NMR
(CDCl₃)
¹H-NMR (CDCl₃): δ=5.95 (m, 1H, H2), 5.90 (m, 1H, H-3), 5.45 (m, 2H, H-1, H-3′), 5.21 (d,
1H, H-1′), 5.00 (t∼dd, 1H, H-4′), 4.78 (dd, 1H, H-2′), 4.25-4.80 (m, 7H, H-6, 6′, 5, 4, 5′),
3.8-3.4 (m, 94H, H-CH₂), 2.01, 1.98, 1.94, 1.90 (s, 15H, H-Acetyl); 1.60 (m, 2H, H-CH₂),
1.4-1.3(18 H, H-CH₂), 0.8 (t, 3H, H.CH₃).With hexa-O-acetyl-D-maltal and tricosaoxyethylene dodecyl ether. Yield: 4.8 g (32%), yellow syrup, [α] = + 48.6 ° (CHCl₃, c = 0.92), IR (capillary) cm -1 :
1750 (C = O).
C₈₀H₁₄₆O₃₇ (1700.02 g / mol), calc .: C, 56.52; H, 8.65. Found: C, 55.85; H, June 8th 1 H-NMR (CDCl₃)
1 H-NMR (CDCl₃): δ = 5.95 (m, 1H, H2), 5.90 (m, 1H, H-3), 5.45 (m, 2H, H-1, H-3 '), 5.21 (d, 1H , H-1 ′), 5.00 (t∼dd, 1H, H-4 ′), 4.78 (dd, 1H, H-2 ′), 4.25-4.80 (m, 7H, H-6, 6 ′, 5, 4, 5 ′), 3.8-3.4 (m, 94H, H-CH₂), 2.01, 1.98, 1.94, 1.90 (s, 15H, H-acetyl); 1.60 (m, 2H, H-CH₂), 1.4-1.3 (18 H, H-CH₂), 0.8 (t, 3H, H.CH₃).
Eine Lösung von 1.5 mmol der in Beispiel 1-4 dargestellten Verbindungen in 50 ml Methanol wird mit NaOCH₃ bis zur basischen Reaktion versetzt. Die Reaktion wird dünnschicht chromatographisch verfolgt (Chloroform/Methanol=9/1). Nach einer Stunde ist die Reaktion beendet. Es wird mit saurem Ionenaustauscher neutralisiert (Amberlite IRC-50). Vom Ionen austauscher wird abfiltriert, das Lösungsmittel abgedampft und das Produkt am Ölpumpen vakuum getrocknet.A solution of 1.5 mmol of the compounds shown in Example 1-4 in 50 ml of methanol is mixed with NaOCH₃ until a basic reaction. The reaction becomes thin followed by chromatography (chloroform / methanol = 9/1). After an hour the reaction is over completed. It is neutralized with an acidic ion exchanger (Amberlite IRC-50). From ions Exchanger is filtered off, the solvent is evaporated off and the product is oil-pumped vacuum dried.
Mit 1a.
Ausbeute: 1.7 g (98%), gelber Sirup, [α] = +12.6° (CHCl₃, c=0.96), IR (kapillar) cm-1:
(C=O)-Bande ist verschwunden.
C₃₈H₇₄O₁₄ (755.00 g/mol), Ber.: C, 60.45; H, 9.88. Gef.: C, 59.49; H, 9.99. ¹H-NMR (CDCl₃):
δ=5.94 ppm (m, 1H, H-2), 5.75 (m, 1H, H-3), 5.00 (m, 1H, H-1), 4.4-3.4 (m, 46H, H-CH₂, H-
6a, 6b, 5, 4, αCH₂), 1.60 (m, 2H, βCH₂), 1.20 (m, 18H, CH₂), 0.85 (t, 3H, CH₃, JCH2,CH3=7.0).With 1a.
Yield: 1.7 g (98%), yellow syrup, [α] = + 12.6 ° (CHCl₃, c = 0.96), IR (capillary) cm -1 :
(C = O) band has disappeared.
C₃₈H₇₄O₁₄ (755.00 g / mol), calc .: C, 60.45; H, 9.88. Found: C, 59.49; H, 9.99. 1 H-NMR (CDCl₃):
δ = 5.94 ppm (m, 1H, H-2), 5.75 (m, 1H, H-3), 5.00 (m, 1H, H-1), 4.4-3.4 (m, 46H, H-CH₂, H- 6a, 6b, 5, 4, αCH₂), 1.60 (m, 2H, βCH₂), 1.20 (m, 18H, CH₂), 0.85 (t, 3H, CH₃, J CH2, CH3 = 7.0).
Mit 2a.Ausbeute: 1.7 g (94%), gelber Sirup, [α] = +10.9° (CHCl₃, c=1.2), IR (kapillar) cm-1:
(C=O)-Bande ist verschwunden.
C₆₂H₁₂₂O₂₄ (1251.63 g/mol), Ber.: C, 59.49; H, 9.82. Gef.: C, 59.95; H, 9.76.
¹H-NMR (CDCl₃): δ=5.94 ppm (m, 1H, H-2), 5.70 (m, 1H, H-3), 4.95 (m, 1H, H-1), 4.4-3.4
(m, 46H, H-OCH₂, H-6a, 6b, 5, 4, αCH₂), 1.55 (m, 2H, βCH₂), 1.3-1.2 (m, 26H, CH₂), 0.85(t,
3H, CH₃, JCH2,CH3=7.0).
¹³C-NMR (CH₃Cl): δ=133.98 (C-2), 126.14 (C-3), 92.89 (C-1), 67.96 (C-4, C-5), 70.46-61.62
(C-6, OCH₂), 31.80-22.56 (CH₂), 13.99 (CH₃) ppm.With 2a yield: 1.7 g (94%), yellow syrup, [α] = + 10.9 ° (CHCl₃, c = 1.2), IR (capillary) cm -1 :
(C = O) band has disappeared.
C₆₂H₁₂₂O₂₄ (1251.63 g / mol), calc .: C, 59.49; H, 9.82. Found: C, 59.95; H, 9.76.
1 H-NMR (CDCl₃): δ = 5.94 ppm (m, 1H, H-2), 5.70 (m, 1H, H-3), 4.95 (m, 1H, H-1), 4.4-3.4 (m, 46H , H-OCH₂, H-6a, 6b, 5, 4, αCH₂), 1.55 (m, 2H, βCH₂), 1.3-1.2 (m, 26H, CH₂), 0.85 (t, 3H, CH₃, J CH2, CH3 = 7.0).
13 C-NMR (CH₃Cl): δ = 133.98 (C-2), 126.14 (C-3), 92.89 (C-1), 67.96 (C-4, C-5), 70.46-61.62 (C-6, OCH₂ ), 31.80-22.56 (CH₂), 13.99 (CH₃) ppm.
Mit 3a.Ausbeute: 1.3 g (88%), gelber Sirup, [α] = +7.6° (CHCl₃, c=0.985), IR (kapillar) cm-1:
(C=O)-Bande ist verschwunden.
C₆₄H₁₂₆O₂₇ (1327,69 g/mol), Ber.: C, 57.89; H, 9.56. Gef.: C, 58.96; H, 9.48. ¹H-NMR
(CD₃OD₃): δ=5.94 ppm (m, 1H, H-2), 5.75 (m, 1H, H-3), 5.00 (m, 1H, H-1), 4.4-3.4 (m, 98H,
H-OCH₂, H-6a, 6b, 5, 4, αCH₂), 1.55 (m, 2H, βCH₂), 1.4-1.1 (m, 18H, CH₂), 0.85 (t, 3H,
CH₃, JCH2,CH3=7.0).
¹³C-NMR(CH₃Cl): δ=134.86 (C-2), 127.11 (C-3), 95.73 (C-1), 67.96 (C-4, C-5), 70.46-61.62
(C-6, OCH₂), 31.80-22.56 (CH₂), 13.99 (CH₃) ppm.With 3a yield: 1.3 g (88%), yellow syrup, [α] = + 7.6 ° (CHCl₃, c = 0.985), IR (capillary) cm -1 :
(C = O) band has disappeared.
C₆₄H₁₂₆O₂₇ (1327.69 g / mol), calc .: C, 57.89; H, 9.56. Found: C, 58.96; H, 9.48. 1 H-NMR (CD₃OD₃): δ = 5.94 ppm (m, 1H, H-2), 5.75 (m, 1H, H-3), 5.00 (m, 1H, H-1), 4.4-3.4 (m, 98H , H-OCH₂, H-6a, 6b, 5, 4, αCH₂), 1.55 (m, 2H, βCH₂), 1.4-1.1 (m, 18H, CH₂), 0.85 (t, 3H, CH₃, J CH2, CH3 = 7.0).
13 C-NMR (CH₃Cl): δ = 134.86 (C-2), 127.11 (C-3), 95.73 (C-1), 67.96 (C-4, C-5), 70.46-61.62 (C-6, OCH₂ ), 31.80-22.56 (CH₂), 13.99 (CH₃) ppm.
Mit 4a.
Ausbeute: 1.25 g (56%), gelber Sirup, [α] = +16.1° (CHCl₃, c=0.9), IR (kapillar) cm-1:
(C=O)-Bande ist verschwunden.
C₇₀H₁₃₆O₃₂ (1489,83 g/mol), Ber.: C, 56.40; H, 9.20. Gef: C, 56.46; H, 8.83.
¹H-NMR (CDCl₃): δ=5.95 (m, 1H, H2), 5.90 (m, 1H, H-3), 5.45 (m, 2H, H-1, H-3′), 5.21 (d,
1H, H-1′), 5.00 (t∼dd, 1H, H-4′), 4.78 (dd, 1H, H-2′), 4.25-4.80 (m, 7H, H-6, 6′, 5, 4, 5′),
3.8-3.4 (m, 94H, H-CH₂), 1.60 (m, 2H, H-CH₂), 1.4-1.3(18 H, H-CH₂), 0.8 (t, 3H, H-
CH₃) ppm.With 4a.
Yield: 1.25 g (56%), yellow syrup, [α] = + 16.1 ° (CHCl₃, c = 0.9), IR (capillary) cm -1 :
(C = O) band has disappeared.
C₇₀H₁₃₆O₃₂ (1489.83 g / mol), calc .: C, 56.40; H, 9:20. Found: C, 56.46; H, 8.83.
1 H-NMR (CDCl₃): δ = 5.95 (m, 1H, H2), 5.90 (m, 1H, H-3), 5.45 (m, 2H, H-1, H-3 '), 5.21 (d, 1H , H-1 ′), 5.00 (t∼dd, 1H, H-4 ′), 4.78 (dd, 1H, H-2 ′), 4.25-4.80 (m, 7H, H-6, 6 ′, 5, 4, 5 ′), 3.8-3.4 (m, 94H, H-CH₂), 1.60 (m, 2H, H-CH₂), 1.4-1.3 (18 H, H-CH₂), 0.8 (t, 3H, H- CH₃) ppm.
Zur Hydrierung der Doppelbindung werden 1.2 mmol 1a in 25 ml Ethanol gelöst, mit 10%
Pd/C versetzt und unter Normaldruck bis zur vollständigen Umsetzung des Eduktes hydriert.
Der Katalysator wird über Kieselgel 60 abfiltriert und das Lösungsmittel am Rotations
verdampfer abgezogen.Ausbeute: 930 mg (93%), gelber Sirup, [α] = +9.7 (c=0.99)
C₄₂H₈₀O₁₆(841.09 g/mol), Ber.: C, 59.97; H, 9.58. Gef: C, 59.18; H, 9.46
¹H-NMR: 6=5.17 ppm (m, 1H, H-1), 5.04 (m, 1H, H-4), 4.60 (dd, 1H, H-6a), 4.39 (dd, 1H,
H-6b), 4.33-3.72 (m, 43H, H-OCH₂, 5), 2.39 (s, 3H, H-Acetyl), 2.36 (s, 3H, H-Acetyl), 2.32-
1.80 (m, 4H, H-2eq, 2ax, 3eq, 3ax), 1.4-1.3 (m, 20H, H-CH₂), 1.20 (t, 3H, H-CH₃), J5,6a=5.0,
J5,6b=2.4, JCH2,CH3=6.5, J6a,6b=12.0 Hz. ¹³C-NMR=170.57 (C=O), 169,73 (C=O), 96.33 (C1),
77.54-61.65 (OCH₂), 67.77, 68.05 (C4, C5), 31.83-22.59 (CH₂, C2, C3), 20.97, 20.71 (CH₃,
CH₃), 14.02 (CH₃).To hydrogenate the double bond, 1.2 mmol of 1a are dissolved in 25 ml of ethanol, 10% Pd / C are added and the mixture is hydrogenated under normal pressure until the starting material has reacted completely. The catalyst is filtered off over silica gel 60 and the solvent is removed on a rotary evaporator. Yield: 930 mg (93%), yellow syrup, [α] = +9.7 (c = 0.99) C₄₂H₈₀O₁₆ (841.09 g / mol), calc .: C , 59.97; H, 9.58. Found: C, 59.18; H, 9.46
1 H-NMR: 6 = 5.17 ppm (m, 1H, H-1), 5.04 (m, 1H, H-4), 4.60 (dd, 1H, H-6a), 4.39 (dd, 1H, H-6b) , 4.33-3.72 (m, 43H, H-OCH₂, 5), 2.39 (s, 3H, H-acetyl), 2.36 (s, 3H, H-acetyl), 2.32- 1.80 (m, 4H, H-2eq, 2ax, 3eq, 3ax), 1.4-1.3 (m, 20H, H-CH₂), 1.20 (t, 3H, H-CH₃), J 5.6a = 5.0, J 5.6b = 2.4, J CH2, CH3 = 6.5, J 6a, 6b = 12.0 Hz. 13 C-NMR = 170.57 (C = O), 169.73 (C = O), 96.33 (C1), 77.54-61.65 (OCH₂), 67.77, 68.05 (C4, C5) , 31.83-22.59 (CH₂, C2, C3), 20.97, 20.71 (CH₃, CH₃), 14.02 (CH₃).
Allgemeines Verfahren: Die Hydrierung von 1.0 mmol α-Acetaminozimtsäuremethylester wird bei 25°C und 0.1 MPa Wasserstoffdruck in 15 ml Lösungsmittel unter Zugabe von 0.01 mmol [Rh(COD)₂]BF₄ durchgeführt. Zur Bildung des Katalysators wird das BPPM, der Rhodiumkomplex und das zusätzliche Amphiphil in einem sauerstoffreiem Hydriergefäß 15 min. gerührt. Danach wird mit der Hydrierung begonnen. Die in den folgenden Beispielen angegebenen Werte für t/2 geben die Zeit für die Aufnahme der Hälfte der theoretischen Wasserstoffmenge an. Nach beendeter Reaktion wird die Mischung in Chloroform extrahiert und der Enantiomerenüberschuß mittels GC bestimmt.General procedure: The hydrogenation of 1.0 mmol methyl α-acetaminocinnamate is carried out at 25 ° C and 0.1 MPa hydrogen pressure in 15 ml solvent with the addition of 0.01 mmol [Rh (COD) ₂] BF₄ performed. To form the catalyst, the BPPM, the Rhodium complex and the additional amphiphile in an oxygen-free hydrogenation vessel 15 minutes. touched. The hydrogenation is then started. The following examples specified values for t / 2 give the time for the inclusion of half of the theoretical Amount of hydrogen. After the reaction has ended, the mixture is extracted into chloroform and the enantiomeric excess was determined by GC.
Die folgenden Beispiele sind tabellarisch zusammengefaßt und wurden analog ausgeführt:The following examples are summarized in a table and were carried out analogously:
Claims (8)
R¹=R²=COAlkyl, COAryl oder H ist oder
R¹=COAlkyl, COAryl oder H und
R²=α-D-Glucopyranosyl (Maltose), β-D-Galactopyranosyl (Lactose) oder β-D-Gluco pyranosyl (Cellobiose) sind und
n eine ganze Zahl 4 sowie
m eine ganze Zahl 8
darstellen
sowie deren hydrierte Form der allgemeinen Formel II mit den oben angegebenen Bedeutungen. 1. Chiral micelle formers of the general formula I in the
R¹ = R² = COAlkyl, COAryl or H or
R¹ = COAlkyl, COAryl or H and
R² = α-D-glucopyranosyl (maltose), β-D-galactopyranosyl (lactose) or β-D-glucopyranosyl (cellobiose) and
n is an integer 4 and
m is an integer 8
represent
and their hydrogenated form of the general formula II with the meanings given above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19617939A DE19617939A1 (en) | 1996-04-29 | 1996-04-29 | Chiral amphiphilic compounds used as e.g. surfactants, emulsifiers or aqueous hydrogenation reaction auxiliary aids |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19617939A DE19617939A1 (en) | 1996-04-29 | 1996-04-29 | Chiral amphiphilic compounds used as e.g. surfactants, emulsifiers or aqueous hydrogenation reaction auxiliary aids |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19617939A1 true DE19617939A1 (en) | 1997-10-30 |
Family
ID=7793335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19617939A Withdrawn DE19617939A1 (en) | 1996-04-29 | 1996-04-29 | Chiral amphiphilic compounds used as e.g. surfactants, emulsifiers or aqueous hydrogenation reaction auxiliary aids |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19617939A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001021559A1 (en) * | 1999-09-23 | 2001-03-29 | Forschungszentrum Jülich GmbH | Method for hydrogenating organic compounds containing at least one c-c double bond |
WO2003015906A1 (en) * | 2001-08-13 | 2003-02-27 | The Procter & Gamble Company | Novel oligomeric hydrophobic dispersants and laundry detergent compositions comprising oligomeric dispersants |
JP2007016031A (en) * | 1999-12-08 | 2007-01-25 | Procter & Gamble Co | Ether-capped poly(oxyalkylated)alcohol surfactant |
CN110698803A (en) * | 2018-07-10 | 2020-01-17 | 纳米及先进材料研发院有限公司 | Bacterium-repellent elastomer |
CN113848686A (en) * | 2021-09-26 | 2021-12-28 | 深圳深骏微电子材料有限公司 | Negative photoresist developing solution and preparation method thereof |
-
1996
- 1996-04-29 DE DE19617939A patent/DE19617939A1/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001021559A1 (en) * | 1999-09-23 | 2001-03-29 | Forschungszentrum Jülich GmbH | Method for hydrogenating organic compounds containing at least one c-c double bond |
JP2007016031A (en) * | 1999-12-08 | 2007-01-25 | Procter & Gamble Co | Ether-capped poly(oxyalkylated)alcohol surfactant |
WO2003015906A1 (en) * | 2001-08-13 | 2003-02-27 | The Procter & Gamble Company | Novel oligomeric hydrophobic dispersants and laundry detergent compositions comprising oligomeric dispersants |
US6861400B2 (en) | 2001-08-13 | 2005-03-01 | The Procter & Gamble Co. | Oligomeric hydrophobic dispersants and laundry detergent compositions comprising oligomeric dispersants |
CN110698803A (en) * | 2018-07-10 | 2020-01-17 | 纳米及先进材料研发院有限公司 | Bacterium-repellent elastomer |
CN113848686A (en) * | 2021-09-26 | 2021-12-28 | 深圳深骏微电子材料有限公司 | Negative photoresist developing solution and preparation method thereof |
CN113848686B (en) * | 2021-09-26 | 2023-10-27 | 江西达诚新材料有限公司 | Negative photoresist developer and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69230235T2 (en) | Cosmetic composition | |
DE60100246T2 (en) | Polyxyloside derivatives, process for their preparation, composition and use as a surfactant | |
EP0306650A1 (en) | Method for the preparation of alkylglycosides | |
WO1998040390A2 (en) | Oligosaccharides and the derivatives thereof, chemo-enzymatic method for the production thereof | |
DE3729844A1 (en) | METHOD FOR PRODUCING ALKYLOLIGOGLYCOSIDES | |
DE3840044A1 (en) | GLYCOSPHINGOLIPIDS WITH A COUPLABLE GROUP IN THE SPHINGOID PART, THEIR PRODUCTION AND USE | |
US4483979A (en) | Polar solvent extraction of colored materials from alkylsaccharides under essentially anhydrous conditions | |
EP0231890A2 (en) | Method for the purification of alkyl glycosides, the products so obtained and their use | |
DE19749413A1 (en) | Novel sophorose lipids, process for their preparation and use | |
EP1436306B1 (en) | Method for the production of surface active agent mixtures | |
DE3011738A1 (en) | NEW GLYCERIN-3-PHOSPHORIC ACID HALOGYL ALTER | |
EP0212400A2 (en) | Method for the preparation of sphingosin derivatives | |
DE19617939A1 (en) | Chiral amphiphilic compounds used as e.g. surfactants, emulsifiers or aqueous hydrogenation reaction auxiliary aids | |
DE2806454C2 (en) | [14- 1 4 C] daunorubicin, [14- 1 4 C] doxorubicin and processes for their preparation | |
DE19518982A1 (en) | Novel glucose and sophoroselipids, a process for their preparation and their use | |
DE2834118C2 (en) | ||
DE60105949T2 (en) | Process for the preparation of solubilizing additives from fusel oils and oats | |
Akong et al. | Efficient syntheses of bolaform surfactants from L-rhamnose and/or 3-(4-hydroxyphenyl) propionic acid | |
DE69629972T2 (en) | High degree of polymerization alkyl polyglycosides and process for their preparation | |
DE69824366T2 (en) | Process for the synthesis of alkyl polyglucosides | |
DE60127848T2 (en) | T-Butoxycarbonylaminoethylamine for the synthesis of PNA monomer units, amino acid derivatives, intermediates thereof, and methods for their preparation | |
WO1990013345A1 (en) | Antifoaming agents consisting of a mixture of alkylglucosides and alcohols | |
DE69313007T2 (en) | Process for the preparation of hydroxyalkyl glucosides | |
DE69207154T2 (en) | Asymmetric synthesis of 3-substituted furanoside compounds | |
EP0440078B1 (en) | Process for the preparation of retinylglycosides and intermediates for this process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8139 | Disposal/non-payment of the annual fee |