DE1301862B - Method for manufacturing a drift transistor - Google Patents
Method for manufacturing a drift transistorInfo
- Publication number
- DE1301862B DE1301862B DEB28003A DEB0028003A DE1301862B DE 1301862 B DE1301862 B DE 1301862B DE B28003 A DEB28003 A DE B28003A DE B0028003 A DEB0028003 A DE B0028003A DE 1301862 B DE1301862 B DE 1301862B
- Authority
- DE
- Germany
- Prior art keywords
- drift
- transistor
- impurities
- emitter
- collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 5
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 239000012535 impurity Substances 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 108010023321 Factor VII Proteins 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Bipolar Transistors (AREA)
Description
Bei einem üblichen Flächentransistor ist in der Mittelzone des Halbleiters, der Basiszone, die StOrstellenkonzentration praktisch konstant, so daß dort kein elektrisches Feld herrscht. Die vom Emitter herkommenden Minoritätsladungsträger können dann nur durch reine Diffusion zum Kollektor gelangen, wozu sie im Mittel die ZeitIn the case of a conventional junction transistor, the concentration of impurities is in the middle zone of the semiconductor, the base zone practically constant, so that there is no electric field. The ones coming from the emitter Minority charge carriers can then only reach the collector by pure diffusion, what they mean the time for
d2 d 2
Bezogen auf gleiche Stromdichte (nicht gleiche Spannung) bleibt der differentielle EmitterleitwertThe differential emitter conductance remains in relation to the same current density (not the same voltage)
diethe
duedue
unverändert, während der Kollektorleitwert lc stark abnimmt, und zwar im Fall vernachlässigbarer Rekombinationsverluste in der Basiszone um den Faktorunchanged, while the collector conductance l c decreases sharply, namely in the case of negligible recombination losses in the base zone by the factor
benötigen (d = Basisdicke, D — Diffusionskonstante). Die Anwendung eines solchen Flächentransistors ist gegenüber derjenigen des Spitzentransistors durch die wesentlich niedrigere Grenzfrequenz beschränkt. Die theoretisch mögliche Frequenz, bis zu der er noch als Verstärker wirksam ist, beträgt etwa (d = base thickness, D - diffusion constant). The use of such a planar transistor is limited compared to that of the tip transistor by the significantly lower cutoff frequency. The theoretically possible frequency up to which it is still effective as an amplifier is approximately
_ 1_ 1
π τβπ τβ
Die Erfindung betrifft nun ein Verfahren zum ao Herstellen eines Flächentransistors, der als Drifttransistor bekanntgeworden ist und einen wesentlich erweiterten Frequenzbereich aufweist. Dazu werden nach der Erfindung in die Basiszone von der Emitterseite eine oder mehrere Störstellenarten so eindiffundiert, daß die Störstellenkonzentration an der Emitterseite der Basiszone mindestens lOmal größer ist als an der Kollektorseite. Auf diese Weise kann die Grenzfrequenz erhöht werden. Es hat sich bei dem nach der Erfindung hergestellten Drifttransistor als besonders vorteilhaft erwiesen, die Störstellenkonzentration vom Emitter zum Kollektor monoton abfallen zu lassen, und zwar soll die Abnahme an der Emitterseite stärker als an der Kollektorseite sein, so daß der zweite Differentialquotient der Kurve der Störstellenkonzentration überwiegend positiv ist. Am günstigsten wirkt sich ein etwa exponentielles Abfallen der Störstellenkonzentration aus. Sorgt man also dafür, daß durch geeignetes Eindiffundieren von Störstellen die Störstellenkonzentration in der Basiszone vom Emitter zum Kollektor hin exponentiell abfällt, so herrscht in der Basiszone wegen der räumlichen Konstanz der Fermischen Grenzenergie ein konstantes elektrisches Feld, das die Minoritätsladungsträger zwangläufig zum Kollektor hintreibt. The invention now relates to a method for ao production of a flat transistor, which is used as a drift transistor has become known and has a significantly expanded frequency range. To be According to the invention, one or more types of impurities are diffused into the base zone from the emitter side in such a way that that the concentration of impurities on the emitter side of the base zone is at least 10 times greater is than on the collector side. In this way the cut-off frequency can be increased. It has turned out to be the drift transistor produced according to the invention proved to be particularly advantageous, the impurity concentration to drop monotonously from the emitter to the collector, namely the decrease in the Emitter side be stronger than on the collector side, so that the second differential quotient of the curve of the Impurity concentration is predominantly positive. An approximately exponential decrease has the most favorable effect the impurity concentration. So if you ensure that by suitable diffusion of Impurities the concentration of impurities in the base zone from the emitter to the collector exponentially falls, so there is a limit energy in the base zone because of the spatial constancy of the Fermian constant electric field that inevitably drives the minority charge carriers to the collector.
Wenn Ne und Nc die Störstellenkonzentration an den beiden Enden der Basis sind, beträgt der gesamte Potentialunterschied in guter NäherungIf N e and N c are the impurity concentration at the two ends of the base, the total potential difference is a good approximation
AL· kTAL kT
exp -exp -
AV kTAV kT
No 'No '
Ist nun dV>kT und ist die elektrische Feldstärke konstant, so hat ein solcher Drifttransistor folgende Eigenschaften:If dV> kT and the electric field strength is constant, such a drift transistor has the following properties:
Für die Driftzeit giltThe following applies to the drift time
kTkT
*~ AV "'* ~ AV "'
Die Grenzfrequenz bei Verwendung des Drifttransistors als Verstärker steigt um den FaktorThe cut-off frequency when using the drift transistor as an amplifier increases by the factor
1
AV γ 1
AV γ
auf "- on "-
AVAV
Der Stromverstärkerfaktor α rückt um so viel näher an Eins heran, daß 1 — α um den Faktor —7^- abnimmt.The current amplifier factor α moves that much closer to one that 1 - α by the factor -7 ^ - decreases.
Dementsprechend nimmt das Verhältnis le : lc und damit der maximal erreichbare Verstärkungsgrad zu. Bei endlicher Rekombinationsrate sind die Unterschiede etwas geringer.The ratio l e : l c and thus the maximum gain that can be achieved increases accordingly. If the recombination rate is finite, the differences are somewhat smaller.
Wenn E der Bandabstand des Halbleitermaterials ist, so ist der größte noch sinnvolle Wert für AV gleich E-6kT. Bei Germanium ist £äjO,72 eV, also wird maximal Δ V = 8 kT. Das zugehörige Störstellenverhältnis ist 3000:1. Es ergäbe sich damit ein Ansteigen der theoretischen Grenzfrequenz um den Faktor 8.If E is the band gap of the semiconductor material, then the largest still meaningful value for AV is E-6kT. For germanium, £ äjO.72 eV, so a maximum of Δ V = 8 kT. The associated impurity ratio is 3000: 1. This would result in an increase in the theoretical limit frequency by a factor of 8.
In der Praxis macht die Verbesserung noch mehr aus, da der theoretische Wert beim Drifttransistor besser ausgenutzt werden kann als beim Diffusionstransistor. In günstigen Fällen läßt sich die Grenzfrequenz um mehr als den Faktor 10 heraufsetzen.In practice, the improvement is even more important, since the theoretical value for the drift transistor can be better utilized than with the diffusion transistor. In favorable cases, the cut-off frequency by more than a factor of 10.
Als Halbleiter für den npn- bzw. pnp-Flächentransistor kann nicht nur ein Element oder die Legierung von Elementen der Gruppe IV des Periodischen Systems benutzt werden, sondern es können auch andere Halbleiter, beispielsweise aus einer Legierung zwischen einem Element der Gruppe III und einem Element der Gruppe V des Periodischen Systems angewandt werden.As a semiconductor for the npn or pnp junction transistor can not be just one element or the alloy of elements of group IV of the periodic Systems can be used, but other semiconductors, for example from a Alloy between a Group III element and a Group V element of the Periodic System are applied.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEB28003A DE1301862B (en) | 1953-10-21 | 1953-10-21 | Method for manufacturing a drift transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEB28003A DE1301862B (en) | 1953-10-21 | 1953-10-21 | Method for manufacturing a drift transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1301862B true DE1301862B (en) | 1969-08-28 |
Family
ID=6962532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEB28003A Pending DE1301862B (en) | 1953-10-21 | 1953-10-21 | Method for manufacturing a drift transistor |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE1301862B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE510303A (en) * | 1951-11-16 | |||
DE977684C (en) * | 1953-03-25 | 1968-05-02 | Siemens Ag | Semiconductor device |
-
1953
- 1953-10-21 DE DEB28003A patent/DE1301862B/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE510303A (en) * | 1951-11-16 | |||
DE977684C (en) * | 1953-03-25 | 1968-05-02 | Siemens Ag | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE890847C (en) | Semiconductor transmission device | |
DE2515577A1 (en) | CIRCUIT ARRANGEMENT WITH A TRANSISTOR HIGH INPUT IMPEDANCE | |
DE1544228A1 (en) | Process for the production of semiconductor components | |
DE1301862B (en) | Method for manufacturing a drift transistor | |
DE68927013T2 (en) | Complementary bipolar semiconductor device | |
DE1514010A1 (en) | Semiconductor device | |
DE3785575T2 (en) | CURRENT SEMICONDUCTOR CIRCUIT. | |
DE1227257B (en) | Surface transistor used as a temperature-sensitive element | |
DE69022692T2 (en) | Bipolar semiconductor device. | |
DE1914563C3 (en) | Method for producing an electroluminescent component | |
DE1284518B (en) | Surface transistor and process for its manufacture | |
DE1589772A1 (en) | Device for the determination of radiant energy | |
DE2320412C3 (en) | Process for the production and sorting of switchable thyristors | |
DE3539208C2 (en) | Semiconductor device with a lateral and a vertical pnp transistor | |
AT212373B (en) | Power transistor with monocrystalline semiconductor body | |
DE1152762B (en) | Transistor for switching with partially falling emitter voltage-emitter current characteristics | |
DE1040700B (en) | Method of manufacturing a diffusion transistor | |
DE3783162T2 (en) | METHOD FOR PRODUCING A CONTACT BETWEEN A METAL AND A CONNECTING SEMICONDUCTOR WITH HIGHER BAND GAP AND CONTACT AVAILABLE BY THIS METHOD. | |
DE1094886B (en) | Semiconductor arrangement with collector electrode, especially transistor for high frequencies and high power dissipation | |
DE1268114B (en) | Process for the production of an n-p-n doped semiconductor single crystal | |
DE1077787B (en) | Axially symmetrical transistor in which the applied doping material of a flat alloy electrode is penetrated by a wire-shaped electrode | |
DE1812127A1 (en) | Semiconductor radiation measuring device | |
DE977596C (en) | Process for the production of an area p-n rectifier or area transistor | |
DE1464701C (en) | Semiconductor component with at least one PN junction | |
DE1514875C3 (en) | Transistor and process for its manufacture |