DE1241999B - Process for the manufacture of wires and tapes from zirconium-niobium alloys for hard superconductors - Google Patents
Process for the manufacture of wires and tapes from zirconium-niobium alloys for hard superconductorsInfo
- Publication number
- DE1241999B DE1241999B DEM52625A DEM0052625A DE1241999B DE 1241999 B DE1241999 B DE 1241999B DE M52625 A DEM52625 A DE M52625A DE M0052625 A DEM0052625 A DE M0052625A DE 1241999 B DE1241999 B DE 1241999B
- Authority
- DE
- Germany
- Prior art keywords
- zirconium
- niobium
- annealing
- lamellar structure
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GFUGMBIZUXZOAF-UHFFFAOYSA-N niobium zirconium Chemical compound [Zr].[Nb] GFUGMBIZUXZOAF-UHFFFAOYSA-N 0.000 title claims description 11
- 238000000034 method Methods 0.000 title claims description 7
- 239000002887 superconductor Substances 0.000 title claims description 7
- 229910001257 Nb alloy Inorganic materials 0.000 title claims description 4
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000000137 annealing Methods 0.000 claims description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 8
- 239000010955 niobium Substances 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910001093 Zr alloy Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims 4
- 241000446313 Lamella Species 0.000 claims 3
- 238000005054 agglomeration Methods 0.000 claims 1
- 230000002776 aggregation Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000005204 segregation Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C16/00—Alloys based on zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/023—Hydrogen absorption
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0156—Manufacture or treatment of devices comprising Nb or an alloy of Nb with one or more of the elements of group IVB, e.g. titanium, zirconium or hafnium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/85—Superconducting active materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S420/00—Alloys or metallic compositions
- Y10S420/901—Superconductive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/80—Material per se process of making same
- Y10S505/801—Composition
- Y10S505/805—Alloy or metallic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/80—Material per se process of making same
- Y10S505/801—Composition
- Y10S505/805—Alloy or metallic
- Y10S505/806—Niobium base, Nb
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/80—Material per se process of making same
- Y10S505/812—Stock
- Y10S505/813—Wire, tape, or film
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/80—Material per se process of making same
- Y10S505/812—Stock
- Y10S505/814—Treated metal
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
BUNDESREPUBLIK DEUTSCHLANDFEDERAL REPUBLIC OF GERMANY
DEUTSCHESGERMAN
PATENTAMTPATENT OFFICE
AUSLEGESCHRIFTEDITORIAL
Int. CL:Int. CL:
C22fC22f
Deutsche Kl.: 4Od-1/18German class: 4Od-1/18
Nummer: 1241999Number: 1241999
Aktenzeichen: M 52625 VI a/40 dFile number: M 52625 VI a / 40 d
Anmeldetag: 25. April 1962Filing date: April 25, 1962
Auslegetag: 8. Juni 1967Open date: June 8, 1967
Es ist bekannt, Drähte und Bänder aus sogenannten harten Supraleitern, also solchen Supraleitern, deren maximale Stromstärke im Gebiet der Supraleitung durch ein äußeres Magnetfeld bis zu hohen Feldstärken nur wenig beeinflußt wird, aus Niob-Zirkonium-Legierungen durch Kaltverformung herzustellen. Gegenstand eines älteren Patentes, das hier als älteres Recht zu betrachten ist, ist ein Verfahren zur Verbesserung der Supraleitereigenschaften einer binären Nioblegierung mit 10 bis 90 Atomprozent Zirkonium. Gemäß diesem älteren Verfahren wird die in der homogenen /3-Phase vorliegende Legierung bei wenigstens 300°C während V2 bis 10 Stunden geglüht und anschließend schnell abgekühlt. Durch starke Kaltverformung werden Querschnittsverminderungen um mindestens 60% erzielt. Soweit durch die Wärmebehandlung die kritische Stromdichte erhöht werden konnte, wurde dies auf die Phasendissoziation und die Herbeiführung örtlicher Spannungen zurückgeführt. Jedoch ist aus dem älteren Patent nicht zu entnehmen, in welcher Weise optimale Eigenschaften bei Legierungen verschiedener Zusammensetzung erreicht werden können. Es ist schließlich angenommen worden, daß Supraleiter, die aus der intermetallischen Verbindung Nb3Sn bestehen, dann eine höhere Stromstärke aufnehmen können, wenn sie eine lamellenartige Struktur, eine sogenannte Filamentstruktur besitzen. Dabei soll der Durchmesser der Lamellen geringer als die Eindringtiefe und nennenswert kleiner als 100 Ä sein.It is known that wires and tapes made of so-called hard superconductors, i.e. those superconductors whose maximum current strength in the area of superconductivity is only slightly influenced by an external magnetic field up to high field strengths, can be produced from niobium-zirconium alloys by cold forming. The subject of an earlier patent, which is to be regarded as an earlier right here, is a method for improving the superconducting properties of a binary niobium alloy with 10 to 90 atomic percent zirconium. According to this older process, the alloy present in the homogeneous / 3-phase is annealed at at least 300 ° C. for V 2 to 10 hours and then rapidly cooled. Strong cold deformation results in cross-section reductions of at least 60%. As far as the critical current density could be increased by the heat treatment, this was attributed to the phase dissociation and the induction of local stresses. However, the earlier patent does not reveal how optimal properties can be achieved with alloys of different compositions. It has finally been assumed that superconductors consisting of the intermetallic compound Nb 3 Sn can then absorb a higher current intensity if they have a lamellar structure, a so-called filament structure. The diameter of the lamellae should be smaller than the penetration depth and noticeably smaller than 100 Å.
Die Erfindung beruht auf der Erkenntnis, daß Drähte und Bänder aus harten Supraleitern, die aus verformbaren Niob-Zirkonium-Legierungen bestehen, dann optimale Supraleitfähigkeitseigenschaften aufweisen, wenn Legierungen mit einem Niobgehalt von 30 bis 90%. Rest Zirkonium neben den üblichen Verunreinigungen, zwischen den einzelnen Verformungsschritten Zwischenglühungen in einem Temperaturbereich, in dem Niob-Zirkonium-Mischkristalle in mindestens zwei Phasen verschiedener Konzentration, 4» aber gleicher Struktur vorliegen, bei einer solchen Temperatur und derart lange unterworfen werden, bis eine feine lamellenartige Struktur des Gefüges von einer durchschnittlichen Lamellenstärke von 0,01 bis 1 μ, vorzugsweise etwa 0,1 μ, weitgehend parallel zur Oberfläche erzielt wild.The invention is based on the knowledge that wires and tapes made of hard superconductors, which are deformable Niobium-zirconium alloys, then have optimal superconductivity properties, when alloys with a niobium content of 30 to 90%. The rest of the zirconium in addition to the usual impurities, intermediate annealing in a temperature range between the individual deformation steps, in the niobium-zirconium mixed crystals in at least two phases of different concentration, 4 » but have the same structure, are subjected to such a temperature and for such a long time, until a fine lamellar structure of the structure with an average lamellar thickness of 0.01 to 1 μ, preferably about 0.1 μ, largely parallel to the surface achieved wild.
Die Wärmebehandlung ist nach Temperatur und Dauer je nach der Zusammensetzung der Legierung verschieden. Es kann jedoch durch Versuche ohne weiteres festgestellt werden, bei welchen Glühtemperaturen und Glühzeiten und welchen Verformungsgraden gearbeitet werden muß, umdie lamellenartige Struktur zu erreichen.The heat treatment varies in temperature and duration depending on the composition of the alloy. However, it can easily be determined by experiments at which annealing temperatures and Annealing times and what degree of deformation must be worked to achieve the lamellar structure.
Verfahren zur Herstellung von DrähtenMethod of making wires
und Bändern aus Zirkonium-Niob-Legierungenand zirconium-niobium alloy ribbons
für harte Supraleiterfor hard superconductors
Anmelder:Applicant:
Metallgesellschaft Aktiengesellschaft,Metallgesellschaft Aktiengesellschaft,
Frankfurt/M., Reuterweg 14Frankfurt / M., Reuterweg 14
Als Erfinder benannt:Named as inventor:
Dipl.-Chem. Dr. Ulrich Zwicker, Aalen (Württ.)Dipl.-Chem. Dr. Ulrich Zwicker, Aalen (Württ.)
Der Verformungsgrad ist dabei allerdings nur insoweit von Bedeutung, als er möglichst über 40% liegen soll, während die Glühtemperatur und -dauer von Legierung zu Legierung genau in der Weise aufeinander abgestimmt werden müssen, daß sich keine Phase körnig einformt. Aus diesem Grund ist vor allen Dingen darauf zu achten, daß die Glühtemperatur nicht zu hoch ist, weil dann eine größere Gefahr einer körnigen Einformung besteht. Wenn die Glühtemperatur zu niedrig gehalten wird, ist eine längere Glühdauer erforderlich, was aus praktischen Gründen im allgemeinen nicht erwünscht ist, jedoch steht dies der Erreichung der gewünschten lamellenartigen Struktur nach der Kaltverformung im allgemeinen nicht im Wege. Die Mindesttemperatur muß allerdings so hoch sein, daß überhaupt die für die Weiterverarbeitung notwendige Erweichung nach der Wärmebehandlung eintritt.The degree of deformation is only important insofar as it is over 40% if possible. should lie, while the annealing temperature and duration from alloy to alloy exactly in the way must be coordinated that no Phase granularly molded. For this reason, it is above all important to ensure that the annealing temperature is not too high, because then there is a greater risk of granular denting. When the annealing temperature is kept too low, a longer glow time is required, which is for practical reasons is generally not desirable, but this is inferior to achieving the desired lamellar Structure after cold working generally not in the way. The minimum temperature must, however be so high that the softening required for further processing after the heat treatment entry.
Die Zwischenglühungen sollen nach Temperatur und Dauer auch so eingestellt werden, daß sich die lamellenartige Struktur in Längsrichtung der Drähte und Bänder erstreckt und außerdem parallel zur Oberfläche in der Weise verläuft, daß sie möglichst wenig unterbrochen ist. Die Lamellen sollen also parallel zur Oberfläche schieferartig eingelagert sein und möglichst ohne nennenswerte Unterbrechung verlaufen. Dies wird z. B. in der Weise erreicht, daß die Temperatur der Glühbehandlung so hoch gewählt wird, daß eine etwa vorhandene Kornstruktur, die sich zur Ausbildung von langen plattenförmigen Lamellen eignet, nicht in einzelne runde Körner zerfällt. Die Phasen sollen nach der Wärmebehandlung möglichst flachenförmig vorliegen. Zur Herberführung einer derartigen Struktur sind die erfindungsgemäß zu behandelnden Legierungen geeignet, die Mischkristalle enthalten, die durch die Glühbehandlung inThe intermediate annealing should be adjusted according to temperature and duration so that the Lamellar structure extends in the longitudinal direction of the wires and bands and also parallel to the Surface runs in such a way that it is interrupted as little as possible. So the slats should be embedded parallel to the surface slate-like and, if possible, without any noticeable interruption get lost. This is z. B. achieved in such a way that the temperature of the annealing treatment is chosen so high that any existing grain structure, which leads to the formation of long plate-shaped lamellae suitable, does not disintegrate into individual round grains. The phases are said to be after the heat treatment be as flat as possible. To the hostel tour The alloys to be treated according to the invention, the mixed crystals, are suitable for such a structure contained in
Claims (4)
Deutsches Patent Nr. 1180 955.Legacy Patents Considered:
German Patent No. 1180 955.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEM52577A DE1249531B (en) | 1962-04-19 | Process for the production of a starting material for wires and tapes from superconductors based on niobium | |
DEM52625A DE1241999B (en) | 1962-04-19 | 1962-04-25 | Process for the manufacture of wires and tapes from zirconium-niobium alloys for hard superconductors |
FR930063A FR1352545A (en) | 1962-04-19 | 1963-04-02 | Process for manufacturing metal wires and bands from superconducting materials |
US271518A US3266950A (en) | 1962-04-19 | 1963-04-08 | Superconductive alloy of niobium-zirconium-tin |
GB14920/63A GB1030236A (en) | 1962-04-19 | 1963-04-16 | Superconductive alloy |
FR932024A FR1363985A (en) | 1962-04-19 | 1963-04-19 | Superconducting niobium-zirconium-tin alloys |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEM0052577 | 1962-04-19 | ||
DEM52625A DE1241999B (en) | 1962-04-19 | 1962-04-25 | Process for the manufacture of wires and tapes from zirconium-niobium alloys for hard superconductors |
DEM52938A DE1185823B (en) | 1962-05-22 | 1962-05-22 | Use of a niobium-zirconium-tin alloy for hard superconductors |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1241999B true DE1241999B (en) | 1967-06-08 |
Family
ID=27211592
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEM52577A Pending DE1249531B (en) | 1962-04-19 | Process for the production of a starting material for wires and tapes from superconductors based on niobium | |
DEM52625A Pending DE1241999B (en) | 1962-04-19 | 1962-04-25 | Process for the manufacture of wires and tapes from zirconium-niobium alloys for hard superconductors |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEM52577A Pending DE1249531B (en) | 1962-04-19 | Process for the production of a starting material for wires and tapes from superconductors based on niobium |
Country Status (3)
Country | Link |
---|---|
US (1) | US3266950A (en) |
DE (2) | DE1241999B (en) |
GB (1) | GB1030236A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3416917A (en) * | 1962-11-13 | 1968-12-17 | Gen Electric | Superconductor quaternary alloys with high current capacities and high critical field values |
GB1081465A (en) * | 1963-10-23 | 1967-08-31 | Hitachi Ltd | Superconducting materials |
US3407049A (en) * | 1965-05-17 | 1968-10-22 | Union Carbide Corp | Superconducting articles and method of manufacture |
US3523822A (en) * | 1968-01-11 | 1970-08-11 | Union Carbide Corp | Method for producing a superconducting coating resistant to thermal growth |
US4649023A (en) * | 1985-01-22 | 1987-03-10 | Westinghouse Electric Corp. | Process for fabricating a zirconium-niobium alloy and articles resulting therefrom |
-
0
- DE DEM52577A patent/DE1249531B/en active Pending
-
1962
- 1962-04-25 DE DEM52625A patent/DE1241999B/en active Pending
-
1963
- 1963-04-08 US US271518A patent/US3266950A/en not_active Expired - Lifetime
- 1963-04-16 GB GB14920/63A patent/GB1030236A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE1249531B (en) | 1967-09-07 |
GB1030236A (en) | 1966-05-18 |
US3266950A (en) | 1966-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2706214C2 (en) | Magnetic alloy based on iron-chromium-cobalt with spinodal segregation | |
DE2921222C2 (en) | ||
DE2743470A1 (en) | COPPER ALLOY | |
DE1783163B2 (en) | Process for improving the electrical conductivity and strength of copper alloys. Elimination from: 1758120 | |
DE1233962B (en) | Process for increasing the critical current density of a hard superconducting alloy by a heat treatment | |
DE69202795T2 (en) | Method of manufacturing a superconducting cable. | |
DE1241999B (en) | Process for the manufacture of wires and tapes from zirconium-niobium alloys for hard superconductors | |
DE2541689C3 (en) | Method for making a V3Ga superconductor | |
AT394057B (en) | COPPER-BASED ALLOY FOR THE EXTRACTION OF ALUMINUM BETA BRASS, WHICH CONTAINS GRAIN SIZE REDUCTION ADDITIVES | |
DE3810678A1 (en) | PERMANENT MAGNET WITH ULTRA-HIGH COCITIVE POWER AND A LARGE MAXIMUM ENERGY PRODUCT AND METHOD FOR PRODUCING THE SAME | |
DE3144869C2 (en) | ||
DE3036880A1 (en) | PERMANENT MAGNET WITH HIGH CORE POWER AND LARGE MAXIMUM ENERGY PRODUCT AND METHOD FOR PRODUCING THE SAME | |
DE2657091A1 (en) | MAGNESIUM ALLOYS | |
DE1258608B (en) | Mechanically formable iron-aluminum alloy with a relatively high aluminum content | |
DE1558770A1 (en) | Process for improving the superconducting properties of niobium-titanium alloys | |
DE1268853B (en) | Ternary superconducting alloy based on niobium-zirconium | |
AT253795B (en) | Superconducting alloy | |
DE831454C (en) | Process for improving the corrosion resistance of copper alloys | |
DE2244925C3 (en) | Use of a cobalt-nickel-iron alloy as a semi-hard magnetic material | |
DE1938635C3 (en) | Method for producing a semi-hard magnetic material | |
DE1294026B (en) | Age-hardenable, fine-grain copper alloy and method for heat treatment thereof | |
DE2347400C2 (en) | Process for the manufacture of a superconductor | |
DE1558625C (en) | Process for reducing the softening temperature of oxygen-free, sulfur-containing conductive copper and improving its electrical conductivity | |
DE69232328T2 (en) | METHOD FOR PRODUCING BISMUTO OXIDE SUPER LADDERS | |
DE1758888C (en) | Use of a creep-resistant, hardenable titanium alloy for objects with a high 0.2 limit, high-temperature strength, thermal stability, notch strength and notch impact strength |