DE1238940B - Process and device for low-temperature air separation by rectification in a double rectifier under increased pressure with water and carbonic acid separation in adsorbers - Google Patents
Process and device for low-temperature air separation by rectification in a double rectifier under increased pressure with water and carbonic acid separation in adsorbersInfo
- Publication number
- DE1238940B DE1238940B DE1965L0052052 DEL0052052A DE1238940B DE 1238940 B DE1238940 B DE 1238940B DE 1965L0052052 DE1965L0052052 DE 1965L0052052 DE L0052052 A DEL0052052 A DE L0052052A DE 1238940 B DE1238940 B DE 1238940B
- Authority
- DE
- Germany
- Prior art keywords
- group
- heat exchanger
- pressure column
- air
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04181—Regenerating the adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04315—Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04321—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/20—Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/66—Regenerating the adsorption vessel, e.g. kind of reactivation gas
- F25J2205/70—Heating the adsorption vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/42—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
Verfahren und Einrichtung zur Tieftemperatur-Luftzerlegung durch Rektifikation in einem Doppelrektifikator unter erhöhtem Druck bei Wasser- und Kohlensäurcabscheidung in Adsorbern Die Erfindung betrifft ein Verfahren und eine Einrichtung zur Tieftemperatur-Luftzerlegung durch Rektifikation in einem Doppelrektifikator unter erhöhtem Druck zur Gewinnung von mindestens 45 % der Luft als trockene Sauerstoff- und Stickstofffraktion, bei dem von Wasser befreite komprimierte Luft in einer ersten Wärmeaustauschergruppe teils mit reinem Sauerstoff und teils mit reinem und unreinem Stickstoff, welche Produkte mit 1,5 bis 2 ata aus der Niederdrucksäule entnommen werden, vorgekühlt, in einer zweiten Wärmeaustauschergruppe mit entsprechenden Stickstofffraktionen annähernd auf Kondensationstemperatur gebracht und dem unteren Teil der Drucksäule zugeführt wird, und der reine Stickstoff aus der Niederdrucksäule nach Vorwärmung und vor Wärmeaustausch mit der Zerlegungsluft arbeitsleistend entspannt wird.Process and device for cryogenic air separation by rectification in a double rectifier under increased pressure with water and carbon dioxide separation in adsorbers The invention relates to a method and a device for low-temperature air separation by rectification in a double rectifier under increased pressure for recovery of at least 45% of the air as dry oxygen and nitrogen fraction the compressed air freed from water in a first heat exchanger group partly with pure oxygen and partly with pure and impure nitrogen, which Products with 1.5 to 2 ata are removed from the low-pressure column, pre-cooled, in a second heat exchanger group with corresponding nitrogen fractions brought approximately to condensation temperature and the lower part of the pressure column is supplied, and the pure nitrogen from the low pressure column after preheating and before heat is exchanged with the decomposition air, it is relaxed to perform work.
Es sind bereits Verfahren und Einrichtungen bekannt, bei denen die Luft nach Befreiung von Kohlensäure und Feuchtigkeit unter Druck tiefgekühlt und in einer Doppelsäule fraktioniert wird, die unter erhöhtem Druck arbeitet. Das vom Kopf der Niederdrucksäule noch unter Druck abströmende Stickstoffgas wird dann nach einer gewissen Vorwärmung arbeitsleistend entspannt, um die für den Prozeß notwendige überschußkälte zu erzeugen. Mit der Stickstoffentspannungsturbine kann dabei ein Sauerstoffkompressor gekuppelt sein, der den aus der Niederdrucksäule abgezapften Sauerstoff noch auf etwas höheren Druck komprimiert. Die Zerlegungsluft muß dabei auf einen Druck von 8,5 bis 14,5 Atmosphären verdichtet werden, wofür immerhin noch ein beträchtlicher Kraftbedarf entsteht (USA.-Patent 3 070 966, deutsches Patent 894 248).There are already methods and facilities known in which the Air is refrigerated under pressure after being released from carbonic acid and moisture is fractionated in a double column that works under increased pressure. That from At the top of the low-pressure column, nitrogen gas flowing off under pressure is then released a certain preheating relaxed work-performing to the necessary for the process to generate excess cold. With the nitrogen expansion turbine, a Oxygen compressor be coupled to the tapped from the low pressure column Oxygen is compressed to a slightly higher pressure. The decomposition air must be there be compressed to a pressure of 8.5 to 14.5 atmospheres, for which at least still a considerable power requirement arises (USA.-Patent 3,070,966, German patent 894 248).
Der Erfindung liegt nun die Aufgabe zugrunde, den Energieaufwand für den Betrieb einer solchen Anlage zu verringern, die Temperaturen in den Wärmeaustauschergruppen zu stabilisieren und mit möglichst kleinen Wärmeaustauschflächen und geringem sonstigem apparativem Aufwand auszukommen.The invention is now based on the object of the energy expenditure for To reduce the operation of such a system, the temperatures in the heat exchanger groups to stabilize and with the smallest possible heat exchange surfaces and little other get along with the expenditure of equipment.
Die Lösung dieser Aufgabe gelingt nach der Erfindung dadurch, daß die in der ersten Wärmeaustauschergruppe auf etwa -120° C vorgekühlte Zerlegungsluft vor Eintritt in die zweite Wärmeaustauschergruppe in einem Adsorber von CO z befreit wird und daß der aus der Niederdrucksäule entnommene reine Sauerstoff in einem der Wärmeaustauscher der zweiten Gruppe vorgewärmt und vor seiner Einführung in einen der Wärmeaustauscher der ersten Gruppe arbeitsleistend entspannt wird.This object is achieved according to the invention in that the decomposition air pre-cooled to around -120 ° C in the first heat exchanger group freed from CO z in an adsorber before entering the second heat exchanger group and that the pure oxygen withdrawn from the low pressure column in one of the Heat exchanger of the second group preheated and before its introduction into one the heat exchanger of the first group is relaxed while performing work.
Bei dieser Arbeitsweise werden verhältnismäßig kleine Heizflächen in den Wärmeaustauschern benötigt, und die Rohrleitungsführung im Apparat ist verhältnismäßig einfach. Der Einbau einer Sauerstoffturbine ergibt ein energetisch günstiges Verfahren und wirkt sich wegen des Einbaus vor die C02 Adsorber auf diese bei Temperaturschwankungen, z. B. beim Regenerieren, stabilisierend aus.This method of working results in relatively small heating surfaces required in the heat exchangers, and the piping in the apparatus is proportionate simple. The installation of an oxygen turbine results in an energetically favorable process and because of the installation in front of the C02 adsorber, it affects this in the event of temperature fluctuations, z. B. when regenerating, stabilizing.
Nach einem weiteren Merkmal der Erfindung wird nun insbesondere bei kleineren und mittleren Anlagen bis zu einer Durchsatzleistung von etwa 35 000 bis 40 000 Nm3/h Luft in der Weise gearbeitet, daß die unreine Stickstofffraktion aus der Niederdrucksäule nach Vorwärmung durch Unterkühlung des flüssigen Stickstoffs aus der Drucksäule in einem der Wärmeaustauscher der zweiten und ersten Gruppe etwa auf Normaltemperatur angewärmt und mindestens teilweise direkt mit dem zur Verfügung stehenden Druck von etwa 1,5 ata zur Regenerierung der Wasser- und Kohlensäureadsorber verwendet wird.According to a further feature of the invention is now in particular in small and medium-sized systems up to a throughput of about 35,000 to 40 000 Nm3 / h air worked in such a way that the impure nitrogen fraction from the low-pressure column after preheating by subcooling the liquid nitrogen from the pressure column in one of the heat exchangers of the second and first group, for example warmed to normal temperature and at least partially directly with the available standing pressure of about 1.5 ata to regenerate the water and carbonic acid adsorbers is used.
Bei größeren Anlagen über etwa 40 000 Nm3/h Leistung wird jedoch erfindungsgemäß vorteilhaft in der Weise gearbeitet, daß die unreine Stickstofffraktion aus der Niederdrucksäule nach Vorwärmung durch Unterkühlung des flüssigen Stickstoffs aus der Drucksäule und in einem der Wärmeaustauscher der zweiten Gruppe arbeitsleistend entspannt, in einem der Wärmeaustauscher der ersten Gruppe auf etwa Normaltemperatur angewärmt und zumindest teilweise nach zusätzlicher Verdichtung durch ein Gebläse zur Regenerierung der Wasser- und Kohlensäureadsorber verwendet wird.In the case of larger systems with an output of about 40,000 Nm3 / h, however, the invention is used worked advantageously in such a way that the impure nitrogen fraction from the Low-pressure column after preheating by subcooling the liquid nitrogen the pressure column and performing work in one of the heat exchangers of the second group relaxed, in one of the heat exchangers of the first group to about normal temperature warmed and at least partially after additional compression by a fan is used to regenerate the water and carbonic acid adsorbers.
Durch die Entspannung des unreinen Stickstoffs ergibt sich noch eine größere Temperaturdifferenz am warmen Ende der Wärmeaustauscher der ersten Gruppe, wodurch sich die Heizflächen weiter (um etwa 1711/o der gesamten Wärmeaustauschflächen der Anlage) verringern. Bei größeren Anlagen ist die durch die Verringerung der Heizflächen erzielte Ersparnis größer als die Kosten der Entspannungsturbine und eines zusätzlichen Regeneriergebläses für die Adsorber. Bei kleineren Anlagen ist jedoch die Ersparnis der Turbomaschinen (Entspannungsturbine und Regeneriergebläse) von größerem Interesse.The relaxation of the impure nitrogen results in another one greater temperature difference at the warm end of the heat exchanger of the first group, whereby the heating surfaces are further extended (by about 1711 / o of the total Reduce the heat exchange surfaces of the system). With larger systems it is through the reduction in the heating surfaces achieved savings greater than the cost of the expansion turbine and an additional regeneration fan for the adsorber. For smaller systems however, the savings in turbo machines (expansion turbine and regeneration fan) of greater interest.
Das erfindungsgemäße Verfahren soll nun an Hand der Schemafiguren 1 und 2 beispielsweise näher erläutert werden. Im Luftkompressor 1 wird die Zerlegungsluft auf 7,5 bis 8,5 ata, in kleineren Anlagen eventuell noch etwas höher, komprimiert und nach entsprechender Wasserkühlung im Wasserkühler 1' durch Leitung 2 dem Wärmeaustauscher 3 (dem sogenannten warmen Ast) mit etwa 25° C zugeführt, aus dem sie mit etwa 18° C austritt. Durch Leitung 4 gelangt die Luft dann zu einer Ammoniakkühlanlage 5, wo sie auf +3'C gekühlt wird, um die Hauptmenge des Wassers hier bereits auszuscheiden. Durch die Leitung 6 wird die Luft dann einem der Lufttrockner 7 a oder 7 b über die Ventile 6 a oder 6 b zugeführt, von denen einer jeweils auf Regenerieren geschaltet ist. Über die Ventile 8 a bzw. 8 b und die Leitung 8 gelangt die getrocknete Luft mit einer Temperatur von etwa 5° C in eine erste Gruppe von drei Wärmeaustauschern 9, 10 und 11, in denen die Luft unter Anwärmung von Sauerstoff, unreinem und reinem Stickstoff gekühlt wird.The method according to the invention will now be explained in more detail, for example, with reference to the schematic figures 1 and 2. In the air compressor 1, the decomposition air is compressed to 7.5 to 8.5 ata, in smaller systems possibly a little higher, and after appropriate water cooling in the water cooler 1 'through line 2 to the heat exchanger 3 (the so-called warm branch) at around 25 ° C from which it exits at around 18 ° C. The air then passes through line 4 to an ammonia cooling system 5, where it is cooled to + 3'C in order to separate out most of the water here. The air is then fed through the line 6 to one of the air dryers 7 a or 7 b via the valves 6 a or 6 b, one of which is switched to regeneration in each case. Via the valves 8 a or 8 b and the line 8, the dried air reaches a first group of three heat exchangers 9, 10 and 11 at a temperature of about 5 ° C., in which the air is heated by oxygen, impure and pure Nitrogen is cooled.
Die mit etwa -123 ° C austretende Luft gelangt durch Leitung 12 über die Ventile 12a bzw. 12 b in einen der Kohlensäureadsorber 13 a bzw. 13 b. Die von Kohlensäure befreite Luft tritt durch eines der Ventile 14 a bzw. 14 b und Leitung 14 aus und gelangt zu einer zweiten Gruppe von Wärmeaustauschern 15, 16 und 17.The air exiting at about -123 ° C. passes through line 12 via valves 12a and 12b into one of the carbonic acid adsorbers 13a and 13b. The air freed from carbonic acid exits through one of the valves 14 a or 14 b and line 14 and arrives at a second group of heat exchangers 15, 16 and 17.
Die aus diesen Wärmeaustauschern austretende Luft gelangt mit einer Temperatur von etwa -167 bis -168° C durch Leitung 18 in den unteren Teil der Drucksäule 19 eines Doppelrektifikators.The air emerging from these heat exchangers comes with a Temperature from about -167 to -168 ° C through line 18 in the lower part of the pressure column 19 of a double rectifier.
Mit Sauerstoff angereicherte Flüssigkeit wird aus dem Sumpf der Drucksäule 19 durch Leitung 21, Unterkühlungswärmeaustauscher 22, Leitung 23 und Entspannungsventil 24 in die Niederdrucksäule 20 eingeleitet. Aus dem Kopf der Drucksäule 19 gelangt durch die Leitung 25 flüssiger Stickstoff über den Unterkühlungswärmeaustauscher 26, die Leitung 27 und das Entspannungsventil 28 als Waschflüssigkeit in den Kopf der Niederdrucksäule 20.Oxygen-enriched liquid is introduced from the bottom of the pressure column 19 through line 21, supercooling heat exchanger 22, line 23 and expansion valve 24 into the low-pressure column 20. From the top of the pressure column 19, liquid nitrogen passes through the line 25 via the supercooling heat exchanger 26, the line 27 and the expansion valve 28 as washing liquid into the top of the low-pressure column 20.
Reiner Stickstoff wird aus dem Kopf der Niederdrucksäule durch Leitung 29, den bereits genannten Wärmeaustauscher 22, Leitung 30 und die Entspannungsturbine 31 sowie Leitung 32 zum Wärmeaustauscher 17 der zweiten Gruppe und weiter über Leitung 33 zu Wärmeaustauscher 11 der ersten Gruppe sowie über Leitung 34, den genannten Wärmeaustauscher 3 und Leitung 35 zum Verbraucher abgeführt.Pure nitrogen is drawn from the top of the low pressure column 29, the already mentioned heat exchanger 22, line 30 and the expansion turbine 31 and line 32 to the heat exchanger 17 of the second group and further via line 33 to heat exchanger 11 of the first group and via line 34, the aforementioned Heat exchanger 3 and line 35 dissipated to the consumer.
Aus dem unteren Teil der Niederdrucksäule 20 wird durch Leitung 39 das gasförmige Sauerstoffprodukt abgezogen und gelangt mit einem Druck von etwa 2 ata über den Wärmeaustauscher 15 der zweiten Gruppe und Leitung 40 zur Entspannungsturbine 41. Der entspannte Sauerstoff wird durch Leitung 42 zum Wärmeaustauscher 9 der ersten Gruppe und von hier mit einer Temperatur von etwa 271° K, also wenig unter 0° C, durch Leitung 43 zum Wärmeaustauscher 3 und von da über Leitung 44 dem Verbraucher zugeführt.From the lower part of the low-pressure column 20, through line 39 the gaseous oxygen product is withdrawn and arrives at a pressure of about 2 ata via the heat exchanger 15 of the second group and line 40 to the expansion turbine 41. The expanded oxygen is through line 42 to the heat exchanger 9 of the first Group and from here with a temperature of about 271 ° K, i.e. a little below 0 ° C, through line 43 to the heat exchanger 3 and from there through line 44 to the consumer fed.
Unterhalb des Kopfes der Niederdrucksäule wird durch Leitung 48 noch unreiner Stickstoff abgezogen, gelangt über Wärmeaustauscher 26, Leitung 49, Wärmeaustauscher 16 der zweiten Gruppe und Leitung 50 zum Wärmeaustauscher 10 der ersten Gruppe. Soweit der unreine Stickstoff, der im Wärmeaustauscher 10 auf annähernd 0° C erwärmt wird, nicht zum Abkühlen der Adsorber nach dem Regenerieren benötigt wird, gelangt er durch Leitung 53 über Wärmeaustauscher 3 und Leitung 54 mit Ventil 55 direkt ins Freie.Below the top of the low-pressure column is through line 48 still impure nitrogen withdrawn, passes through heat exchanger 26, line 49, heat exchanger 16 of the second group and line 50 to the heat exchanger 10 of the first group. So much for the impure nitrogen, which is heated to approximately 0 ° C. in the heat exchanger 10 is not required to cool the adsorber after regeneration, arrives he through line 53 via heat exchanger 3 and line 54 with valve 55 directly into the open.
In Leitung 54 steht der unreine Stickstoff noch mit einem Druck von etwa 1,5 ata zur Verfügung. Für die Regenerierung der Adsorber kann er über die Leitung 61 zu den Ventilen 62 und 63 abgezweigt werden. Über Ventil 62 gelangt der unreine Stickstoff zum Kalorifer 64, in dem er auf etwa 130° C erhitzt wird. Der erhitzte Stickstoff wird dann durch die Leitung 65 über eines der Ventile 65 a oder 65 b in einen der Adsorber 7a bzw. 7 b zu seiner Regenerierung eingeführt. Das beladene Regeneriergas wird durch Leitung 66 mit den Ventilen 66 a bzw. 66 b abgezogen, die dann über Leitung 54 ins Freie führt.In line 54, the impure nitrogen is still available at a pressure of about 1.5 ata. For the regeneration of the adsorber it can be branched off via the line 61 to the valves 62 and 63. The impure nitrogen reaches the calorifier 64 via valve 62, in which it is heated to around 130.degree. The heated nitrogen is then introduced through the conduit 65 via one of the valves 65 a or 65 b in one of the adsorber 7 a or 7 b to its regeneration. The loaded regeneration gas is withdrawn through line 66 with valves 66 a and 66 b , which then leads to the outside via line 54.
Vom Ventil 63 aus führt die Leitung 67 über eines der Ventile 67 a bzw. 67 b in einen der Adsorber 13 a bzw. 13 b. Das beladene Regeneriergas wird dann durch eines der Ventile 68 a bzw. 68 b und Leitung 68 sowie Leitung 54 ins Freie abgeführt.From the valve 63, the line 67 leads via one of the valves 67 a or 67 b into one of the adsorbers 13 a or 13 b. The loaded regeneration gas is then discharged into the open through one of the valves 68 a or 68 b and line 68 and line 54.
Die Betriebszeit eines C02-Adsorbers sowohl wie eines Lufttrockners beträgt jeweils 24 Stunden. Die Adsorber sind in der Weise versetzt geschaltet, daß zunächst z. B. ein C02-Adsorber 4 Stunden lang mit ungeheiztem unreinem Stickstoff aus Leitung 61 desorbiert wird. Anschließend wird ein Lufttrockner etwa 12 Stunden mit auf etwa 130° C im Kalorifer 64 aufgeheiztem unreinem Stickstoff desorbiert und anschließend etwa 8 Stunden mit ungeheiztem unreinem Stickstoff aus Leitung 61, die zur Erreichung der tiefsten Temperatur auch absperrbar an Leitung 53 angeschlossen sein kann (nicht gezeichnet), auf die Betriebstemperatur zurückgekühlt.The operating time of a CO2 adsorber as well as an air dryer is 24 hours each. The adsorbers are staggered in such a way that that initially z. B. a C02 adsorber for 4 hours with unheated impure nitrogen is desorbed from line 61. Then use an air dryer for about 12 hours desorbed with impure nitrogen heated to about 130 ° C in the calorifer 64 and then for about 8 hours with unheated impure nitrogen from line 61, which are also connected to line 53 such that they can be shut off to achieve the lowest temperature can be (not shown), cooled back to the operating temperature.
Für das Rückkühlen des C02 Adsorbers auf Betriebstemperatur mittels eines Luftteilstroms aus Leitung 12 stehen dann anschließend noch 20 Stunden zur Verfügung.For cooling the C02 adsorber back to operating temperature using a partial air flow from line 12 is then available for another 20 hours Disposal.
Die F i g. 2 unterscheidet sich von der F i g. 1 nur dadurch, daß die aus dem Wärmeaustauscher 16 der zweiten Gruppe kommende Leitung 50 für unreinen Stickstoff einer Entspannungsturbine 51 zugeführt wird, aus der dann der entspannte unreine Stickstoff durch Leitung 52 in den Wärmeaustauscher 10 der ersten Gruppe gelangt. Der über Leitung 53, Wärmeaustauscher 3 und Leitung 54 austretende unreine Stickstoff hat dann nur noch geringen Überdruck. Er wird deshalb über Leitung 58 mit Ventil 59 einem Regeneriergebläse 60 zugeführt und gelangt von hier mit einem Druck von etwa 1,5 ata in die Verteilerleitung 61, die, wie oben beschrieben, zu den zu regenerierenden Adsorbern führt. Dem Gebläse kann ein Wasserkühler (nicht gezeichnet) zum Abführen der Kompressionswärme nachgeschaltet sein.The F i g. 2 differs from FIG. 1 only by the fact that the line 50 coming from the heat exchanger 16 of the second group for impure Nitrogen is fed to an expansion turbine 51, from which then the expanded impure nitrogen through line 52 into heat exchanger 10 of the first group got. The impure emerging via line 53, heat exchanger 3 and line 54 Nitrogen then only has a slight overpressure. He is therefore on line 58 with valve 59 is fed to a regeneration fan 60 and arrives from here with a Pressure of about 1.5 ata in the manifold 61, which, as described above, too leads to the adsorbers to be regenerated. A water cooler (not drawn) be connected downstream to dissipate the heat of compression.
Anlagen, die weniger als 35- bis 40 000 Nmslh zu zerlegen haben, werden dann zweckmäßig nach F i g. 1. arbeiten, während Anlagen, die mehr als etwa 40 000 Nm3lh Luft verarbeiten, mit Vorteil nach F i g. 2 verfahren, wie weiter oben bereits ausführlich begründet.Plants that have to dismantle less than 35 to 40,000 Nmslh will be then expediently according to FIG. 1. work while equipments that are more than about 40,000 Process Nm3lh of air, with advantage after F i g. 2 proceed as already explained in detail above.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1965L0052052 DE1238940B (en) | 1965-11-03 | 1965-11-03 | Process and device for low-temperature air separation by rectification in a double rectifier under increased pressure with water and carbonic acid separation in adsorbers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1965L0052052 DE1238940B (en) | 1965-11-03 | 1965-11-03 | Process and device for low-temperature air separation by rectification in a double rectifier under increased pressure with water and carbonic acid separation in adsorbers |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1238940B true DE1238940B (en) | 1967-04-20 |
Family
ID=7274445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1965L0052052 Pending DE1238940B (en) | 1965-11-03 | 1965-11-03 | Process and device for low-temperature air separation by rectification in a double rectifier under increased pressure with water and carbonic acid separation in adsorbers |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE1238940B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0624765A1 (en) * | 1993-05-10 | 1994-11-17 | Praxair Technology, Inc. | Cryogenic rectification system with prepurifier feed chiller |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1065867B (en) * | 1957-07-04 | 1960-03-31 | Gesellschaft für Linde's Eismaschinen Aktiengesellschaft, Zweigniederlassung, Höllriegelskreuth bei München | Process and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators, |
FR1285587A (en) * | 1960-04-04 | 1962-02-23 | Petrocarbon Dev Ltd | Process and installation for the production of oxygen |
-
1965
- 1965-11-03 DE DE1965L0052052 patent/DE1238940B/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1065867B (en) * | 1957-07-04 | 1960-03-31 | Gesellschaft für Linde's Eismaschinen Aktiengesellschaft, Zweigniederlassung, Höllriegelskreuth bei München | Process and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators, |
FR1285587A (en) * | 1960-04-04 | 1962-02-23 | Petrocarbon Dev Ltd | Process and installation for the production of oxygen |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0624765A1 (en) * | 1993-05-10 | 1994-11-17 | Praxair Technology, Inc. | Cryogenic rectification system with prepurifier feed chiller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2543291A1 (en) | PROCESS FOR PROCESSING A NATURAL GAS FLOW | |
DE1103363B (en) | Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification | |
DE2164795A1 (en) | Method and device for air separation | |
DE1117616B (en) | Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants | |
DE2526350A1 (en) | PROCEDURE AND AIR SEPARATION PLANT | |
DE1626325B1 (en) | Process and device for liquefying low-boiling gases | |
DE1254656B (en) | Process for the production of liquid parahydrogen | |
DE3639779A1 (en) | Process for extracting CO2 from a CO2-rich natural gas | |
DE69400794T2 (en) | Gas compression method and device | |
DE1205567B (en) | Process for liquefying a gas | |
DE1235346B (en) | Method and device for washing out impurities from hydrogen-rich gas mixtures by means of liquid nitrogen | |
DE19517116C1 (en) | Process for reducing energy consumption | |
DE1238940B (en) | Process and device for low-temperature air separation by rectification in a double rectifier under increased pressure with water and carbonic acid separation in adsorbers | |
DE1026768B (en) | Method and device for separating air | |
DE803301C (en) | Process for cold start-up of plants for liquefying or decomposition of gases or gas mixtures | |
DE2335096C2 (en) | Method and device for the production of gaseous oxygen and gaseous nitrogen | |
DE1551621A1 (en) | Process for extracting oxygen from the air | |
DE1143526B (en) | Method and device for cryogenic gas separation, in particular air separation | |
EP0168519A2 (en) | Apparatus for liquefying a low-boiling gas, particularly helium gas | |
DE1046640B (en) | Process and device for generating cold through work-performing relaxation | |
DE2518557C3 (en) | Process for air separation with liquid generation by cryogenic rectification | |
DE1124984B (en) | Method and device for generating a pure gas by separating condensable components from gas mixtures | |
DE2828914A1 (en) | Drying and cooling plant - uses circulating gas which is cooled and expanded with part of compressed stream tapped for regeneration | |
DE2548222C2 (en) | Method and device for air separation | |
DE4030750A1 (en) | Combination triple duty compressor for prodn. of nitrogen@ and oxygen@ - has multiple shaft machine providing compression for feed air, first main stage, and coolant nitrogen streams |