DE1207636B - Process for the production of wafers from monocrystalline silicon and / or germanium for semiconductor components - Google Patents
Process for the production of wafers from monocrystalline silicon and / or germanium for semiconductor componentsInfo
- Publication number
- DE1207636B DE1207636B DES73154A DES0073154A DE1207636B DE 1207636 B DE1207636 B DE 1207636B DE S73154 A DES73154 A DE S73154A DE S0073154 A DES0073154 A DE S0073154A DE 1207636 B DE1207636 B DE 1207636B
- Authority
- DE
- Germany
- Prior art keywords
- rod
- notch
- pressure
- longitudinal axis
- separated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 10
- 229910052732 germanium Inorganic materials 0.000 title claims description 9
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 title claims description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 title claims description 5
- 238000004519 manufacturing process Methods 0.000 title claims 4
- 239000004065 semiconductor Substances 0.000 title description 12
- 235000012431 wafers Nutrition 0.000 title 1
- 239000013078 crystal Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 6
- 238000003776 cleavage reaction Methods 0.000 claims description 4
- 230000007017 scission Effects 0.000 claims description 4
- 238000004857 zone melting Methods 0.000 claims description 2
- 239000010432 diamond Substances 0.000 claims 6
- 229910003460 diamond Inorganic materials 0.000 claims 5
- 238000006748 scratching Methods 0.000 claims 3
- 230000002393 scratching effect Effects 0.000 claims 3
- 238000005530 etching Methods 0.000 claims 2
- 229910008045 Si-Si Inorganic materials 0.000 claims 1
- 229910006411 Si—Si Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 238000009825 accumulation Methods 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 2
- 230000001447 compensatory effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/0005—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/30—Mechanisms for rotating or moving either the melt or the crystal
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/40—Crystalline structures
- H10D62/405—Orientations of crystalline planes
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
BUNDESREPUBLIK DEUTSCHLANDFEDERAL REPUBLIC OF GERMANY
DEUTSCHESGERMAN
PATENTAMTPATENT OFFICE
AUSLEGESCHRIFTEDITORIAL
Int. σ.:Int. σ .:
Deutsche Kl.: 4Od-3/00German class: 4Od-3/00
Nummer: 1 207 636Number: 1 207 636
Aktenzeichen: S 73154 VI a/40 dFile number: S 73154 VI a / 40 d
Anmeldetag: 27. März 1961Filing date: March 27, 1961
Auslegetag: 23. Dezember 1965Opening day: December 23, 1965
In der Halbleitertechnik werden Scheiben aus Germanium oder Silizium benötigt, die dann entweder unmittelbar zu Halbleiterbauelementen weiterverarbeitet werden oder als orientierte Keime für einkristallines Aufwachsen des Halbleitermaterials aus der Gasphase dienen, wie es beispielsweise in der deutschen Patentschrift 865 160 beschrieben ist.In semiconductor technology, disks made of germanium or silicon are required, which then either can be processed directly into semiconductor components or as oriented seeds for monocrystalline Serve growing the semiconductor material from the gas phase, as it is for example in the German patent 865 160 is described.
In allen Fällen kommt es auf glatte Oberflächen der Scheiben an, da von den Eigenschaften der Oberfläche die Güte der erhaltenen Halbleiterbauelemente, ζ. B. Transistoren und Richtleiter, entscheidend beeinflußt wird.In all cases, the smooth surfaces of the panes are important because of the properties of the surface the quality of the semiconductor components obtained, ζ. B. transistors and directional conductors, decisively influenced will.
Als Ausgangsmaterial stehen für gewöhnlich Halbleiterstäbe zur Verfügung, die durch Ziehen aus der Schmelze nach Czochralski, durch Anwendung des tiegellosen Zonenschmelzens oder durch Abscheiden von Silizium und/oder Germanium aus einer gasförmigen Silizium- oder Germaniumverbindung in einkristalliner Form auf einem dünnen, drahtförmigen einkristallinen Körper aus dem betreffenden Halbleitermaterial gewonnen wurden.Semiconductor rods are usually available as starting material, which can be drawn from the Melt according to Czochralski, by application crucible-free zone melting or by depositing silicon and / or germanium from a gaseous silicon or germanium compound in monocrystalline form on a thin, wire-shaped monocrystalline bodies were obtained from the semiconductor material in question.
Ein solcher Halbleitereinkristallstab muß vor der Weiterverarbeitung zu Halbleiterbauelementen in eine Anzahl von Scheiben zerlegt werden, die im allgemeinen durch senkrecht zur Stabachse führende Schnitte erzeugt werden. Dies geschieht gewöhnlich durch Sägen. Wegen des hohen Preises des Halbleitermaterials, der in erster Linie durch den zur Erzielung der erforderlichen Reinheit bzw. eines definierten Störstellengehaltes notwendigen großen technischen Aufwand bedingt ist, wird bei einem solchen Verfahren das Problem der Schnittverluste von entscheidender Bedeutung. Es wurden deshalb zahlreiche Versuche unternommen, welche das Problem der Schnittverluste befriedigend meistern sollten. Diese Versuche brachten bisher kaum nennenswerte Ergebnisse.Such a semiconductor single crystal rod must be in a number of disks are dismantled, generally through perpendicular to the rod axis Cuts are generated. This is usually done by sawing. Because of the high price of the semiconductor material, which is primarily defined by the to achieve the required purity or a Impairment content is due to the necessary large technical effort, is in such a Proceeding the problem of cutting losses is vital. So there were numerous Attempts have been made which should satisfactorily cope with the problem of cutting losses. These attempts have so far hardly produced any noteworthy results.
Um das Problem der Schnittverluste zu würdigen, seien folgende Ausführungen gemacht. Ein z. B. aus Silizium bestehender Stab von 10 mm Durchmesser und einer Länge von 200 mm kostet etwa DM 500,—. In der Praxis werden aus einem solchen Stab etwa 220 Scheibchen von 0,5 bis 0,6 mm Dicke gewonnen. Der Schnittverlust beträgt erfahrungsgemäß beim Sägen allein schon etwa 40%. Andererseits erscheint aber ein Zersägen des Kristalls als einzige Möglichkeit, um zu ebenen und definierten Trennflächen zu gelangen.In order to appreciate the problem of cutting losses, the following remarks are made. A z. B. off A silicon rod with a diameter of 10 mm and a length of 200 mm costs around DM 500.00. In practice, about 220 slices with a thickness of 0.5 to 0.6 mm are obtained from such a rod. Experience has shown that cutting loss is around 40% when sawing alone. On the other hand appears but a sawing of the crystal is the only way to create flat and defined interfaces to get.
Damit aber das Problem der Schnittverluste auf diese Weise befriedigend gelöst werden kann, ist es
Voraussetzung, Stäbe mit exakt maßhaltigem Durchmesser zur Verfügung zu haben, denn Stäbe mit un-Verf
ahren zum Herstellen von Scheiben aus
einkristallinem Silizium und/oder Germanium
für HalbleiterbauelementeSo that the problem of cutting losses can be solved satisfactorily in this way, it is a prerequisite to have rods with an exactly dimensionally stable diameter available, because rods with un-procedural methods for producing disks from
single crystal silicon and / or germanium
for semiconductor components
Anmelder:Applicant:
Siemens & Halske Aktiengesellschaft,
Berlin und München,
München 2, Wittelsbacherplatz 2Siemens & Halske Aktiengesellschaft,
Berlin and Munich,
Munich 2, Wittelsbacherplatz 2
Als Erfinder benannt:Named as inventor:
Dr. Josef Grabmaier, VaterstettenDr. Josef Grabmaier, Vaterstetten
gleichförmigem Durchmesser würden nicht nur zu Scheibchen ungleicher Größe führen, sondern die Güte und damit die Brauchbarkeit der erhaltenen Spaltflächen wird, wie die Erfahrung gezeigt hat, wesentlich von der Gleichmäßigkeit des Durchmessers des zur Verfügung stehenden einkristallinen Silizium- oder Germaniumstabes bestimmt.uniform diameter would result not only in disks of unequal size, but also The quality and thus the usefulness of the cleavage surfaces obtained, as experience has shown, significantly depends on the uniformity of the diameter of the available monocrystalline silicon or germanium rod.
In der deutschen Patentschrift 1170 150 ist ein Verfahren zum Ziehen von stabförmigen Halbleiterkristallen, insbesondere von Germanium, aus der Schmelze unter Verwendung eines Keimkristalls, der mit der Schmelze in Berührung gebracht und dann allmählich von ihr zurückgezogen wird, wobei das von dem Keimkristall in Form eines sich verfestigenden Flüssigkeitsstranges mitgeführte Material aus der Schmelze sukzessive unter Bildung eines stabförmigen Körpers erstarrt, beschrieben, welches dadurch gekennzeichnet ist, daß der sich verfestigende Flüssigkeitsstrang durch das elektrische Feld einer oder mehrerer Meßelektroden geführt und die Kapazität der Meßelektrode bzw. der Meßelektroden in bezug auf das an ihnen vorbeigeführte Material laufend überwacht wird, wobei eine durch Abweichungen des Durchmessers des die Schmelze verlassenden Materialstranges bedingte Änderung dieser Kapazität von einem Sollwert durch Anwendung kompensierender Maßnahmen, z. B. durch Temperaturänderung oder Änderung der Ziehgeschwindigkeit, aufgehoben wird.In the German patent specification 1170 150 is a method for pulling rod-shaped semiconductor crystals, in particular of germanium, from the melt using a seed crystal, which is brought into contact with the melt and then gradually withdrawn from it, whereby the material carried along by the seed crystal in the form of a solidifying strand of liquid solidified successively from the melt to form a rod-shaped body, which is described is characterized in that the solidifying strand of liquid by the electric field one or more measuring electrodes out and the capacity of the measuring electrode or the measuring electrodes is continuously monitored with regard to the material passed by them, one due to deviations of the diameter of the strand of material leaving the melt Capacity from a setpoint by applying compensatory measures, e.g. B. by temperature change or changing the pulling speed.
Dieses Verfahren ist in der Lage, stabförmige Halbleiterkristalle mit hoher Gleichmäßigkeit desThis process is able to produce rod-shaped semiconductor crystals with a high degree of uniformity
509 759/457509 759/457
Claims (1)
fläche senkrecht zur Längsachse in der Dicke der ge- ao Um das bei diesem Verfahren in vielen Fällen notwünschten Scheibchen entsprechenden Abständen wendige Aufsetzen eines zweiten Werkzeugs auf die angeritzt und durch seitlichen Druck und/oder Zug durch das Anritzen erhaltene Kerbe zu vermeiden unter Ausnutzung der Spaltbarkeit dieser Kristalle an empfiehlt es sich, wenn nach dem Ritzen einer Kerbe der angeritzten Stelle aufgetrennt. Dabei fallen plan- der auf der einen Seite der Kerbe befindliche, im allparallele Scheibchen mit gewünschter Stärke und 25 gemeinen der längere Stabteil festgehalten und der Orientierung an. auf der anderen Seite der Kerbe befindliche Stabteil,According to the above statements, as a result of the point or cutting edge, the invention relates to a method for producing a pressure effect at the scratched point of disks of monocrystalline silicon and / or disks. For this purpose it is possible to use the tool used for the germanium, with the diameter of the scratches, if desired, thin single crystal disks with the resulting compressive load from a liner rod made of one of these materials set with {111} - * 5 may be. With diamond tools this or {100} - or {221} - or {112 ~} ~ orientation is generally not the case, which is why its longitudinal axis is drawn and perpendicular to its longitudinal axis in plane-parallel through a correspondingly pressure-resistant material Slice is disassembled. z. B. made of high quality steel, existing gap according to the invention, the rod on its jacket tool must be replaced.
surface perpendicular to the longitudinal axis in the thickness of the ao. In order to avoid the necessary spacing required in many cases by placing a second tool on the scratched notch and using lateral pressure and / or pulling through the scratching, using the cleavage It is advisable to use these crystals to separate the incised point after scratching a notch. In doing so, flat discs on one side of the notch, all-parallel, with the desired thickness and, generally speaking, the longer rod part, are held and for orientation. part of the rod located on the other side of the notch,
len zu beseitigen. Wird die Berührung mit Luft oderin order to be able to possibly subsequently formed oxide,
len to eliminate. Will contact with air or
gegebenenfalls auf eine Ätzbehandlung vollkommenother oxidizing media switched off, so can 55 claims:
if necessary to an etching treatment completely
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES60264A DE1090868B (en) | 1958-10-15 | 1958-10-15 | Process for pulling monocrystalline semiconductor rods from melts |
FR805164A FR1235174A (en) | 1958-10-15 | 1959-09-15 | Method of pulling semiconductor rods from molten material |
CH7918459A CH386702A (en) | 1958-10-15 | 1959-10-08 | Process for pulling crystalline semiconductor rods from the melt |
GB34803/59A GB898096A (en) | 1958-10-15 | 1959-10-14 | Improvements in or relating to apparatus for and methods of drawing semi-conductor rods from the melt |
DES73154A DE1207636B (en) | 1958-10-15 | 1961-03-27 | Process for the production of wafers from monocrystalline silicon and / or germanium for semiconductor components |
CH1454261A CH409886A (en) | 1958-10-15 | 1961-12-14 | Process for manufacturing disks from single-crystal silicon or germanium |
NL274787D NL274787A (en) | 1958-10-15 | 1962-02-14 | |
GB11321/62A GB938917A (en) | 1958-10-15 | 1962-03-23 | Method of producing discs of monocrystalline semiconductor material |
FR892273A FR81564E (en) | 1958-10-15 | 1962-03-26 | Method of pulling semiconductor rods from molten material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES60264A DE1090868B (en) | 1958-10-15 | 1958-10-15 | Process for pulling monocrystalline semiconductor rods from melts |
DES73154A DE1207636B (en) | 1958-10-15 | 1961-03-27 | Process for the production of wafers from monocrystalline silicon and / or germanium for semiconductor components |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1207636B true DE1207636B (en) | 1965-12-23 |
Family
ID=43127708
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DES60264A Pending DE1090868B (en) | 1958-10-15 | 1958-10-15 | Process for pulling monocrystalline semiconductor rods from melts |
DES73154A Pending DE1207636B (en) | 1958-10-15 | 1961-03-27 | Process for the production of wafers from monocrystalline silicon and / or germanium for semiconductor components |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DES60264A Pending DE1090868B (en) | 1958-10-15 | 1958-10-15 | Process for pulling monocrystalline semiconductor rods from melts |
Country Status (5)
Country | Link |
---|---|
CH (2) | CH386702A (en) |
DE (2) | DE1090868B (en) |
FR (2) | FR1235174A (en) |
GB (2) | GB898096A (en) |
NL (1) | NL274787A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4121965A (en) * | 1976-07-16 | 1978-10-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration | Method of controlling defect orientation in silicon crystal ribbon growth |
US4118197A (en) * | 1977-01-24 | 1978-10-03 | Mobil Tyco Solar Energy Corp. | Cartridge and furnace for crystal growth |
US4239734A (en) * | 1978-07-13 | 1980-12-16 | International Business Machines Corporation | Method and apparatus for forming silicon crystalline bodies |
US4751059A (en) * | 1986-12-05 | 1988-06-14 | Westinghouse Electric Corp. | Apparatus for growing dendritic web crystals of constant width |
JPH08298251A (en) * | 1995-02-28 | 1996-11-12 | Shin Etsu Handotai Co Ltd | Manufacture of thin plate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH292927A (en) * | 1950-01-13 | 1953-08-31 | Western Electric Co | Method and device for producing semiconductor crystals. |
-
1958
- 1958-10-15 DE DES60264A patent/DE1090868B/en active Pending
-
1959
- 1959-09-15 FR FR805164A patent/FR1235174A/en not_active Expired
- 1959-10-08 CH CH7918459A patent/CH386702A/en unknown
- 1959-10-14 GB GB34803/59A patent/GB898096A/en not_active Expired
-
1961
- 1961-03-27 DE DES73154A patent/DE1207636B/en active Pending
- 1961-12-14 CH CH1454261A patent/CH409886A/en unknown
-
1962
- 1962-02-14 NL NL274787D patent/NL274787A/xx unknown
- 1962-03-23 GB GB11321/62A patent/GB938917A/en not_active Expired
- 1962-03-26 FR FR892273A patent/FR81564E/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CH386702A (en) | 1965-01-15 |
CH409886A (en) | 1966-03-31 |
FR1235174A (en) | 1960-10-26 |
FR81564E (en) | 1963-10-11 |
NL274787A (en) | 1964-09-25 |
GB898096A (en) | 1962-06-06 |
GB938917A (en) | 1963-10-09 |
DE1090868B (en) | 1960-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1302031B (en) | Process for growing dendritic crystals | |
DE69801381T2 (en) | Process and seed crystal for producing a silicon single crystal | |
DE1135671B (en) | Method for producing a pn junction and / or a gradient of an electrically active element in a semiconductor crystal | |
DE1142420B (en) | Method for producing platelet-shaped semiconductor bodies for semiconductor components from a single semiconductor crystal | |
DE102019101742A1 (en) | Metal wire, saw wire, cutting device and method of making the metal wire | |
DE2654063A1 (en) | METHOD OF MANUFACTURING A RIBBON OF POLYCRYSTALLINE SEMICONDUCTOR MATERIAL | |
DE102008030826A1 (en) | Wire sawing | |
DE69802864T2 (en) | Silicon seed crystal, method of manufacturing the same, and method of manufacturing a silicon single crystal using the silicon seed crystal | |
DE1095951B (en) | Process for the production of semiconductor devices | |
DE10019601A1 (en) | Production of polycrystalline rod involves depositing silicon on carrier rod, rotating polycrystalline silicon rod about a longitudinal axis and cutting rod through with parting tool | |
DE1207636B (en) | Process for the production of wafers from monocrystalline silicon and / or germanium for semiconductor components | |
DE112012002299T5 (en) | Method for producing a silicon carbide substrate | |
DE602004010360T2 (en) | Wire sawing | |
DE1094710C2 (en) | Process for the breeding of single crystals by crucible-free zone melting | |
DE102010007459B4 (en) | A method of separating a plurality of slices from a crystal of semiconductor material | |
DE3716943A1 (en) | Process and device for separating material, in particular in bar form | |
DE1519869B1 (en) | Method for producing a fiber structure in a body from a semiconducting compound | |
DE102010018570B4 (en) | A method of manufacturing a plurality of semiconductor wafers by processing a single crystal | |
DE1254590B (en) | Method for crucible-free zone melting of semiconductor material, in particular silicon | |
DE2722782C2 (en) | Process for multiple lapping separation of solids | |
DE2519116C2 (en) | Process for treating diamond particles | |
DE1419738A1 (en) | Process for growing thin, flat dendritic single crystals | |
DE1209997B (en) | Process for the production of single crystals from fusible material | |
DE1189529B (en) | Process for the production of synthetic diamonds | |
DE2537088C3 (en) | Arrangement for dividing hard, brittle material, in particular semiconductor material |