DE10361927B4 - Ionenkanal-Sensorarray - Google Patents
Ionenkanal-Sensorarray Download PDFInfo
- Publication number
- DE10361927B4 DE10361927B4 DE2003161927 DE10361927A DE10361927B4 DE 10361927 B4 DE10361927 B4 DE 10361927B4 DE 2003161927 DE2003161927 DE 2003161927 DE 10361927 A DE10361927 A DE 10361927A DE 10361927 B4 DE10361927 B4 DE 10361927B4
- Authority
- DE
- Germany
- Prior art keywords
- ion
- microchannels
- layer
- medium
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 102000004310 Ion Channels Human genes 0.000 title claims abstract description 95
- 108090000862 Ion Channels Proteins 0.000 claims abstract description 94
- 150000002500 ions Chemical class 0.000 claims abstract description 49
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 230000000694 effects Effects 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 239000002608 ionic liquid Substances 0.000 claims abstract 2
- 238000001514 detection method Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 24
- 238000012360 testing method Methods 0.000 claims description 20
- 108091006146 Channels Proteins 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000035945 sensitivity Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 4
- 238000001506 fluorescence spectroscopy Methods 0.000 claims description 3
- 239000003550 marker Substances 0.000 claims description 3
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims description 2
- 238000010291 electrical method Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 47
- 150000002632 lipids Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000000018 DNA microarray Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000000232 Lipid Bilayer Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000002555 ionophore Substances 0.000 description 2
- 230000000236 ionophoric effect Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 238000001074 Langmuir--Blodgett assembly Methods 0.000 description 1
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 1
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000011948 assay development Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 231100000317 environmental toxin Toxicity 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 239000003958 nerve gas Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000012402 patch clamp technique Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00659—Two-dimensional arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00702—Processes involving means for analysing and characterising the products
- B01J2219/00707—Processes involving means for analysing and characterising the products separated from the reactor apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00734—Lipids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/0074—Biological products
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Anordnung
zur flächenaufgelösten Messung
der Ionenkanalaktivität
von natürlichen
oder synthetischen Ionenkanälen,
bestehend aus
– einer mit Durchbrüchen (4) versehenen Trägerschicht (2),
– mit in den Durchbrüchen (4) verankerten natürlichen oder synthetischen Ionenkanälen (5),
– Mitteln zum Beaufschlagen der Ionenkanäle (5) mit einem flüssigen Medium, welches Ionen enthält
– Mitteln zur Detektion der durch einen geöffneten Ionenkanal gelangten Ionen oder Ionenflüssigkeit,
dadurch gekennzeichnet, dass
– die Trägerschicht (2) auf jeder Seite mit einer mit Mikrokanälen (3 bzw. 3') versehenen Schicht (1 bzw. 1') abgedeckt ist, wobei die Mikrokanäle (3 bzw. 3') in einer Schicht (1 bzw. 1') kreuzungsfrei verlaufen,
– die Mikrokanäle (1 und 1') der beiden Schichten (3 und 3') zueinander gekreuzt verlaufen und Kreuzungspunkte ausbilden, wobei jeweils einem Kreuzungspunkt der Mikrokanäle (3 und 3') ein Durchbruch (4) der zwischen den Schichten befindlichen Trägerschicht (2) mit einem darin verankerten Ionenkanal (5) zugeordnet ist,...
– einer mit Durchbrüchen (4) versehenen Trägerschicht (2),
– mit in den Durchbrüchen (4) verankerten natürlichen oder synthetischen Ionenkanälen (5),
– Mitteln zum Beaufschlagen der Ionenkanäle (5) mit einem flüssigen Medium, welches Ionen enthält
– Mitteln zur Detektion der durch einen geöffneten Ionenkanal gelangten Ionen oder Ionenflüssigkeit,
dadurch gekennzeichnet, dass
– die Trägerschicht (2) auf jeder Seite mit einer mit Mikrokanälen (3 bzw. 3') versehenen Schicht (1 bzw. 1') abgedeckt ist, wobei die Mikrokanäle (3 bzw. 3') in einer Schicht (1 bzw. 1') kreuzungsfrei verlaufen,
– die Mikrokanäle (1 und 1') der beiden Schichten (3 und 3') zueinander gekreuzt verlaufen und Kreuzungspunkte ausbilden, wobei jeweils einem Kreuzungspunkt der Mikrokanäle (3 und 3') ein Durchbruch (4) der zwischen den Schichten befindlichen Trägerschicht (2) mit einem darin verankerten Ionenkanal (5) zugeordnet ist,...
Description
- Die Erfindung betrifft eine Anordnung zur flächenaufgelösten Erfassung der Ionenkanalaktivität von natürlichen oder synthetischen Ionenkanälen in einem Array durch Detektion der durch den geöffneten Kanal strömenden Ionen, bestehend aus einer mit Durchbrüchen versehenen Trägerschicht, mit in den Durchbrüchen verankerten natürlichen oder synthetischen Ionenkanälen.
- Die Erfindung betrifft weiterhin ein Verfahren zur flächenaufgelösten Messung der Ionenkanalaktivität von natürlichen oder synthetischen Ionenkanälen in einem Array durch Detektion der durch den geöffneten Kanal strömenden Ionen.
- Ionenkanäle sind spezielle Membranproteine, die die Zellmembran durchspannen und durch bestimmte chemische Stoffe oder durch Potenzialunterschiede von Ionen aktiviert werden können. Ist der Ionenkanal aktiviert, können in wenigen Millisekunden mehrere zehntausend Ionen durch den Kanal strömen. Ionenkanäle, die durch chemische Stoffe gesteuert werden bezeichnet man als ligandengesteuerte Ionenkanäle. Ionenkanäle, die auf Konzentrationsunterschiede von Ionen zwischen dem zellulären und extrazellulären Raum reagieren, werden als spannungsgesteuerte Ionenkanäle bezeichnet. Ligandengesteuerte Ionenkanäle sind für chemisch-analytische Aufgaben, für die Entwicklung von Pharmaka und Neuroprothesen außerordentlich interessant. Sie zeichnen sich durch eine sehr hohe Spezifität aus. Nur bestimmte Stoffe, sogenannte Transmitter oder Botenstoffe, sind in der Lage einen bestimmten Kanal zu öffnen. Allerdings können auch bestimmte Stoffe die Öffnung des Kanals blockieren. Zu solchen Stoffen gehören zum Beispiel Lokalanästhetika oder Nervengifte.
- Die potentielle technische Anwendung von Ionenkanälen erstreckt sich vor allem auf die Entwicklung von neuen Wirkstoffen, auf die Aufspürung von Nervengasen oder Umwelttoxinen. Des Weiteren können technische Systeme mit Ionenkanälen auch bestimmte ausgefallene physiologische Funktionen substituieren.
- Das biochemische Wissen Um die Ionenkanäle hat seit Einführung der Patch-Clamp-Technik einen enormen Zuwachs erfahren. Da es eine Vielzahl unterschiedlicher Kanäle gibt, müssen technische Testsysteme auch in der Lage sein, mehrere Kanäle unter Einwirkung der gleichen oder unterschiedlichen Stoffe zu erfassen. Diese Aufgabe kann zum Beispiel durch eine Arrayanordnung der Ionenkanäle mit simultaner Detektion erfüllt werden. Bislang ist es noch nicht gelungen, technische Testsysteme mit mehreren Ionenkanälen zu entwickeln, die separat gemessen werden können. Obgleich schon eine Reihe unterschiedlicher Strategien zur Anwendung von Ionenkanälen als Sensor verfolgt wurden, gelang nur die Messung von einzelnen Ionenkanälen zumeist in ihrer natürlichen zellulären Umgebung. Damit Ionenkanäle ihre natürliche Funktionalität auch in einer synthetischen Umgebung behalten, müssen sie von einer fluiden Lipiddoppelschicht, ähnlich der Zellmembran, umgeben sein. Dazu wurden in den vergangenen Jahren verschiedene Möglichkeiten untersucht. Eine Lösung besteht in der Integration von Ionenkanälen in Poren oder kleinen Röhrchen, die von einem Lipidfilm durchspannt werden. In den Schriften
DE 19936302 A1 undDE 10201653 A1 werden Vorrichtungen und Verfahren zur Herstellung von Mikrostrukturen, die die Form eines Röhrchens aufweisen beschrieben. Die Strukturen dienen zum Aufbau eines Biochips, wobei sich in die Röhrchen Biomoleküle einbauen fassen. Die SchriftDE 19936302 A1 beschreibt zudem die elektrische Untersuchung einzelner Ionenkanäle. In der Struktur aus Halbleitermaterial wird ein Röhrchen eingebracht, das zur Aufnahme des Ionenkanals dient. Die Prüfung der Funktion erfolgt über Elektroden. Die Schrift beschreibt keine Prüfung von mehreren Ionenkanälen, die getrennt angeordnet sind. Ebenso wird in der SchriftDE 10008373 C2 ein Verfahren und eine Vorrichtung zur elektrischen Messung von Ionenkanälen beschrieben, die sich in Zellen befinden. Die Schrift bezieht sich nicht auf die getrennte Messung von mehreren Ionenkanälen. Zudem werden die Ionenkanäle nicht in eine Anordnung eines Sensorarrays überführt. Die Erfassung von arrayhaft angeordneten Ionenkanälen mittels optischer Imagingmethoden wird in der SchriftDE 10157070 A1 beschrieben. Die Ionenkanäle werden in eine dünne, vorzugsweise polymere Schicht, die kleine Poren aufweist integriert. Damit die durch den geöffneten Ionenkanal durchströmenden Ionen erfasst werden können, muss die Schicht fest und dicht mit einer Oberfläche verbunden sein. Nachteil dieser Erfindung ist der starre Aufbau. Die porenaufweisende Schicht ist fest mit der Oberfläche des optischen Transducers verbunden. Dadurch ist es nicht möglich, variabel Ionenkanäle auszutauschen und zu testen. Weiterhin kann die Detektionsmethode nicht gewechselt werden, wodurch sich bei geringen Ionenströmen durch den Kanal Nachteile in der Empfindlichkeit ergeben. Nachteilig sind auch die aufwendigen Strukturierungstechniken damit bei der aufliegenden Schicht durchgehende Poren erzielt werden können. - Das sequenzielle oder parallele Lesen von Biochips und die lokale Zuordnung der Messsignale kann mit speziellen Fließsystemen, die im unmittelbaren Kontakt zu der biorezeptiven Schicht stehen, erfolgen. Solche Fließsysteme, die üblicherweise aus einem System von Pumpen und Ventilen bestehen können, sind in den Schriften
DE 20220299 U1 ,DE 1004375 A1 undDE 10057070 A1 genannt. Diese Verfahren erlauben entweder nur die einseitige Anströmung des Biochips oder keine flächenaufgelöste bzw. simultane Messung oder lokale Zuordnung des gemessenen Signals. - Die Druckschrift Brüggemann, A. et al, "High Quality Ion Chanel Analysis on a Chip with the NPC Technology", ASSAY and Drug Development Technologies, 2003, Vol. 1, Nr. 5, 665–673 beschreibt eine Anordnung zur Messung der Ionenkanalaktivität von natürlichen oder synthetischen Ionenkanälen, wobei die Ionenkanäle in mehreren zentralen Trägerschichten (chips) mit jeweils nur einem Durchbruch verankert sind. Die Trägerschichten sind auf jeder ihrer Seiten mit jeweils einer Schicht mit Mikrokanälen abgedeckt, wobei nur die Mikrokanäle der oberen Schicht kreuzungsfrei angeordnet sind, die Mikrokanäle der unteren Schicht dagegen eine gekreuzte Anordnung aufweisen. Mit dieser Anordnung ist ein selektives Lesen der Aktion einzelner Ionenkanäle nicht möglich. Für eine parallele Messung ist die Verwendung von Standard-Pipettierautomaten notwendig.
- Aus der US 2002/0182627 A1 ist eine Anordnung zur Messung der Ionenkanalaktivität bekannt, die zwar eine zentrale Trägerschicht mit mehreren Durchbrüchen aufweist, die zwischen zwei weiteren Schichten gestapelt ist. Die obere der beiden Schichten weist allerdings statt Mikrokanälen lediglich mehrere separate Reservoirs auf. Außerdem sind die Mikrokanäle der unteren Schicht wiederum nicht kreuzungsfrei angeordnet. Mit der beschriebenen Anordnung ist ein spalten- und reihenweises Auslesen nicht möglich. Durch die von den separaten Reservoirs begrenzten Volumen können keine wiederholten Messungen mit unterschiedlichen Reagenzien durchgeführt werden.
- Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung und ein Verfahren anzugeben, womit sich eine arrayhafte Anordnung von Ionenkanälen auf einfache Weise flächenaufgelöst detektieren lässt.
- Die durch den Ionenkanal strömenden Ionen sollen mittels unterschiedlicher Methoden und ohne Rückwirkung auf den Ionenkanal erfasst werden können.
- Erfindungsgemäß wird die Aufgabe mit den im Anspruch 1 genannten Merkmalen gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand von Unteransprüchen.
- Gemäß der Erfindung ist die Trägerschicht der Vorrichtung auf jeder Seite mit einer mit Mikrokanälen versehenen Schicht abgedeckt, wobei die Mikrokanäle in einer Schicht kreuzungsfrei verlaufen. Einem sich kreuzenden Verlauf der Mikrokanäle aus den beiden Schichten ist ein Durchbruch mit einem darin verankerten Ionenkanal zugeordnet. Die Mikrokanäle der Schichten sind mit einem flüssigen Medium, welches Ionen enthält, beaufschlagbar, wobei ein Konzentrationsunterschied mindestens einer Ionensorte zwischen dem Medium in beiden Schichten besteht. An den Mikrokanälen der Schicht mit der niedrigeren Ionenkonzentration im Medium sind Mittel zur Detektion der durch einen geöffneten Ionenkanal strömenden Ionen vorgesehen.
- Vorteilhaft werden in einer etwa 5 bis 50 μm dicken Trägerschicht durch Strukturierungstechniken in regelmäßiger Anordnung vorzugsweise runde Durchbrüche mit einem Durchmesser zwischen 5 und 20 μm eingebracht. In den Durchbrüchen werden mittels Beschichtungstechniken wie dem Bestreichen, der Langmuir-Blodgett-Technik oder der Aufschmelzung von Vesikeln Lipidschichten eingespannt, so dass mindestens in der Mitte des Durchbruchs eine Lipiddoppelschicht entsteht. Nachfolgend werden die Ionenkanäle aus einer Lipidsuspension durch geeignete Techniken in die aufgespannten Lipiddoppelschichten eingebracht. Als Material für die Trägerschicht eignen sich besonders dünne, flexible Polymerfolien.
- Die so entstandene ionenkanalhaltige Trägerschicht wird von beiden Seiten durch eine obere und eine untere Schicht, die jeweils parallele Mikrokanäle aufweisen, dicht aber vorzugsweise lösbar abgeschlossen. Der Vorteil dieser Anordnung besteht in einer einfachen Austauschbarkeit der ionenkanalhaltigen Trägerschicht. Die Mikrokanäle aus der oberen und aus der unteren Schicht kreuzen sich im Bereich eines Durchbruches. Eine Seite der von Mikrokanälen durchzogenen Schicht wird an ein Pumpensystem angeschlossen. Dabei dient beispielsweise die obere Schicht der Zuführung der Testmedien und der Ionen. Die untere Schicht nimmt die durch einen aktivierten Ionenkanal durchgeströmten Ionen im Detektionsmedium auf und führt sie einem Detektorsystem zu.
- Die Aufgabe wird weiterhin durch ein Verfahren mit den im Anspruch 9 genannten Merkmalen gelöst. Vorteilhafte Varianten des Verfahrens sind Gegenstand von Unteransprüchen.
- Gemäß dem Verfahren werden die Ionenkanäle von einer Seite mit einem Testmedium und von der anderen Seite mit einem Detektionsmedium aus den Mikrokanälen beströmt, wobei das Detektionsmedium mit einer niedrigeren Ionenkonzentration als das Testmedium eingestellt ist. Eine Änderung im Detektionsmedium der Ionenkonzentration und/oder der Ionensorte nach Passieren eines Ionenkanals wird detektiert und die flächenaufgelöste Bestimmung einzelner oder Gruppen von Ionenkanalaktivitäten erfolgt aus der Ermittlung des Mikrokanals für das zustromende Testmedium und der Ermittlung des Kanals mit Anderung der Ionenkonzentration und/oder der Ionensorte.
- Durch die Anordnung der Mikrokanäle ähnlich eines rechtwinklig verlaufenden Gitters wird eine eindeutige spalten- und zeilenweise Zuordnung der einzelnen Durchbrüche erreicht. Das Detektorsystem kann so angeordnet werden, dass jedem Mikrokanal genau ein Detektor zugeordnet ist oder dass alle Mikrokanäle zu einem Detektor münden. Es ist auch möglich, mehrere unterschiedliche Detektoren mit dem Ziel einer erhöhten Empfindlichkeit zu kombinieren. Als Detektionsverfahren eignen sich vorzugsweise die Oberflächenplasmonen-Resonanz, die Fluoreszenzspektroskopie, refraktometrische Methoden oder elektrochemische Messmethoden. Des Weiteren können bestimmte Oberflächenstrukturen, wie Metallcluster, zur optischen Signalverstärkung oder rezeptive Moleküle für Ionen eingesetzt werden. Mit Metallclustern in der Größenordnung von 5 bis 20 nm kann eine mehr als hundertfache Verstärkung des Fluoreszenzsignals und damit eine Steigerung der Detektorempfindlichkeit erreicht werden.
- Die Vorteile der Erfindung bestehen in einem einfachen modularen Aufbau der Anordnung in der Art eines Biochips, wobei die empfindlichen und üblicherweise nur kurze Zeit stabilen biochemischen Komponenten mit der von oberer und unterer Schicht gehaltenen Trägerschicht ausgetauscht werden können, ohne dass die Mittel zur Detektion und zur Zuführung der Testmedien gewechselt werden müssen.
- Für besonders empfindliche Detektionsaufgaben können unterschiedliche Messverfahren kombiniert werden. Ein intrinsischer Verstärkungseffekt wird durch eine Parallelschaltung gleicher Ionenkanäle erreicht. Der Biochip ist so konzipiert, dass er auch mit herkömmlichen optischen Spektrometern oder elektrochemischen Messzellen gelesen werden kann. Die Anordnung ist miniaturisierbar, so dass eine etwa 10 × 10 mm großen Fläche mehr als 100 Poren aufweist.
- Die Erfindung zeichnet sich durch eine empfindliche, ortsaufgelöste Detektion von aktivierten und/oder inhibierten Ionenkanälen auf, ohne dass chemische oder radioaktive Marker am Ionenkanal eingesetzt werden müssen.
- Die Erfindung wird nachfolgend an Hand von Ausführungsbeispielen näher erläutert. In den Zeichnungen zeigen:
-
1 eine schematische Darstellung der Trägerschicht mit den beiden mit Mikrokanälen versehenen Schichten -
2 eine schematische Darstellung der Trägerschicht mit einem Ionenkanal und Lipidschicht -
3 einen Schnitt durch eine geschlossene Anordnung, wobei ein Durchbruch dargestellt ist -
4 einen Schnitt durch eine geschlossene Anordnung mit sich kreuzenden Kanalverläufen und an das abströmende Detektionsmedium angeschlossenem Detektionsmittel -
5 eine Darstellung eines Flussschemas des Ionenkanal-Sensorarrays -
6 eine Darstellung eines Fluoreszenzspektrums eines Ionophors zur Bestimmung von Kalziumionen. - Die
1 zeigt eine erfindungsgemäße Gestaltung der Anordnung zur Detektion eines Arrays von Ionenkanälen. In der Schicht1 sind Mikrokanäle3 eingebracht in denen ein Testmedium7 und eine Lösung bestimmter Ionen strömen. Die Trägerschicht2 zeichnet sich durch eine regelmäßige Anordnung von Durchbrüchen4 aus in denen Ionenkanäle5 verankert sind. Eine weitere Schicht1' weist ebenfalls Mikrokanäle3' auf. Die Kanäle3' dieser Schicht1' verlaufen im rechten Winkel zu den Kanälen3 der gegenüberliegenden Schicht1 . Die durch den Ionenkanal5 strömenden Ionen werden von dem in den Mikrokanälen3' strömenden Detektionsmedium8 zu einem Detektor16 transportiert. - Die
2 zeigt einen Detailausschnitt des in den Durchbruch4 der Trägerschicht2 integrierten Ionenkanals5 . Zur Aufrechterhaltung der Funktion ist der Ionenkanal5 von einer dünnen Lipidschicht6 umgeben. - Die
3 verdeutlicht das Prinzip der Anströmung der in den Durchbrüchen4 integrierten Ionenkanäle5 durch das Testmedium7 und eine Lösung bestimmter Ionen in den Mikrokanälen3 der oberen Schicht1 , wobei die zweite Schicht1' mit Mikrokanälen3' die durch den Ionenkanal geflossenen Ionen aufnimmt. Zur flächenhaften Detektion verlaufen die Mikrokanäle3 und3' der beiden Schichten1 und1' senkrecht zueinander. - Die
4 zeigt eine Möglichkeit der Steigerung der Empfindlichkeit durch gleichzeitige Aktivierung gleicher Ionenkanäle mit dem gleichen Testmedium und eine Möglichkeit, die durch den von Molekülen9 aktivierten Ionenkanal5 geströmten Ionen durch Fluoreszenzmarker10 zu detektieren, wobei durch Anlagerung von durch den Ionenkanal geströmten Ionen11 der Fluoreszenzmarker sein Fluoreszenzsignal ändert. Die Fluoreszenzmarker mit den angelagerten Molekülen gelangen mit dem Detektionsmedium8 zu dem Detektor. Unmittelbar am Ausgang des Ionenkanal-Sensorarrays ist für jeden Mikrokanal3' ein optisch transparenter Abflußkanal angebracht. Das Licht der Lichtquelle23 wird durch geeignete Linsen14 oder andere optische Systeme so gebündelt, dass es als Lichtstrahl13 die Fluoreszenzfilter15 passiert und durch eine andere Linse14 gebündelt auf den Detektor16 fokussiert wird. - Die
5 zeigt ein Flußschema des durch ein Mittel17 geschlossenen Ionenkanal-Sensorarrays18 in einer Anordnung zur selektiven Anströmung der Ionenkanäle. Zur Untersuchung unterschiedlicher Ionenkanäle können auch unterschiedliche Detektoren16 oder Kombinationen von Detektoren16 eingesetzt werden. Die spalten- und zeilenweise Zuordnung der sequenziell detektierten Ionenkanäle erfolgt durch eine Ansteuerung der Pumpen- und Ventileinheiten20 von Testmedium7 und Trägermedium19 durch eine Steuereinheit21 . Durch ein Zwischenspeichern der Messungen wird nach Abschluß der Messungen die Aktivität der Ionenkanäle in dem Array in einem Display22 angezeigt. - Die
6 zeigt ein Fluoreszenzspektrum eines Ionophors ohne Anlagerung von Ionen und nach Anlagerung von bestimmten Ionen. -
- 1
- Schicht
- 1'
- Schicht
- 2
- Trägerschicht
- 3
- Mikrokanal
- 3'
- Mikrokanal
- 4
- Durchbruch
- 5
- Ionenkanal
- 6
- Lipidschicht
- 7
- Testmedium
- 8
- Detektionsmedium
- 9
- nachzuweisendes Molekül, Ligand
- 10
- Fluoreszenzmarker
- 11
- gebundenes Ion
- 12
- Ausflußkanal
- 13
- Lichtstrahl
- 14
- optische Linse
- 15
- Filter
- 16
- Detektor
- 17
- Mittel
- 18
- Ionenkanal-Sensorarray
- 19
- Trägermedium
- 20
- Pumpen- und Ventileinheit
- 21
- Steuereinheit
- 22
- Display
- 23
- Lichtquelle
Claims (15)
- Anordnung zur flächenaufgelösten Messung der Ionenkanalaktivität von natürlichen oder synthetischen Ionenkanälen, bestehend aus – einer mit Durchbrüchen (
4 ) versehenen Trägerschicht (2 ), – mit in den Durchbrüchen (4 ) verankerten natürlichen oder synthetischen Ionenkanälen (5 ), – Mitteln zum Beaufschlagen der Ionenkanäle (5 ) mit einem flüssigen Medium, welches Ionen enthält – Mitteln zur Detektion der durch einen geöffneten Ionenkanal gelangten Ionen oder Ionenflüssigkeit, dadurch gekennzeichnet, dass – die Trägerschicht (2 ) auf jeder Seite mit einer mit Mikrokanälen (3 bzw.3' ) versehenen Schicht (1 bzw.1' ) abgedeckt ist, wobei die Mikrokanäle (3 bzw.3' ) in einer Schicht (1 bzw.1' ) kreuzungsfrei verlaufen, – die Mikrokanäle (1 und1' ) der beiden Schichten (3 und3' ) zueinander gekreuzt verlaufen und Kreuzungspunkte ausbilden, wobei jeweils einem Kreuzungspunkt der Mikrokanäle (3 und3' ) ein Durchbruch (4 ) der zwischen den Schichten befindlichen Trägerschicht (2 ) mit einem darin verankerten Ionenkanal (5 ) zugeordnet ist, – die Mikrokanäle (3 und3' ) der Schichten (1 und1' ) mit einem flüssigen Medium, welches Ionen enthält, beaufschlagbar sind, wobei ein Gradient zwischen dem Medium in der Schicht (1 ) und dem Medium in der Schicht (1' ) besteht, – an den Mikrokanälen oder der Schicht (1 oder1' ) mit der niedrigeren Ionenkonzentration im Medium Mittel zur Detektion der durch einen geöffneten Ionenkanal (5 ) strömenden Ionen vorgesehen sind. - Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Ionenkanäle (
5 ) in einer 1 bis 20 μm dicken planaren Trägerschicht (2 ) in Durchbrüchen (4 ) mit einem Durchmesser zwischen 5 bis 20 μm verankert sind. - Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mikrokanäle (
3 und3' ) in den beiden Schichten (1 und1' ) in der Art von Zeilen und Spalten zueinander angeordnet sind, so dass ein geöffneter Ionenkanal (5 ) durch ein zuströmendes Testmedium (7 ) und ein abströmendes Detektionsmedium (8 ) eindeutig bestimmbar ist. - Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine der Schichten (
1 oder1' ) mit den Mikrokanälen (3 oder3' ) zum Einbringen des Testmediums (7 ) und von Ionen zu den Ionenkanälen (5 ) vorgesehen ist. - Anordnung nach Anspruch 4, dadurch gekennzeichnet, dass die der Schicht (
1 oder1' ) zum Einbringen des Testmediums (7 ) gegenüberliegende Schicht (1' oder1 ) zur Detektion der durch einen Ionenkanal (5 ) strömenden Ionen vorgesehen ist. - Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Mikrokanäle (
3 und3' ) in den Schichten (1 und1' ) separat und unabhängig voneinander durch Pumpen und/oder Ventile (20 ) mit dem flüssigen Medium beaufschlagbar sind. - Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Trägerschicht (
2 ) lösbar mit den beiden Schichten (1 ,1' ) verbunden ist. - Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass durch eine separate Ansteuerung der Mikrokanäle (
3 und3' ) ein sequentielles Auslesen des Ionenkanalarrays gewährleistet ist. - Verfahren zur flächenaufgelösten Messung der Ionenkanalaktivität von natürlichen oder synthetischen Ionenkanälen, mit einer Anordnung nach einem der Ansprüche 1 bis 8, wobei – die Ionenkanäle (
5 ) von einer Seite mit einem Testmedium und von der anderen Seiten mit einem Detektionsmedium aus den Mikrokanälen (3 und3' ) beströmt werden, wobei das Detektionsmedium (8 ) mit einer niedrigeren Ionenkonzentration als das Testmedium (7 ) eingestellt ist, – eine Änderung der Ionenkonzentration und/oder der Ionensorte im Detektionsmedium (8 ) nach Passieren eines Ionenkanals (5 ) detektiert wird, – und die flächenaufgelöste Bestimmung einzelner oder Gruppen von Ionenkanalaktivitäten aus der Ermittlung des Kanals für das zuströmende Testmedium und der Ermittlung des Kanals mit Änderung der Ionenkonzentration und/oder der Ionensorte im Detektionsmedium erfolgt. - Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die, Detektion der Ionen mittels der Oberflächen-Plasmonenresonanz oder mittels Verfahren der optischen Refraktometrie erfolgt.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass zur Steigerung der Empfindlichkeit rezeptive Moleküle auf der optischen Oberfläche der Plasmonenresonanzanregung verwendet werden.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Detektion der Ionen und/oder der Ionensorte mittels der Fluoreszenzspektroskopie erfolgt.
- Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Fluoreszenzspektroskopie im Bereich des Lichtstrahls (
13 ) mittels fest verankerter Fluoreszenzmarker durchgeführt wird. - Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass zur Steigerung der Sensitivität mehrere Messsysteme gleichzeitig oder sequentiell betrieben werden und die Detektion der Ionen und/oder der Ionensorte mittels optischer und/oder elektrischer Methoden erfolgt.
- Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass zur Erhöhung der Empfindlichkeit die Messung mit in einer Zeile oder in einer Spalte jeweils gleichen Ionenkanälen durchgeführt wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003161927 DE10361927B4 (de) | 2003-12-19 | 2003-12-19 | Ionenkanal-Sensorarray |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003161927 DE10361927B4 (de) | 2003-12-19 | 2003-12-19 | Ionenkanal-Sensorarray |
Publications (2)
Publication Number | Publication Date |
---|---|
DE10361927A1 DE10361927A1 (de) | 2005-07-14 |
DE10361927B4 true DE10361927B4 (de) | 2006-12-14 |
Family
ID=34673092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2003161927 Expired - Fee Related DE10361927B4 (de) | 2003-12-19 | 2003-12-19 | Ionenkanal-Sensorarray |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE10361927B4 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0717150D0 (en) | 2007-09-04 | 2007-10-17 | Univ Warwick | Apparatus and method |
DE102010022929B4 (de) * | 2010-06-07 | 2013-07-18 | Albert-Ludwigs-Universität Freiburg | Verfahren zum Herstellen einer Bilipidschicht sowie Mikrostruktur und Messanordnung |
GB201212135D0 (en) | 2012-07-09 | 2012-08-22 | Base4 Innovation Ltd | Improved sequencing apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020064841A1 (en) * | 2000-02-11 | 2002-05-30 | Klemic Kathryn G. | Planar patch clamp electrodes |
US20020182627A1 (en) * | 2001-03-24 | 2002-12-05 | Xiaobo Wang | Biochips including ion transport detecting strucutres and methods of use |
US20030008308A1 (en) * | 2001-04-06 | 2003-01-09 | California Institute Of Technology | Nucleic acid amplification utilizing microfluidic devices |
DE10157070A1 (de) * | 2001-11-16 | 2003-06-05 | Univ Dresden Tech | Anordnung zur Messung von durch Ionenkanäle fließende Ionenströme, sowie Verfahren zur Herstellung dieser und Messverfahren |
-
2003
- 2003-12-19 DE DE2003161927 patent/DE10361927B4/de not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020064841A1 (en) * | 2000-02-11 | 2002-05-30 | Klemic Kathryn G. | Planar patch clamp electrodes |
US20020182627A1 (en) * | 2001-03-24 | 2002-12-05 | Xiaobo Wang | Biochips including ion transport detecting strucutres and methods of use |
US20030008308A1 (en) * | 2001-04-06 | 2003-01-09 | California Institute Of Technology | Nucleic acid amplification utilizing microfluidic devices |
DE10157070A1 (de) * | 2001-11-16 | 2003-06-05 | Univ Dresden Tech | Anordnung zur Messung von durch Ionenkanäle fließende Ionenströme, sowie Verfahren zur Herstellung dieser und Messverfahren |
Non-Patent Citations (1)
Title |
---|
Brüggemann,a. (u.a.): High Quality Ion Channel Analysis on a Chip with the NPC(c) Technology. ASSAY and Drug Development Techniques, 2003, Vol. 1, Nr. 5, S. 665-673 * |
Also Published As
Publication number | Publication date |
---|---|
DE10361927A1 (de) | 2005-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1040349B2 (de) | Positionierung und elektrophysiologische charakterisierung einzelner zellen und rekonstituierter membransysteme auf mikrostrukturierten trägern | |
EP0706646B1 (de) | Probenträger und seine verwendung | |
DE69432402T2 (de) | Chemotaktische testvorrichtung und verfahren mit mehreren angriffspunkten | |
DE69724943T2 (de) | Mikrohergestellter chemischer sensor auf diffusionsbasis | |
DE69917888T2 (de) | Biosensoranordnung mit zellpopulationen in räumlich begrenzten mikrohohlräume | |
DE60025929T2 (de) | Anordnung und verfahren zum feststellen und/oder überwachen elektrophysiologischer eigenschaften von ionenkanälen | |
JP3769622B2 (ja) | 人工脂質膜の形成方法とそのための脂質平面膜形成装置 | |
WO1999027367A1 (de) | Vorrichtung und verfahren zum nachweis von analyten | |
WO2003056330A2 (de) | Zellsortiersystem zur grössenabhängigen sortierung oder separation von in einer strömenden flüssigkeit suspendierten zellen | |
DE19935433A1 (de) | Mikrofluidischer Reaktionsträger | |
EP2142911A2 (de) | Biochip für die fluoreszenzanalyse von einzelnen transportern | |
DE10148210B4 (de) | Flusskammer | |
DE60020702T2 (de) | Abbildende assay-analyse für mikroproben | |
DE10361927B4 (de) | Ionenkanal-Sensorarray | |
EP2798348B1 (de) | Anordnung und verfahren zur elektrochemischen analyse von flüssigen proben mit lateral flow assays | |
EP2188365B1 (de) | Zellkulturmesssystem und verfahren für vergleichende untersuchungen an zellkulturen | |
EP2170513A1 (de) | Mikro- und nanofluidsystem zur dynamischen strukturanalyse von linearen makromolekülen und anwendungen davon | |
DE10236528A1 (de) | Vorrichtung und Methoden zur Durchführung von elektrischen Messungen an Membrankörpern | |
DE10117723A1 (de) | Probenträger, insbesondere für biochemische Reaktionen | |
DE19721477A1 (de) | Mikrobieller Membranreaktor zur Verwendung in Fließsystemen | |
DE10157070B4 (de) | Anordnung zur Messung von durch Ionenkanäle fließenden Ionenströmen, sowie Verfahren zur Herstellung dieser und Messverfahren | |
EP1594613B1 (de) | Verfahren zur untersuchung zellulärer proben | |
EP1277505B1 (de) | Vorrichtung, Verfahren und Durchflussanalysensystem zum Erfassen immunogener Partikel | |
DE102005048187B4 (de) | Einrichtung und Verfahren zur Messung von Parametern zur Bestimmung von parazellulären und transzellulären Permeabilitäten von Zellkulturen | |
JP2022094337A (ja) | 複合式細胞イメージング・生化学検出チップ及びその使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8364 | No opposition during term of opposition | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20110701 |