DE10355575B4 - A method of making sidewall spacers for a circuit element by increasing etch selectivity - Google Patents
A method of making sidewall spacers for a circuit element by increasing etch selectivity Download PDFInfo
- Publication number
- DE10355575B4 DE10355575B4 DE10355575A DE10355575A DE10355575B4 DE 10355575 B4 DE10355575 B4 DE 10355575B4 DE 10355575 A DE10355575 A DE 10355575A DE 10355575 A DE10355575 A DE 10355575A DE 10355575 B4 DE10355575 B4 DE 10355575B4
- Authority
- DE
- Germany
- Prior art keywords
- silicon dioxide
- layer
- spacer
- substrate
- dioxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0223—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
- H10D30/0227—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/022—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31608—Deposition of SiO2
- H01L21/31612—Deposition of SiO2 on a silicon body
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0212—Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/021—Manufacture or treatment using multiple gate spacer layers, e.g. bilayered sidewall spacers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Verfahren zum Herstellen einer Halbleitervorrichtung mit:
Vorsehen eines Halbleitersubstrats;
Bilden eines Leitungsstrukturelements auf dem Halbleitersubstrat;
Durchführen einer ersten Dotierstoffimplantation unter Verwendung des Leitungsstrukurelements als Teil einer Implantationsmaske;
Abscheiden einer Siliziumdioxidschicht über dem Substrat und dem Leitungsstrukturelement;
Wärmebehandeln des Substrats, um die erste Dotierstoffimplantation zu aktivieren unter einer ersten Temperatur und für eine erste Zeitdauer;
Fortführen der Wärmebehandlung bei einer zweiten Temperatur für eine zweite Zeitdauer, um eine Verdichtung der Siliziumdioxidschicht fertigzustellen;
Bilden einer Abstandsschicht über der verdichteten Siliziumdioxidschicht; und
Ätzen der Abstandsschicht, wobei die verdichtete Siliziumdioxidschicht als Ätzstoppschicht benutzt wird, um Seitenwandabstandselemente an dem Leitungsstrukturelement zu bilden.Method for producing a semiconductor device with:
Providing a semiconductor substrate;
Forming a line structure element on the semiconductor substrate;
Performing a first dopant implantation using the lead device as part of an implantation mask;
Depositing a silicon dioxide layer over the substrate and the line structure element;
Heat treating the substrate to activate the first dopant implant at a first temperature and for a first time period;
Continuing the heat treatment at a second temperature for a second period of time to complete densification of the silicon dioxide layer;
Forming a spacer layer over the densified silicon dioxide layer; and
Etching the spacer layer, wherein the densified silicon dioxide layer is used as an etch stop layer to form sidewall spacers on the line structure element.
Description
GEBIET DER VORLIEGENDEN ERFINDUNGFIELD OF THE PRESENT INVENTION
Im Allgemeinen betrifft die vorliegende Erfindung die Herstellung integrierter Schaltungen und betrifft dabei die Herstellung von Seitenwandabstandselementen, die beispielsweise für das laterale Strukturieren eines Dotierprofils verwendet werden, das benachbart zu einem Schaltungselement, das daran gebildete Seitenwandabstandselemente aufweist, implantiert wird.in the In general, the present invention relates to the manufacture of integrated Circuits and relates to the production of sidewall spacers, for example for the lateral structuring of a doping profile can be used, the adjacent to a circuit element, the sidewall spacers formed thereon is implanted.
BESCHREIBUNG DES STANDS DER TECHNIKDESCRIPTION OF THE STATE OF THE TECHNOLOGY
Die Herstellung integrierter Schaltungen erfordert eine große Anzahl von Prozessschritten mit beispielsweise Photolithographie, Ätztechniken, Implantationssequenzen, Ausheizprozessen und dergleichen. In der MOS-Technologie ist ein wichtiger Schritt die Herstellung einer Gateelektrode eines Feldeffekttransistors, wobei die Größe der Gateelektrode wesentlich das Gesamtverhalten des MOS-Transistorelements beeinflusst. Die Gateelektrode ist ein leitungsähnliches Schaltungselement, das über einem kristallinen Halbleitergebiet, typischerweise ein Siliziumgebiet, ausgebildet ist, wobei eine dünne Gateisolierschicht zwischen dem Halbleitergebiet und der Gateelektrode angeordnet ist, um eine dielektrische Barriere bereitzustellen und eine kapazitive Ankopplung an das darunter liegende Halbleitergebiet zu erzeugen, das einen leitenden Kanal beim Anlegen einer geeigneten Steuerspannung an die Gateelektrode ausbildet. Der Kanal bildet sich in dem Halbleitergebiet in der Nähe der Gateisolierschicht und erzeugt eine elektrische Verbindung zwischen dem stark dotierten Source- und Draingebiet. Der Abstand zwischen dem Drain- und dem Sourcegebiet, d. h. die laterale Ausdehnung des Kanals, die mit der lateralen Ausdehnung der Gateelektrode korreliert ist und auch als Kanallänge bezeichnet wird, ist ein wichtiger Entwurfsparameter und hat nunmehr 0.1 μm und weniger in hochentwickelten integrierten Schaltungen erreicht.The Manufacturing integrated circuits requires a large number of process steps with, for example, photolithography, etching techniques, Implantation sequences, heating processes and the like. In the MOS technology is an important step in producing a Gate electrode of a field effect transistor, wherein the size of the gate electrode significantly affects the overall behavior of the MOS transistor element. The Gate electrode is a line-like Circuit element over a crystalline semiconductor region, typically a silicon region, is formed, with a thin Gate insulating layer between the semiconductor region and the gate electrode is arranged to provide a dielectric barrier and a capacitive coupling to the underlying semiconductor region to generate a conductive channel when creating a suitable Control voltage to the gate electrode is formed. The channel forms in the semiconductor region in the vicinity of the gate insulating layer and creates an electrical connection between the heavily doped Source and drainage area. The distance between the drain and the Source area, d. H. the lateral extent of the canal, with the lateral extent of the gate electrode is correlated and also as channel length is an important design parameter and now has 0.1 μm and achieved less in sophisticated integrated circuits.
In der Standard-MOS-Technologie wird die Gateelektrode gebildet, bevor die Drain- und Sourcegebiete durch Ionenimplantation hergestellt werden. Während des Ionenimplantationsprozesses dient die Gateelektrode als eine Implantationsmaske, wodurch eine korrekte Justierung des Drain- und Sourcegebietes in Bezug auf die Gateelektrode sichergestellt ist. Da eine Vielzahl von Hochtemperaturbehandlungen nach der Herstellung der Gateelektrode ausgeführt werden, wird die vor der Strukturierung der Gateelektrode hergestellte Gateisolierschicht vorzugsweise auf der Basis von Siliziumdioxid oder Siliziumnitrid gebildet, und die Gateelektrode wird aus Polysilizium gebildet, um damit eine Gateelektrodenstruktur zu erhalten, die eine hohe thermische Stabilität aufweist. Nach dem Strukturieren der Gateelektrode werden das Drain- und Sourcegebiet mittels Ionenimplantation hergestellt, wobei die Gateelektrode als eine Implantationsmaske genutzt wird. Es erweist sich jedoch, dass Transistorelemente mit reduzierten Bauteilgrößen anspruchsvolle Dotierprofile in der lateralen Richtung und auch in der vertikalen Richtung erfordern, wobei der Begriff „vertikal” die Richtung senkrecht zur Oberfläche des Substrats kennzeichnet, während der Begriff „lateral” im Groben der Fließrichtung von Ladungsträgern in dem Kanal entspricht. Während die vertikale Dotierstoffprofilierung durch entsprechendes Einstellen der Implantationsparameter, etwa Dosis und Energie für eine gegebene Ionenspezies, erreichbar ist, erfordert das laterale Dotierstoffprofil eine verbesserte Maskierungstechnik, die typischerweise durch die Herstellung eines oder mehrerer Seitenwandabstandselemente erreicht wird.In The standard MOS technology is the gate electrode formed before the drain and source regions are made by ion implantation become. While In the ion implantation process, the gate electrode serves as one Implantation mask, whereby a correct adjustment of the drain and source region with respect to the gate electrode. Because a variety of high temperature treatments after production the gate electrode executed be prepared before the structuring of the gate electrode Gate insulating layer, preferably based on silicon dioxide or silicon nitride is formed, and the gate electrode is made of polysilicon formed to thereby obtain a gate electrode structure, the has a high thermal stability. After patterning the gate electrode, the drain and source regions become manufactured by ion implantation, wherein the gate electrode as a Implantation mask is used. However, it turns out that transistor elements sophisticated with reduced component sizes Doping profiles in the lateral direction and also in the vertical Require direction, where the term "vertical" is the direction perpendicular to surface of the substrate while the term "lateral" roughly the flow direction of carriers in the channel corresponds. While the vertical Dotierstoffprofilierung by appropriate adjustment the implantation parameters, such as dose and energy for a given Ion species, achievable requires the lateral dopant profile an improved masking technique, typically by the Production of one or more sidewall spacers achieved becomes.
Mit
Bezug zu den
Ein
typischer Prozessablauf zur Herstellung des Transistorelements
Dabei
ist die Breite der Offset-Abstandselemente
Wie
zuvor erläutert
ist, weist die Gateelektrode
Angesichts der oben erkannten Probleme besteht daher ein Bedarf für eine verbesserte Technik zur Herstellung von Seitenwandabstandselementen, wodurch die Schäden verringert werden, die in freigelegten Oberflächenbereichen während des anisotropen Strukturierens einer Abstandsschicht hervorgerufen werden.in view of The problems identified above therefore have a need for an improved one Technique for the production of sidewall spacers, whereby the damages be reduced in exposed surface areas during the anisotropic patterning of a spacer layer.
Weiterer
Stand der Technik ist aus der
Die
ÜBERBLICK ÜBER DIE ERFINDUNGOVERVIEW OF THE INVENTION
Die vorliegende Erfindung schafft ein Verfahren mit den Merkmalen gemäß Anspruch 1.The The present invention provides a method having the features of claim 1.
Im Allgemeinen richtet sich die vorliegende Erfindung an eine Technik, die eine erhöhte Ätzselektivität einer Siliziumdioxidbeschichtung in Bezug auf eine Abstandsschicht bietet, die typischerweise Siliziumnitrid aufweist, um damit die Wahrscheinlichkeit von Lochfraß durch die Siliziumdioxidbeschichtung hindurch während eines nachfolgenden anisotropen Ätzprozesses zur Strukturierung der Abstandsschicht zu reduzieren. Die Beständigkeit der Siliziumdioxidbeschichtung in Bezug auf die zum Strukturieren der Seitenwandabstandselemente angewendeten Ätzchemie kann erhöht werden, indem die Struktur des Siliziumdioxidbeschichtung, die typischerweise durch plasmaunterstützte chemische Dampfabscheidung aufgebracht wird, verdichtet wird.In general, the present invention is directed to a technique that provides increased etch selectivity of a silicon dioxide coating relative to a spacer layer, typically comprising silicon nitride, to reduce the likelihood of pitting through the silicon dioxide coating during a subsequent anisotropic etch process to pattern the spacer layer. The durability of the silicon dioxide coating with respect to the etch chemistry used to pattern the sidewall spacers can be increased by compacting the structure of the silicon dioxide coating typically deposited by plasma assisted chemical vapor deposition.
Folglich umfasst gemäß einer anschaulichen Ausführungsform der vorliegenden Erfindung in Prinzip ein Verfahren das Abscheiden einer Siliziumdioxidschicht über einem Substrat, das ein Leitungsstrukturelement aufweist, und das Wärmebehandeln des Substrats, um die Siliziumdioxidschicht zu verdichten. Danach wird eine Abstandsschicht über der Siliziumdioxidschicht gebildet und die Abstandsschicht wird geätzt, während die verdichtete Siliziumdioxidschicht als eine Ätzstoppschicht verwendet wird, um Seitenwandabstandselemente benachbart zu dem Leitungsstrukturelement zu bilden.consequently comprises according to a illustrative embodiment the present invention in principle a method of deposition a silicon dioxide layer over a substrate having a line structure element, and the Heat treating the Substrate to densify the silicon dioxide layer. After that will a spacer layer over the silicon dioxide layer is formed and the spacer layer becomes etched while the densified silicon dioxide layer is used as an etch stop layer, around sidewall spacers adjacent to the line structure element to build.
KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS
Weitere Vorteile, Aufgaben und Ausführungsformen der vorliegenden Erfindung sind in den angefügten Patentansprüchen definiert und gehen deutlicher aus der folgenden detaillierten Beschreibung hervor, wenn diese mit Bezug zu den begleitenden Zeichnungen studiert wird; es zeigen:Further Advantages, tasks and embodiments The present invention is defined in the appended claims and go more clearly from the following detailed description when studying with reference to the accompanying drawings becomes; show it:
DETAILLIERTE BESCHREIBUNGDETAILED DESCRIPTION
Obwohl die vorliegende Erfindung mit Bezug zu den Ausführungsformen beschrieben ist, wie sie in der folgenden detaillierten Beschreibung sowie in den Zeichnungen dargestellt sind, sollte es selbstverständlich sein, dass die vorliegende detaillierte Beschreibung sowie die Zeichnungen nicht beabsichtigen, die vorliegende Erfindung auf die speziellen anschaulichen offenbarten Ausführungsformen einzuschränken, sondern die beschriebenen anschaulichen Ausführungsformen stellen lediglich beispielhaft die diversen Aspekte der vorliegenden Erfindung dar, deren Schutzbereich durch die angefügten Patentansprüche definiert ist.Even though the present invention is described with reference to the embodiments, as in the following detailed description as well as in the following Drawings are shown, it should be self-evident that the present detailed description as well as the drawings not intended to limit the present invention to the specific ones illustratively disclosed embodiments restrict but merely the illustrative embodiments described exemplify the various aspects of the present invention, the scope of which is defined by the appended claims is.
Die vorliegende Erfindung beruht allgemein auf dem Konzept der Erfinder, dass die Struktur eines durch CVD (Chemical Vapor Deposition) abgeschiedenen Siliziumdioxids durch eine Wärmebehandlung verdichtet werden kann. Es ist allgemein bekannt, dass abgeschiedenes Siliziumdioxid typischerweise verformte Bindungen und eine reduzierte Dichte im Vergleich zu einem Oxid, das durch Oxidation erhalten wird, aufweist, wodurch sich ein verringerter Widerstand gegenüber der Diffusion von Atomen und Molekülen, etwa von Wassermolekülen und insbesondere den Komponenten einer Ätzchemie, die zur Strukturierung eines Seitenwandabstandselements verwendet wird, ergibt. Aufgrund der verringerten Dichte kann daher die Wechselwirkung einer Ätzchemie mit der Siliziumdioxidschicht, abgesehen von einem Materialabtrag des Siliziumdioxids, zu einem lokalen begrenzten Angriff auf das darunter liegende Material durch das Eindiffundieren von Ätzkomponenten führen, woraus ein Lochfraß der darunter liegenden Materialschicht resultiert. Durch Wärmebehandeln des abgeschiedenen Siliziumdioxids kann dessen Struktur verdichtet werden, wodurch der Widerstand gegen das Eindiffundieren von Ätzkomponenten erhöht wird.The The present invention is generally based on the concept of the inventors, that the structure of a deposited by CVD (Chemical Vapor Deposition) Silicon dioxide compacted by a heat treatment can be. It is well known that deposited silicon dioxide typically deformed bonds and a reduced density in comparison to an oxide obtained by oxidation there is a reduced resistance to the diffusion of atoms and molecules, about of water molecules and in particular the components of an etching chemistry used for structuring a sidewall spacer is used results. by virtue of The reduced density can therefore be the interaction of an etch chemistry with the silicon dioxide layer, except for a material removal of silicon dioxide, to a local limited attack on the underlying material by the diffusion of etching components to lead, what a pitting of the underlying material layer results. By heat treatment of the deposited silicon dioxide can compact its structure which reduces resistance to the diffusion of etching components elevated becomes.
Mit
Bezug zu den
In
Das
Substrat
Ein
typischer Prozessablauf zur Herstellung des Halbleiterbauelements
In
einer weiteren Ausführungsform
werden die Dotierstoffe, die die Erweiterungsgebiete
In
einer weiteren anschaulichen Ausführungsform wird, beginnend
von dem Bauteil
In
einer weiteren Ausführungsform
kann die Siliziumdioxidschicht
Es
sei nun wieder auf
Die
Prozessschritte, die zur Herstellung des Halbleiterbauelements
Wie
zuvor erläutert
ist, kann das laterale Dotierstoffprofil in dem kristallinen Gebiet
Nachdem
das schließlich
gewünschte
Dotierstoffprofil in dem kristallinen Gebiet
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10355575A DE10355575B4 (en) | 2003-11-28 | 2003-11-28 | A method of making sidewall spacers for a circuit element by increasing etch selectivity |
US10/987,466 US7192881B2 (en) | 2003-11-28 | 2004-11-12 | Method of forming sidewall spacer elements for a circuit element by increasing an etch selectivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10355575A DE10355575B4 (en) | 2003-11-28 | 2003-11-28 | A method of making sidewall spacers for a circuit element by increasing etch selectivity |
Publications (2)
Publication Number | Publication Date |
---|---|
DE10355575A1 DE10355575A1 (en) | 2005-06-30 |
DE10355575B4 true DE10355575B4 (en) | 2010-01-07 |
Family
ID=34609363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10355575A Expired - Lifetime DE10355575B4 (en) | 2003-11-28 | 2003-11-28 | A method of making sidewall spacers for a circuit element by increasing etch selectivity |
Country Status (2)
Country | Link |
---|---|
US (1) | US7192881B2 (en) |
DE (1) | DE10355575B4 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7141511B2 (en) * | 2004-04-27 | 2006-11-28 | Micron Technology Inc. | Method and apparatus for fabricating a memory device with a dielectric etch stop layer |
US9236383B2 (en) * | 2004-04-27 | 2016-01-12 | Micron Technology, Inc. | Method and apparatus for fabricating a memory device with a dielectric etch stop layer |
US7402207B1 (en) | 2004-05-05 | 2008-07-22 | Advanced Micro Devices, Inc. | Method and apparatus for controlling the thickness of a selective epitaxial growth layer |
US7402485B1 (en) | 2004-10-20 | 2008-07-22 | Advanced Micro Devices, Inc. | Method of forming a semiconductor device |
US7456062B1 (en) * | 2004-10-20 | 2008-11-25 | Advanced Micro Devices, Inc. | Method of forming a semiconductor device |
KR100668954B1 (en) * | 2004-12-15 | 2007-01-12 | 동부일렉트로닉스 주식회사 | Method of manufacturing thin film transistor |
US7553732B1 (en) * | 2005-06-13 | 2009-06-30 | Advanced Micro Devices, Inc. | Integration scheme for constrained SEG growth on poly during raised S/D processing |
US20060281271A1 (en) * | 2005-06-13 | 2006-12-14 | Advanced Micro Devices, Inc. | Method of forming a semiconductor device having an epitaxial layer and device thereof |
US7572705B1 (en) | 2005-09-21 | 2009-08-11 | Advanced Micro Devices, Inc. | Semiconductor device and method of manufacturing a semiconductor device |
US7399690B2 (en) * | 2005-11-08 | 2008-07-15 | Infineon Technologies Ag | Methods of fabricating semiconductor devices and structures thereof |
US20090081814A1 (en) * | 2007-09-26 | 2009-03-26 | Chartered Semiconductor Manufacturing Ltd. | Integrated manufacturing system with transistor drive current control |
US7759205B1 (en) * | 2009-01-16 | 2010-07-20 | Advanced Micro Devices, Inc. | Methods for fabricating semiconductor devices minimizing under-oxide regrowth |
DE102009035438B4 (en) * | 2009-07-31 | 2013-02-07 | Globalfoundries Dresden Module One Llc & Co. Kg | Use of high-k dielectrics as very selective etch stop materials in semiconductor devices, as well as semiconductor devices |
DE102009055393B4 (en) * | 2009-12-30 | 2012-06-14 | Globalfoundries Dresden Module One Limited Liability Company & Co. Kg | Method for manufacturing and semiconductor device with better confinement of sensitive materials of a metal gate electrode structure with high ε |
US8664125B2 (en) * | 2011-12-23 | 2014-03-04 | Tokyo Electron Limited | Highly selective spacer etch process with reduced sidewall spacer slimming |
KR101878311B1 (en) * | 2011-12-30 | 2018-07-17 | 삼성전자주식회사 | Method of forming semiconductor device using high-K layer for spacer etch stop and related device |
US8592327B2 (en) | 2012-03-07 | 2013-11-26 | Tokyo Electron Limited | Formation of SiOCl-containing layer on exposed low-k surfaces to reduce low-k damage |
US8551877B2 (en) | 2012-03-07 | 2013-10-08 | Tokyo Electron Limited | Sidewall and chamfer protection during hard mask removal for interconnect patterning |
US8809194B2 (en) | 2012-03-07 | 2014-08-19 | Tokyo Electron Limited | Formation of SiOCl-containing layer on spacer sidewalls to prevent CD loss during spacer etch |
US9111746B2 (en) | 2012-03-22 | 2015-08-18 | Tokyo Electron Limited | Method for reducing damage to low-k gate spacer during etching |
US8697508B2 (en) * | 2012-04-19 | 2014-04-15 | United Microelectronics Corp. | Semiconductor process |
CN102637604B (en) * | 2012-04-25 | 2017-08-08 | 上海华虹宏力半导体制造有限公司 | Side wall, formation side wall, the method for semiconductor devices |
US9431512B2 (en) * | 2014-06-18 | 2016-08-30 | Globalfoundries Inc. | Methods of forming nanowire devices with spacers and the resulting devices |
US9490340B2 (en) | 2014-06-18 | 2016-11-08 | Globalfoundries Inc. | Methods of forming nanowire devices with doped extension regions and the resulting devices |
CN109801965B (en) * | 2017-11-17 | 2022-06-14 | 联华电子股份有限公司 | Transistor with double-layer spacer and forming method thereof |
US11653498B2 (en) | 2017-11-30 | 2023-05-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Memory device with improved data retention |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5013675A (en) * | 1989-05-23 | 1991-05-07 | Advanced Micro Devices, Inc. | Method of forming and removing polysilicon lightly doped drain spacers |
US6225231B1 (en) * | 1998-06-05 | 2001-05-01 | Stmicroelectronics S.R.L. | Recovery of damages in a field oxide caused by high energy ion implant process |
US6448167B1 (en) * | 2001-12-20 | 2002-09-10 | Taiwan Semiconductor Manufacturing Company | Process flow to reduce spacer undercut phenomena |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5847428A (en) * | 1996-12-06 | 1998-12-08 | Advanced Micro Devices, Inc. | Integrated circuit gate conductor which uses layered spacers to produce a graded junction |
US6498067B1 (en) * | 2002-05-02 | 2002-12-24 | Taiwan Semiconductor Manufacturing Company | Integrated approach for controlling top dielectric loss during spacer etching |
-
2003
- 2003-11-28 DE DE10355575A patent/DE10355575B4/en not_active Expired - Lifetime
-
2004
- 2004-11-12 US US10/987,466 patent/US7192881B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5013675A (en) * | 1989-05-23 | 1991-05-07 | Advanced Micro Devices, Inc. | Method of forming and removing polysilicon lightly doped drain spacers |
US6225231B1 (en) * | 1998-06-05 | 2001-05-01 | Stmicroelectronics S.R.L. | Recovery of damages in a field oxide caused by high energy ion implant process |
US6448167B1 (en) * | 2001-12-20 | 2002-09-10 | Taiwan Semiconductor Manufacturing Company | Process flow to reduce spacer undercut phenomena |
Also Published As
Publication number | Publication date |
---|---|
US7192881B2 (en) | 2007-03-20 |
US20050118769A1 (en) | 2005-06-02 |
DE10355575A1 (en) | 2005-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10355575B4 (en) | A method of making sidewall spacers for a circuit element by increasing etch selectivity | |
DE10255849B4 (en) | Improved drain / source extension structure of a field effect transistor with high permittivity doped sidewall spacers and method of making the same | |
DE102005020133B4 (en) | A method of fabricating a transistor element having a technique of making a contact isolation layer with improved voltage transfer efficiency | |
DE112006001705B4 (en) | A method of fabricating an Integrated Complementary Metal Oxide Semiconductor Circuit using an elevated source drain and a replacement metal gate | |
DE102009006884B4 (en) | A method of fabricating a transistor device having in situ generated drain and source regions with a strain-inducing alloy and a gradually varying dopant profile and corresponding transistor device | |
DE102008059501B4 (en) | Technique for improving the dopant profile and channel conductivity by millisecond annealing processes | |
DE102006034772B4 (en) | Method for producing a semiconductor device with a trench gate | |
DE69835203T2 (en) | MANUFACTURING METHOD FOR NMOS AND PMOS COMPONENTS WITH REDUCED MASKING STEPS | |
DE102008011814B4 (en) | CMOS device with buried insulating layer and deformed channel regions and method for producing the same | |
DE10339989B4 (en) | A method of making a conformal spacer adjacent to a gate electrode structure | |
DE10245607B4 (en) | A method of forming circuit elements having nickel silicide regions thermally stabilized by a barrier diffusion material and methods of making a nickel monosilicide layer | |
DE10335101B4 (en) | A method of making a polysilicon line having a metal silicide region that enables linewidth reduction | |
DE10335100B4 (en) | A method of fabricating truncated sidewall spacers for a polysilicon line and method of fabricating a field effect transistor | |
DE10234931A1 (en) | Production of a gate electrode of a MOST comprises determining the height of a metal silicide layer formed in a crystalline layer, selecting a design height for the metal silicide layer, and further processing | |
DE10351006B4 (en) | A method of fabricating a transistor having raised drain and source regions, wherein a reduced number of process steps is required | |
DE112007002739B4 (en) | Method for producing a semiconductor device with isolation trench and contact trench | |
DE102006030261B4 (en) | A method of fabricating a drain / source extension structure of a reduced boron diffusion transistor field effect transistor | |
DE102008011813B4 (en) | Semiconductor device with a metal gate stack with reduced height and method of manufacturing the device | |
DE10250611B4 (en) | A method for producing a metal silicide region in a semiconductor region containing doped silicon | |
DE10361635B4 (en) | A method of manufacturing a spacer element for a line element by applying an etch stop layer applied by a high directional deposition technique and a spacer transistor | |
DE102009035438B4 (en) | Use of high-k dielectrics as very selective etch stop materials in semiconductor devices, as well as semiconductor devices | |
DE10240422B4 (en) | A method of manufacturing a semiconductor element having a metal-silicide enlarged conduction structure | |
DE10250899B4 (en) | A method of removing sidewall spacers of a semiconductor device using an improved etch process | |
DE10250902A1 (en) | Production of semiconductor structural element used in production of integrated circuits comprises preparing substrate with a layer, covering substrate with second material layer, implanting ions, and further processing | |
DE102009006800B4 (en) | Process for the production of transistors and corresponding semiconductor component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8364 | No opposition during term of opposition | ||
R071 | Expiry of right |