DE10304205A1 - Exhaust system of an internal combustion engine without a pre-catalyst and method for treating an exhaust gas of the internal combustion engine - Google Patents
Exhaust system of an internal combustion engine without a pre-catalyst and method for treating an exhaust gas of the internal combustion engine Download PDFInfo
- Publication number
- DE10304205A1 DE10304205A1 DE10304205A DE10304205A DE10304205A1 DE 10304205 A1 DE10304205 A1 DE 10304205A1 DE 10304205 A DE10304205 A DE 10304205A DE 10304205 A DE10304205 A DE 10304205A DE 10304205 A1 DE10304205 A1 DE 10304205A1
- Authority
- DE
- Germany
- Prior art keywords
- exhaust gas
- catalytic converter
- internal combustion
- storage
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2046—Periodically cooling catalytic reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2882—Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
- F02D41/028—Desulfurisation of NOx traps or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/12—Combinations of different methods of purification absorption or adsorption, and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/20—Monitoring artificially aged exhaust systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/12—Other methods of operation
- F02B2075/125—Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/32—Engines with pumps other than of reciprocating-piston type
- F02B33/42—Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
- F02B39/02—Drives of pumps; Varying pump drive gear ratio
- F02B39/08—Non-mechanical drives, e.g. fluid drives having variable gear ratio
- F02B39/10—Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
- F02D41/3029—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/03—EGR systems specially adapted for supercharged engines with a single mechanically or electrically driven intake charge compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Die Erfindung betrifft eine Abgasanlage (10) einer fremdgezündeten und zumindest zeitweise magerbetriebenen Verbrennungskraftmaschine (12) mit mindestens einem in einem Abgasstrang (22) der Verbrennungskraftmaschine (12) motornah angeordneten NO¶x¶-Speicherkatalysator (24) und mit zumindest einem abgasangetriebenen Ladeluftverdichter (32), der unter Absenkung einer Energie des den NO¶x¶-Speicherkatalysator (24) anströmenden Abgases eine Verdichtung einer der Verbrennungskraftmaschine (12) zuzuführenden Luft bewirkt, wobei eine Abgaslauflänge (L) zwischen der Verbrennungskraftmaschine (12) und dem motornächsten NO¶x¶-Speicherkatalysator (24) in Abhängigkeit von der dem Abgas durch den Ladeluftverdichter (32) entzogenen Energiemenge gewählt ist. DOLLAR A Die Erfindung betrifft weiterhin ein Verfahren zur Behandlung eines Abgases einer fremdgezündeten und zumindest zeitweise magerbetriebenen Verbrennungskraftmaschine (12).The invention relates to an exhaust system (10) of a spark-ignited and at least temporarily lean-burn internal combustion engine (12) with at least one NO¶x¶ storage catalytic converter (24) arranged close to the engine in an exhaust line (22) of the internal combustion engine (12) and with at least one exhaust-gas-driven charge air compressor ( 32), which, by lowering an energy of the exhaust gas flowing into the NO¶x¶ storage catalytic converter (24), causes compression of an air to be supplied to the internal combustion engine (12), an exhaust gas run length (L) between the internal combustion engine (12) and the engine closest to the NO¶ x¶ storage catalytic converter (24) is selected as a function of the amount of energy extracted from the exhaust gas by the charge air compressor (32). The invention further relates to a method for treating an exhaust gas of a spark-ignited and at least temporarily lean-burn internal combustion engine (12).
Description
Die Erfindung betrifft eine Abgasanlage einer fremdgezündeten und zumindest mager betriebenen Verbrennungskraftmaschine sowie ein Verfahren zur Behandlung eines Abgases einer solchen Verbrennungskraftmaschine.The invention relates to an exhaust system a spark-ignited and at least lean-burn internal combustion engine as well a method for treating an exhaust gas of such an internal combustion engine.
Zur Behandlung von Abgasen fremdgezündeter Verbrennungskraftmaschinen (Otto-Motoren), die aus Verbrauchsgründen zumindest zeitweise in einem mageren Betriebsmodus, das heißt mit Luftüberschuss (Lambda > 1) betrieben werden, ist bekannt, das Abgas durch nachgeschaltete NOx-Speicherkatalysatoren zu leiten. NOx Speicherkatalysatoren lagern in mageren Betriebsphasen Stickoxide (NOx) in Form von Nitrat ein und werden in zwischengeschalteten Regenerationsphasen bei Lambda ≤ 1 regeneriert. NOx-Speicherkatalysatoren weisen neben der Speicherkomponente (üblicherweise ein Barium-Salz) auch eine katalytische Edelmetallkomponente auf, die eine Konvertierung von Schadstoffen des Abgases in umweltverträglichere Komponenten bewirkt.For the treatment of exhaust gases from spark-ignition internal combustion engines (Otto engines), which are operated at least occasionally in a lean operating mode, i.e. with excess air (lambda> 1), for consumption reasons, it is known to pass the exhaust gas through downstream NO x storage catalytic converters. NO x storage catalysts store nitrogen oxides (NO x ) in the form of nitrate in lean operating phases and are regenerated in intermediate regeneration phases with lambda ≤ 1. In addition to the storage component (usually a barium salt), NO x storage catalysts also have a catalytic noble metal component which converts pollutants in the exhaust gas into more environmentally compatible components.
NOx-Speicherkatalysatoren werden üblicherweise in einer motorfernen Position angeordnet, wobei Abgaslauflängen von mindestens 500 mm zwischen einem Zylinderkopf der Verbrennungskraftmaschine und dem NOx-Speicherkatalysator erforderlich sind, um eine ausreichende Abkühlung des Abgases zu erzielen. Dies ist zum einen wegen einer gegenüber 3-Wege-Katalysatoren eingeschränkten, thermischen Belastbarkeit der Speicherkatalysatoren erforderlich. Zudem soll eine häufige Beaufschlagung des Katalysators mit Abgastemperaturen oberhalb von 450°C, insbesondere oberhalb von 500°C, vermieden werden, da der Katalysator nur ein eingeschränktes Arbeitstemperaturfenster aufweist, in dem im Magerbetrieb eine NOx-Speicherung erfolgt. Es kommt nämlich insbesondere im gemischten Verkehr mit abwechselnden Niedriglast-Magerbetriebsphasen und Hochlast-Homogenphasen (bei Lambda – 1) zu hohen Speicherkatalysator-Temperaturen, die im Magerbetrieb keine effiziente NOx-Speicherung zulassen. Nachteilig an dieser motorfernen Anordnung des NOx-Speicherkatalysators ist jedoch, dass die Lightoff-Temperatur des Katalysators, ab der eine Konvertierung und Einlagerung von Schadstoffen erfolgt, verzögert wird.NO x storage catalytic converters are usually arranged in a position remote from the engine, exhaust gas run lengths of at least 500 mm being required between a cylinder head of the internal combustion engine and the NO x storage catalytic converter in order to achieve sufficient cooling of the exhaust gas. On the one hand, this is necessary because the storage capacity of the storage catalytic converters is limited compared to 3-way catalytic converters. In addition, frequent exposure of the catalytic converter to exhaust gas temperatures above 450 ° C., in particular above 500 ° C., should be avoided, since the catalytic converter only has a limited working temperature window in which NO x storage occurs during lean operation. This is because, especially in mixed traffic with alternating low-load lean operating phases and high-load homogeneous phases (with Lambda - 1), there are high storage catalyst temperatures which do not allow efficient NO x storage in lean operation. A disadvantage of this arrangement of the NO x storage catalytic converter remote from the engine, however, is that the lightoff temperature of the catalytic converter, from which conversion and storage of pollutants takes place, is delayed.
Infolgedessen erschwert der resultierende Schadstoffschlupf die Erfüllung strenger Abgas-Grenzwerte. Es ist daher üblich, dem Speicherkatalysator einen kleinvolumigen 3-Wege-Katalysator vorzuschalten, der die Konvertierung bis zum Lightoff des Speicherkatalysators übernimmt. Diese Maßnahme ist jedoch mit einem erhöhten Kostenaufwand verbunden.As a result, the resulting pollutant slip becomes more difficult the fulfillment strict emission limits. It is therefore common connect a small-volume 3-way catalytic converter upstream of the storage catalytic converter, which takes over the conversion up to the lightoff of the storage catalytic converter. This measure is however with an increased Associated costs.
Auf der anderen Seite ist bei stöchiometrisch betriebenen Verbrennungskraftmaschinen (Lambda=1-Motoren) seit langem bekannt, die hier eingesetzten 3-Wege-Katalysatoren in Form eines einzigen Hauptkatalysators in motornaher Anordnung, insbesondere mit einer Abgaslauflänge hinter dem Zylinderkopf von weniger als 400 mm, einzusetzen. Bei diesen Motoren ist eine NOx-Speicherung nicht erforderlich, da im stöchiometrischen Abgas eine praktisch vollständige Konvertierung von Stickoxiden erfolgt. Als Folge der motornahen Anordnung des 3-Wege-Hauptkatalysators kann auf einen Vorkatalysator verzichtet werden, da die Lightoff-Temperatur des Hauptkatalysators in dieser Position auch für strenge Abgasgrenzwerte schnell genug erfolgt.On the other hand, it has long been known in stoichiometrically operated internal combustion engines (lambda = 1 engines) that the 3-way catalytic converters used here in the form of a single main catalytic converter arranged close to the engine, in particular with an exhaust gas run length behind the cylinder head of less than 400 mm, use. NO x storage is not required for these engines, since the stoichiometric exhaust gas converts nitrogen oxides practically completely. As a result of the arrangement of the 3-way main catalytic converter close to the engine, a pre-catalytic converter can be dispensed with, since the light-off temperature of the main catalytic converter takes place quickly enough in this position even for strict exhaust gas limit values.
Aufgabe der vorliegenden Erfindung ist, eine Abgasanlage für magerlauffähige, fremdgezündete Verbrennungskraftmaschinen zur Verfügung zu stellen, die gegenüber bekannten NOx-Speicherkatalysatoranordnungen konstruktiv vereinfacht und kostengünstiger ist, ohne jedoch Emissionsnachteile in Kauf zu nehmen. Es soll ferner ein Verfahren zur Abgasnachbehandlung einer solchen Verbrennungskraftmaschine vorgeschlagen werden.The object of the present invention is to provide an exhaust system for lean-burn, spark-ignition internal combustion engines, which is structurally simplified and less expensive than known NO x storage catalytic converter arrangements, but without accepting emissions disadvantages. A method for exhaust gas aftertreatment of such an internal combustion engine is also proposed.
Diese Aufgabe wird durch eine Abgasanlage mit den Merkmalen des Anspruches 1 sowie durch ein Verfahren nach Anspruch 15 gelöst.This task is accomplished with an exhaust system the features of claim 1 and by a method according to claim 15 solved.
Die erfindungsgemäße Abgasanlage umfasst einen, in einem Abgasstrang der Verbrennungskraftmaschine motornah angeordneten NOx-Speicherkatalysator und zumindest einen Ladeluftverdichter, der unter Absenkung einer Energie des den Speicherkatalysator anströmenden Abgases eine Verdichtung einer, der Verbrennungskraftmaschine zuzuführenden Luft bewirkt. Dabei wird erfindungsgemäß eine Abgaslauflänge zwischen der Verbrennungskraftmaschine und dem NOx-Speicherkatalysator in Abhängigkeit von der dem Abgas durch den Ladeluftverdichter entzogenen Energiemenge gewählt. Die Endung macht somit Gebrauch von an sich bekannten Ladeluftverdichtern, die eine Aufladung des Motors durch Nutzung der Abgasenergie bewirken, wobei eine Absenkung der Abgastemperatur eintritt. Diese Temperaturabsenkung gestattet die motornahe Anordnung des NOx-Speicherkatalysators, ohne diesen thermisch zu stark zu belasten. Auf diese Weise ist es vorteilhaft möglich, auf einen dem NOx-Speicherkatalysator vorgeschalteten Vorkatalysator zu verzichten. Es ist daher bevorzugt vorgesehen, dass zwischen einem Abgasaustritt der Verbrennungskraftmaschine und dem motornächsten NOx-Speicherkatalysator kein weiterer Katalysator, insbesondere kein 3-Wege-Katalysator, angeordnet ist. Ausgenommen hiervon kann gegebenenfalls ein in einer Abgasrückführungsleitung angeordneter Katalysator sein. Die konkrete Anordnung des Speicherkatalysators wird dabei entsprechend der durch den Ladeluftverdichter hervorgerufenen Temperaturabsenkung realisiert.The exhaust system according to the invention comprises a NO x storage catalytic converter arranged close to the engine in an exhaust line of the internal combustion engine and at least one charge air compressor which, while lowering an energy of the exhaust gas flowing into the storage catalytic converter, compresses an air to be supplied to the internal combustion engine. According to the invention, an exhaust gas run length between the internal combustion engine and the NO x storage catalytic converter is selected as a function of the amount of energy extracted from the exhaust gas by the charge air compressor. The ending thus makes use of charge air compressors known per se, which charge the engine by utilizing the exhaust gas energy, with a decrease in the exhaust gas temperature. This lowering of temperature allows the NO x storage catalytic converter to be arranged close to the engine without putting excessive thermal stress on it. In this way it is advantageously possible to dispense with a precatalyst upstream of the NO x storage catalytic converter. It is therefore preferably provided that no further catalytic converter, in particular no 3-way catalytic converter, is arranged between an exhaust gas outlet of the internal combustion engine and the NO x storage catalytic converter closest to the engine. An exception to this may be a catalyst arranged in an exhaust gas recirculation line. The specific arrangement of the storage catalytic converter is realized in accordance with the temperature drop caused by the charge air compressor.
Trotz des nicht vorhandenen Vorkatalysators ist die Einhaltung strenger Abgasnormen durch die erfindungsgemäße Abgasanlage möglich. Vorzugsweise ist vorgesehen, dass die Abgasanlage derart ausgelegt ist, dass das verlassende Abgas im Neuen Europäischen Fahrzyklus NEFZ bei einem ungeschädigten NOx-Speicherkatalysator und einer gefeuerten Magerbetriebsdauer mit Lambda ≥ 1,15 innerhalb einer Zeitspanne von mindestens 250 s, insbesondere mindestens 350 s, eine HC-Emission von weniger als 0,07 g/km und eine NOx-Emission von weniger als 0,05 g/km aufweist. Dabei wird unter einem ungeschädigten Katalysator ein frischer Katalysator verstanden, der thermisch nicht geschädigt ist und eine gespeicherte Schwefelmasse von maximal 0,02 g/l Katalysatorvolumen aufweist.Despite the non-existing pre-catalytic converter, compliance with strict exhaust gas standards is possible through the exhaust system according to the invention. It is preferably provided that the exhaust system is designed such that the exiting exhaust gas is new European NEDC driving cycle with an undamaged NO x storage catalytic converter and a fired lean operating time with lambda ≥ 1.15 within a period of at least 250 s, in particular at least 350 s, an HC emission of less than 0.07 g / km and a NO x -Emission less than 0.05 g / km. An undamaged catalyst is understood to mean a fresh catalyst that is not thermally damaged and has a stored sulfur mass of at most 0.02 g / l catalyst volume.
Erfindungsgemäß kommen jedenfalls solche Ladeluftverdichter zum Einsatz, die die Kompression der Ladeluft durch Nutzung von Abgasenergie bewirken. Dabei sind insbesondere Abgasturbolader geeignet, welche die Frischluftkompression über ein Verdichterrad bewirken, das durch ein seinerseits von dem Abgas angetriebenen Turbinenrad angetrieben wird. Dabei kommt es bei der hier erfolgenden Druckminderung des Abgases an der Turbine zu der gewünschten Temperaturabsenkung. Ebenfalls für die erfindungsgemäße Abgasanlage geeignet sind so genannte Comprex-Lader, bei denen Druck- und Saugwellen der pulsierenden Abgase Frischluft in direkter Berührung verdichten. Denkbar ist daneben jedoch auch die zusätzliche Verwendung anderer Ladeluftverdichter, bei denen die Verdichtung im Wesentlichen über mechanische oder elektrische Energie erfolgt.In any case, such charge air compressors come in accordance with the invention used to compress the charge air by using Cause exhaust gas energy. Exhaust gas turbochargers are particularly suitable which cause fresh air compression via a compressor wheel, by a turbine wheel driven by the exhaust gas is driven. This is where the pressure drops here of the exhaust gas at the turbine to the desired temperature reduction. Also for the Exhaust system according to the invention So-called Comprex loaders are suitable, in which pressure and suction waves of the pulsating exhaust gases compress fresh air in direct contact. However, the additional use of others is also conceivable Charge air compressors, where the compression is essentially mechanical or electrical energy.
Üblicherweise werden NOx-Speicherkatalysatoren mindestens 500 mm hinter dem Zylinderkopf angeordnet. Demgegenüber befindet sich der Speicherkatalysator der erfindungsgemäßen Abgasanlage näher am Abgasaustrittsort. Insbesondere ist vorgesehen, den NOx-Speicherkatalysator höchstens 400 mm, vorzugsweise höchstens 350 mm, stromab des Zylinderkopfs anzuordnen. In besonders vorteilhafter Ausgestaltung befindet sich der Katalysator höchstens 300 mm hinter dem Zylinderkopf. Im Falle der Luftverdichtung über einen Abgasturbolader beträgt die Abgaslauflänge zwischen einer Rotationsachse des beaufschlagenden Abgasturboladers und einer Stirnfläche des NOx-Speicherkatalysators maximal 300 mm, insbesondere höchstens 250 mm, vorzugsweise höchstens 200 mm. Besonders bevorzugt sind hier Abgaslauflängen von höchstens 150 mm vorgesehen.NO x storage catalytic converters are usually arranged at least 500 mm behind the cylinder head. In contrast, the storage catalytic converter of the exhaust system according to the invention is closer to the exhaust point. In particular, provision is made to arrange the NO x storage catalytic converter at most 400 mm, preferably at most 350 mm, downstream of the cylinder head. In a particularly advantageous embodiment, the catalytic converter is located at most 300 mm behind the cylinder head. In the case of air compression via an exhaust gas turbocharger, the exhaust gas run length between an axis of rotation of the exhaust gas turbocharger acting on it and an end face of the NO x storage catalytic converter is at most 300 mm, in particular at most 250 mm, preferably at most 200 mm. Exhaust gas run lengths of at most 150 mm are particularly preferably provided here.
Die Abgaslauflänge kann umso weiter reduziert werden, je stärker die Abgastemperatur infolge der Funktion des Ladeluftverdichters abgesenkt wird. Daher kommt das erfindungsgemäße Konzept mit zunehmender Aufladung, das heißt zunehmender Verdichtung und Leistung der Verbrennungskraftmaschine als Folge der zunehmenden Entspannungsarbeit des Abgases besonders günstig zum Tragen. Besonders vorteilhaft sind daher Verbrennungskraftmaschinen mit einer spezifischen Leistung von mindestens 70, insbesondere mindestens 80, vorzugsweise mindestens 90, besonders bevorzugt mindestens 100 kW/I Motorhubvolumen. Ganz besonders vorteilhaft günstig ist dies bei Motoraggregaten nach so genannten Downsizing-Konzepten, bei denen ein fahrzeuggewichtsspezifischer Hubraum des aufgeladenen Motors höchstens 1,2, insbesondere höchstens 1,1, vorzugsweise höchstens 1,0, besonders bevorzugt höchstens 0,9 dm3/1000 kg Fahrzeugleergewicht beträgt.The exhaust gas run length can be reduced the more the exhaust gas temperature is lowered as a result of the function of the charge air compressor. Therefore, the concept according to the invention comes into play particularly favorably with increasing supercharging, that is to say increasing compression and output of the internal combustion engine as a result of the increasing relaxation work of the exhaust gas. Internal combustion engines with a specific output of at least 70, in particular at least 80, preferably at least 90, particularly preferably at least 100 kW / l engine stroke volume are therefore particularly advantageous. This is especially advantageous at low engine units for so-called downsizing concepts in which a specific vehicle weight capacity of the supercharged engine at most 1.2, especially at most 1.1, preferably at most 1.0, particularly preferably at most 0.9 dm 3/1000 kg of empty vehicle weight.
Der Verbrauchsvorteil des Magerbetriebs, insbesondere des Schichtladebetriebs, ist insbesondere bei Motoraggregaten gemäß der vorstehenden Spezifikation auf den untersten Teillastenbereich beschränkt. Bei Drehzahlen n oberhalb von 0,3·nNenn und/oder bei Lasten pme oberhalb von 0,25·pme,max sind allenfalls geringe Verbrauchsvorteile gegenüber dem Lambda=1-Betrieb erzielbar. In Folge der daher reduzierten Mager-Betriebszeiten sinken die Anforderungen an die NOx-Speicherfähigkeit des Speicherkatalysators. Ein weiterer Kostenvorteil kann somit durch Reduzierung einer Speichermaterialmasse pro Speicherkatalysator gegenüber üblichen Katalysatoren erzielt werden. Besonders bevorzugt ist daher vorgesehen, NOx-Speicherkatalysatoren einzusetzen, die nach Einlagerung einer NO2-Masse von 200 mg pro Liter Katalysatorvolumen einen NOx-Speicherwirkungsgrad von höchstens 95 %, insbesondere höchstens 90 %, vorzugsweise höchstens 80 % aufweisen. Diese relativ niedrigen Wirkungsgrade werden von heutigen NOx-Speicherkatalysatoren erst nach einer eingelagerten NO2-Masse von 500 mg/l Katalysatorvolumen erreicht. Demgegenüber weist der erfindungsgemäß ausgelegte Speicherkatalysator bei einer eingelagerten NO2-Masse von 500 mg/l Katalysatorvolumen einen NOx-Speicherwirkungsgrad von mindestens 80 %, insbesondere von mindestens 70 %, mindestens aber von 60 %. Im Ergebnis bedeutet dies, dass die Speichermaterialmasse des erfindungsgemäßen Katalysators gegenüber herkömmlichen Konzepten um mindestens 30 %, insbesondere um mindestens 50 %, vorzugsweise sogar um mindestens 70 reduziert werden kann. Hieraus ergeben sich weitere Kosten- und Gewichtsvorteile. (Alle vorstehend angegebenen Wirkungsgrade beziehen sich auf eine Speicherleistung, die unmittelbar nach einer Regenerationsphase an einem NOx-Speicherkatalysator im Frischzustand (ungebraucht, aber konditioniert) bei Beaufschlagung mit einem Abgas mit einer HC-Eingangskonzentration von maximal 100 ppm HC3 und einer NOx-Eingangskonzentration von 250–500 ppm bei einer mittleren Katalysatortemperatur von 350 ±20°C, Lambda = 2,2 ±0,2 und einer Raumgeschwindigkeit von 40.000 ±20.000 h–1 gemessen wurden. Siehe näher hierzu ein Ausführungsbeispiel unten.)The consumption advantage of lean operation, in particular stratified charge operation, is limited to the lowest partial load range, in particular in the case of engine units according to the above specification. At speeds n above 0.3 · n nominal and / or at loads p me above 0.25 · p me, max , at most small consumption advantages over lambda = 1 operation can be achieved. As a result of the reduced lean operating times, the requirements for the NO x storage capacity of the storage catalytic converter decrease. A further cost advantage can thus be achieved by reducing the mass of storage material per storage catalytic converter compared to conventional catalysts. It is therefore particularly preferred to use NO x storage catalysts which, after embedding a NO 2 mass of 200 mg per liter of catalyst volume, have an NO x storage efficiency of at most 95%, in particular at most 90%, preferably at most 80%. These relatively low efficiencies are only achieved by today's NO x storage catalytic converters after an embedded NO 2 mass of 500 mg / l catalyst volume. In contrast, the storage catalytic converter designed according to the invention has an NO x storage efficiency of at least 80%, in particular of at least 70%, but at least 60%, with an embedded NO 2 mass of 500 mg / l catalyst volume. As a result, this means that the storage material mass of the catalyst according to the invention can be reduced by at least 30%, in particular by at least 50%, preferably even by at least 70, compared to conventional concepts. This results in further cost and weight advantages. (All of the above efficiencies relate to a storage capacity that occurs immediately after a regeneration phase on a NO x storage catalytic converter in the fresh state (unused but conditioned) when it is exposed to an exhaust gas with an HC input concentration of maximum 100 ppm HC 3 and a NO x -Inlet concentration of 250-500 ppm at an average catalyst temperature of 350 ± 20 ° C, lambda = 2.2 ± 0.2 and a space velocity of 40,000 ± 20,000 h -1 were measured. See an exemplary embodiment below.)
Eine weitere Reduzierung der Abgaslauflänge, das heißt eine noch motornähere Anordnung des NOx-Speicherkatalysators, kann durch Verwendung von hochtemperaturfähigen Hauptspeicherkomponenten des NOx-Speicherkatalysators erzielt werden. Dafür eignen sich grundsätzlich Alkali- und Erdalkalikomponenten, beispielsweise Barium, Kalium, Caesium, Natrium und/oder Magnesium, insbesondere Verbindungen und/oder Salze, vorzugsweise Carbonate und/oder Oxide von diesen. Besonders vorteilhaft können von diesen Elementen aufgrund ihrer Hitzebeständigkeit Verbindungen von Kalium, Caesium, Natrium und/oder Magnesium, vorzugsweise aber Verbindungen des Kaliums eingesetzt werden. Gegenüber heutigen Speicherkatalysatoren, die vorwiegend auf Barium-Basis arbeiten und ein Arbeitstemperaturfenster der NOx-Speicherung im Magerbetrieb von 250°C bis maximal 500°C aufweisen, wird erfindungsgemäß ein Katalysator eingesetzt, dessen NOx-Speichertemperaturfenster nach oben hin erweitert ist. Er weist eine obere Grenze des Temperaturfensters von mindestens 550°C, insbesondere mindestens 580°C, vorzugsweise mindestens 610°C, besonders bevorzugt mindestens 640°C auf. Eine solche Formulierung kommt besonders vorteilhaft bei Motoraggregaten mit den vorstehend beschriebenen spezifischen Leistungen und Hubräumen zum Tragen, wobei die oben angegebenen Abgasgrenzwerte im Neuen Europäischen Fahrzyklus eingehalten werden. Besonders vorteilhaft kann die Hochtemperaturformulierung auch in Zusammenhang mit der reduzierten Speichermaterialmasse eingesetzt werden.A further reduction of the exhaust run length, that is, a still further arrangement of the motor NO x storage catalytic converter can be achieved by using high temperature-capable main storage components of the NO x storage catalytic converter. Alkali and alkaline earth components, for example barium, potassium, Caes, are generally suitable for this ium, sodium and / or magnesium, in particular compounds and / or salts, preferably carbonates and / or oxides thereof. Compounds of potassium, cesium, sodium and / or magnesium, but preferably compounds of potassium, can be used particularly advantageously because of their heat resistance. Compared to today's storage catalytic converters, which mainly work on a barium basis and have a working temperature window for NO x storage in lean operation from 250 ° C. to a maximum of 500 ° C., a catalyst is used according to the invention whose NO x storage temperature window is widened towards the top. It has an upper limit of the temperature window of at least 550 ° C, in particular at least 580 ° C, preferably at least 610 ° C, particularly preferably at least 640 ° C. Such a formulation is particularly advantageous in the case of engine units with the specific outputs and cubic capacities described above, the emission limits specified above being complied with in the new European driving cycle. The high-temperature formulation can also be used particularly advantageously in connection with the reduced storage material mass.
Es ist ferner vorteilhaft möglich, einen Edelmetallgehalt des NOx-Speicherkatalysators gegenüber heute üblichen Katalysatoren abzusenken. Insbesondere werden gemäß der vorliegenden Erfindung Katalysatoren mit einem Edelmetallgehalt von höchstens 3,59 g/dm3 (100 g/ft3), vorzugsweise von höchstens 2,87 g/dm3 (80 g/ft3) eingesetzt. Demgegenüber stehen heute übliche Speicherkatalysatoren mit Edelmetallgehalten von mindestens 3,95 g/dm3 (110 g/ft3), häufiger sogar mit mindestens 4,67 g/dm3 (130 g/ft3). Eine solche Edelmetallreduzierung führt zu einem weiteren Kostenvorteil, ohne dass signifikante Einbußen der Schadstoffkonvertierung beobachtet werden.It is also advantageously possible to lower a noble metal content of the NO x storage catalytic converter compared to the catalysts customary today. In particular, catalysts with a noble metal content of at most 3.59 g / dm 3 (100 g / ft 3 ), preferably of at most 2.87 g / dm 3 (80 g / ft 3 ), are used according to the present invention. In contrast, there are currently common storage catalysts with precious metal contents of at least 3.95 g / dm 3 (110 g / ft 3 ), more often even with at least 4.67 g / dm 3 (130 g / ft 3 ). Such a reduction in precious metals leads to a further cost advantage without significant losses in the conversion of pollutants being observed.
Gemäß dem erfindungsgemäßen Verfahren wird das Abgas durch mindestens einen, in dem Abgaskanal der Verbrennungskraftmaschine motornah angeordneten NOx-Speicherkatalysator geführt, mit zumindest einem Ladeluftverdichter eine Verdichtung einer der Verbrennungskraftmaschine zuzuführenden Luft bewirkt und eine hierfür erforderliche Energie durch Absenkung einer Energie des den NOx-Speicherkatalysator anströmenden Abgases aufgebracht. Dabei wird eine Abgaslauflänge zwischen der Verbrennungskraftmaschine und dem NOx-Speicherkatalysator in Abhängigkeit von der dem Abgas durch den Ladeluftverdichter entzogenen Energiemenge gewählt.According to the method according to the invention, the exhaust gas is passed through at least one NO x storage catalytic converter arranged in the exhaust gas duct of the internal combustion engine, with at least one charge air compressor compressing an air to be supplied to the internal combustion engine and an energy required for this by lowering an energy of the NOx storage catalytic converter inflowing exhaust gas applied. An exhaust gas run length between the internal combustion engine and the NO x storage catalytic converter is selected as a function of the amount of energy extracted from the exhaust gas by the charge air compressor.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der übrigen Unteransprüche.Further advantageous configurations the invention are the subject of the remaining subclaims.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:The invention is hereinafter in embodiments based on the associated Drawings closer explained. Show it:
Moderne, magerlauffähige Otto-Motoren
Abgase, die die Zylinder
Eine Abgasnachbehandlung erfolgt
mit Hilfe des in dem Abgasstrang
Aufgrund seiner gegenüber 3-Wege-Katalysatoren
erhöhten
Temperaturempfindlichkeit sowie aufgrund eines begrenzten Temperaturfensters,
in dem die Mager-NOx-Speicherung erfolgen
kann, befindet sich der NOx-Speicherkatalysator
Die Abgasanlage
Die erfindungsgemäße Abgasanlage
Die konkrete Position des NOx-Speicherkatalysators im Abgasstrang
Wie bereits oben erläutert, kommt
die Erfindung besonders vorteilhaft bei hoch aufgeladenen Verbrennungskraftmaschinen
nach dem Downsizing-Konzept zum Tragen. Die in
Die motornahe Anordnung des NOx-Speicherkatalysators
Der hier verwendete Speicherkatalysator
Ferner ist der Speicherkatalysator
HC- und NOx-EmissionHC and NO x emissions
Die Endemissionen des erfindungsgemäßen NOx-Speicherkatalysators
Nach einer Ofenalterung des erfindungsgemäßen NOx-Speicherkatalysators
Ermittlung des NOx-SpeichertemperaturfenstersDetermination of the NO x storage temperature window
Die besondere Auslegung des Speicherkatalysators
Das genaue NOx-Speichertemperaturfenster eines
konkreten NOx-Speicherkatalysators
Beide ungebrauchte Katalysatoren werden zunächst konditioniert, indem über vier Stunden bei einer mittleren Katalysatortemperatur von 650 ±30°C eine Gasbeaufschlagung mit Lambda = 1 ±0,03, mit einem Sauerstoffanteil unterhalb von 1,5 % und bei einer Raumgeschwindigkeit von 20.000 ±5.000 h–1 erfolgt. In diesem Zustand (= Frischzustand) werden beide Katalysatoren unmittelbar nach einer Regenerationsphase von mindestens 60 s bei Lambda > 0,9 bei einer Raumgeschwindigkeit von 40.000 ±20.000 h–1 bei Lambda = 2,2 ±0,2 mit einer HC-Eingangskonzentration < 100 ppm HC3 und einer NOx-Eingangskonzentration von 250 bis 500 ppm beaufschlagt.Both unused catalysts are first conditioned by applying gas at lambda = 1 ± 0.03 for four hours at an average catalyst temperature of 650 ± 30 ° C, with an oxygen content below 1.5% and at a space velocity of 20,000 ± 5,000 h -1 occurred. In this state (= fresh state), both catalysts are immediately after a regeneration phase of at least 60 s with lambda> 0.9 at a space velocity of 40,000 ± 20,000 h −1 with lambda = 2.2 ± 0.2 with an HC input concentration < 100 ppm HC 3 and an NO x input concentration of 250 to 500 ppm.
Die Ermittlung der Abweichung des Temperaturfensters des erfindungsgemäßen Katalysators vom Katalysator gemäß dem Stand der Technik erfolgt derart, dass zunächst die Mindest- und Maximaltemperaturen ermittelt werden, bei denen der Katalysator gemäß dem Stand der Technik nach Einlagerung einer vorgegebenen NO2-Masse von zum Beispiel 500 mg/l Katalysatorvolumen einen vorgegebenen NOx-Speicherwirkungsgrad von beispielsweise 75 % aufweist. Anschließend werden für den erfindungsgemäßen Speicherkatalysator diejenigen Temperaturen ermittelt, bei denen nach Einlagerung derselben NO2-Masse derselbe Speicherwirkungsgrad vorliegt. Diese Temperaturen werden dann als Mindest- und Maximaltemperaturen des NOx-Speichertemperaturfensters für den Betrieb des erfindungsgemäßen NOx-Speicherkatalysators verwendet.The determination of the deviation of the temperature window of the catalyst according to the invention from the catalyst according to the prior art takes place in such a way that first the minimum and maximum temperatures are determined at which the catalyst according to the prior art after storage of a predetermined NO 2 mass of 500, for example mg / l catalyst volume has a predetermined NO x storage efficiency of, for example, 75%. Subsequently, those temperatures are determined for the storage catalytic converter according to the invention at which the same storage efficiency is present after the same NO 2 mass has been stored. These temperatures are then used as minimum and maximum temperatures of the NO x -Speichertemperaturfensters for operation of the invention NO x storage.
Messung des NOx-SpeicherwirkungsgradesMeasurement of NO x storage efficiency
Der NOx-Speicherwirkungsgrad im mageren Abgas erfindungsgemäß speicherreduzierter NOx-Speicherkatalysatoren und eines herkömmlichen NOx-Speicherkatalysators wurden wie folgt ermittelt. Die Speichermaterialmassen der getesteten Katalysatoren waren gegenüber den Speichermaterialmasse des herkömmlichen NOx-Speicherkatalysators um etwa 30 %, 50 % beziehungsweise 70 % reduziert.The NO x storage efficiency in the lean exhaust gas according to the invention reduced NO x storage catalysts and a conventional NO x storage catalyst were determined as follows. The storage material masses of the tested catalysts were reduced by approximately 30%, 50% and 70% compared to the storage material mass of the conventional NO x storage catalytic converter.
Zunächst wurden alle ungebrauchte Katalysatoren konditioniert, indem über vier Stunden bei einer mittleren Katalysatortemperatur von 650 ±30°C eine Abgasbeaufschlagung bei Lambda = 1 ±0,03, mit einem Sauerstoffanteil unterhalb von 1,5 % O2 im zuströmenden Abgas und bei einer Raumgeschwindigkeit von 20.000 ±5.000 h–1 erfolgte. Anschließend wurde eine Regenerationsphase von mindestens 60 s bei Lambda < 0,9 durchgeführt.First, all unused catalysts were conditioned by applying an exhaust gas at lambda = 1 ± 0.03 for four hours at an average catalyst temperature of 650 ± 30 ° C, with an oxygen content below 1.5% O 2 in the incoming exhaust gas and at a space velocity of 20,000 ± 5,000 h -1 . A regeneration phase of at least 60 s was then carried out at lambda <0.9.
Unmittelbar nach dieser Regenerationsphase erfolgte eine Beaufschlagung der NOx-Speicherkatalysatoren mit einem Abgas mit einer HC-Eingangskonzentration von maximal 100 ppm HC3 und einer NOx-Eingangskonzentration von 250–500 ppm bei einer mittleren Katalysatortemperatur von 350 ±20°C, Lambda = 2,2 ±0,2 und einer Raumgeschwindigkeit von 40.000 ±20.000 h–1.Immediately after this regeneration phase, the NO x storage catalytic converters were exposed to an exhaust gas with an HC input concentration of maximum 100 ppm HC 3 and an NO x input concentration of 250-500 ppm at an average catalyst temperature of 350 ± 20 ° C, lambda = 2.2 ± 0.2 and a space velocity of 40,000 ± 20,000 h -1 .
Nach Einlagerung einer NO2-Masse von 200 mg pro Liter Katalysatorvolumen wiesen die speicherreduzierten Katalysatoren noch einen NOx-Speicherwirkungsgrad von mindestens 95 % (Katalysator mit um 30 % reduzierter Speichermaterialmasse), mindestens 90 % (50 % Speichermaterialmasse) beziehungsweise mindestens 80 % (um 70 % reduzierte Speichermaterialmasse) auf. Nach Einlagerung einer NO2-Masse von 500 mg/l Katalysatorvolumen wiesen die speicherreduzierten Katalysatoren einen NOx-Speicherwirkungsgrad unterhalb von 80 % (Katalysator mit um 30 % reduzierter Speichermaterialmasse) beziehungsweise unterhalb von 70 % (50 % Speichermaterialmasse) auf. Alle speicherreduzierten Katalysatoren wiesen bei dieser Speicherfüllung aber noch einen Wirkungsgrad von mindestens 60 % auf. Im Vergleich hierzu hatte der NOx-Speicherkatalysator gemäß Stand der Technik bei einer eingelagerten NOx-Masse von 500 mg/l Katalysatorvolumen einen Speicherwirkungsgrad oberhalb von 95 %.After storage of a NO 2 mass of 200 mg per liter of catalyst volume, the reduced-storage catalysts still had an NO x storage efficiency of at least 95% (catalyst with 30% reduced storage material mass), at least 90% (50% storage material mass) or at least 80% ( storage material mass reduced by 70%). After storage of a NO 2 mass of 500 mg / l catalyst volume, the reduced-storage catalysts had a NO x storage efficiency below 80% (catalyst with a storage material mass reduced by 30%) or below 70% (50% storage material mass). With this storage filling, all storage-reduced catalysts still had an efficiency of at least 60%. In comparison, the NO x storage catalyst according to the prior art had a storage efficiency above 95% with an embedded NO x mass of 500 mg / l catalyst volume.
- 1010
- Abgasanlageexhaust system
- 1212
- VerbrennungskraftmaschineInternal combustion engine
- 1414
- Zylindercylinder
- 1616
- Luftansaugrohrair intake pipe
- 1818
- Drosselklappethrottle
- 2020
- Krümmerrohremanifold pipes
- 2222
- Abgasstrangexhaust gas line
- 2424
- NOx-SpeicherkatalysatorNO x storage catalytic converter
- 2626
- Vorkatalysatorprecatalyzer
- 2828
- AbgasrückführungsleitungExhaust gas recirculation line
- 3030
- AbgasrückführungsventilExhaust gas recirculation valve
- 3232
- LuftladeverdichterAir charging compressor
- LL
- AbgaslauflängeExhaust Yardage
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10304205A DE10304205A1 (en) | 2002-12-27 | 2003-01-30 | Exhaust system of an internal combustion engine without a pre-catalyst and method for treating an exhaust gas of the internal combustion engine |
EP03090449A EP1435439A1 (en) | 2002-12-27 | 2003-12-19 | Exhaust gas system without a pre-catalyst and method to purify the exhaust gas of an internal combustion engine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10261909 | 2002-12-27 | ||
DE10261909.3 | 2002-12-27 | ||
DE10304205A DE10304205A1 (en) | 2002-12-27 | 2003-01-30 | Exhaust system of an internal combustion engine without a pre-catalyst and method for treating an exhaust gas of the internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10304205A1 true DE10304205A1 (en) | 2004-07-08 |
Family
ID=32478140
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10304208A Withdrawn DE10304208A1 (en) | 2002-12-27 | 2003-01-30 | Exhaust system of an internal combustion engine without a pre-catalyst and method for treating an exhaust gas of the internal combustion engine |
DE10304205A Withdrawn DE10304205A1 (en) | 2002-12-27 | 2003-01-30 | Exhaust system of an internal combustion engine without a pre-catalyst and method for treating an exhaust gas of the internal combustion engine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10304208A Withdrawn DE10304208A1 (en) | 2002-12-27 | 2003-01-30 | Exhaust system of an internal combustion engine without a pre-catalyst and method for treating an exhaust gas of the internal combustion engine |
Country Status (1)
Country | Link |
---|---|
DE (2) | DE10304208A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007032736A1 (en) * | 2007-07-13 | 2009-01-15 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Exhaust gas aftertreatment in front of a turbocharger |
CN112343740A (en) * | 2019-08-09 | 2021-02-09 | 广州汽车集团股份有限公司 | Supercharging device for lean combustion and engine system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19503748A1 (en) * | 1995-02-04 | 1996-06-20 | Daimler Benz Ag | IC engine with turbocharger in exhaust pipe |
DE10139848A1 (en) * | 2001-08-09 | 2003-02-27 | Daimler Chrysler Ag | Air feed inlet element for motor vehicle is controlled so air quantity fed to internal combustion engine can be adjusted depending on temperature of exhaust gas cleaning system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3526084B2 (en) * | 1993-12-28 | 2004-05-10 | 日本碍子株式会社 | Adsorption / catalyst for exhaust gas purification, adsorbent, exhaust gas purification system and exhaust gas purification method |
DE19640161A1 (en) * | 1996-09-28 | 1998-04-02 | Volkswagen Ag | NOx emission control process |
US6109409A (en) * | 1997-10-14 | 2000-08-29 | Dana Corporation | Sprag family |
-
2003
- 2003-01-30 DE DE10304208A patent/DE10304208A1/en not_active Withdrawn
- 2003-01-30 DE DE10304205A patent/DE10304205A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19503748A1 (en) * | 1995-02-04 | 1996-06-20 | Daimler Benz Ag | IC engine with turbocharger in exhaust pipe |
DE10139848A1 (en) * | 2001-08-09 | 2003-02-27 | Daimler Chrysler Ag | Air feed inlet element for motor vehicle is controlled so air quantity fed to internal combustion engine can be adjusted depending on temperature of exhaust gas cleaning system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007032736A1 (en) * | 2007-07-13 | 2009-01-15 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Exhaust gas aftertreatment in front of a turbocharger |
US8544266B2 (en) | 2007-07-13 | 2013-10-01 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Exhaust-gas aftertreatment system upstream of a turbocharger, method for purifying exhaust gas and vehicle having the system |
CN112343740A (en) * | 2019-08-09 | 2021-02-09 | 广州汽车集团股份有限公司 | Supercharging device for lean combustion and engine system |
CN112343740B (en) * | 2019-08-09 | 2024-03-26 | 广州汽车集团股份有限公司 | A supercharging device and engine system for lean combustion |
Also Published As
Publication number | Publication date |
---|---|
DE10304208A1 (en) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102016201770B3 (en) | Auto-ignition and suitable for HCCI operation internal combustion engine and method for operating such an internal combustion engine | |
DE102014017160B4 (en) | Thermal management for regenerating an aftertreatment facility | |
EP0892157B1 (en) | Multi-cylinder compression-ignition internal combustion engine with fuel injection | |
EP2635777B1 (en) | Motor vehicle internal combustion engine and method for operating a motor vehicle internal combustion engine | |
EP3344863B1 (en) | Method and apparatus for exhaust gas treatment of an internal combustion engine | |
DE102014200057A1 (en) | A method of reducing particulate emissions from a spark-ignition internal combustion engine | |
DE102010060330A1 (en) | Method for monitoring a pollutant concentration in the exhaust gas of an internal combustion engine | |
DE102004035341B4 (en) | hybrid vehicle | |
DE102010029728B4 (en) | Method for controlling an injection of fuel in an internal combustion engine, control device for controlling an injection in an internal combustion engine and method for selecting an injection valve for an engine system | |
EP2848783B1 (en) | Method for operating a combustion engine | |
DE10252343B4 (en) | Emission control system and method for an internal combustion engine | |
EP3106637B1 (en) | Method for operating a gas motor | |
DE10102376B4 (en) | Charged stratified gasoline engine with direct injection | |
DE10304205A1 (en) | Exhaust system of an internal combustion engine without a pre-catalyst and method for treating an exhaust gas of the internal combustion engine | |
EP1435439A1 (en) | Exhaust gas system without a pre-catalyst and method to purify the exhaust gas of an internal combustion engine | |
DE102005021953A1 (en) | Internal combustion engine and method for operating this | |
EP1435438A1 (en) | Exhaust gas system without a pre-catalyst and method to purify the exhaust gas of an internal combustion engine | |
WO2001029384A1 (en) | Method for operating an internal combustion engine comprising at least one working cylinder which is guided in a cylinder | |
EP1591651B1 (en) | Method for increasing the torque in a direct injection internal-combustion engine | |
DE102021111331A1 (en) | Desulfurization of a three-way catalytic converter of an internal combustion engine | |
DE102019216623B4 (en) | Method for operating an internal combustion engine with an exhaust gas aftertreatment system | |
DE102023204992B3 (en) | Drive device for a motor vehicle and a corresponding method for operating a drive device | |
EP2150327B1 (en) | Exhaust gas after-treatment having reduced rhodium depletion | |
DE102019102749A1 (en) | Method for operating an externally ignited internal combustion engine and internal combustion engine | |
DE102021129506A1 (en) | Method for operating an internal combustion engine, a system for carrying out the method and an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8139 | Disposal/non-payment of the annual fee |