DE10214250A1 - Mikrotiterplatte mit elektrisch leitfähiger und optisch transparenter Beschichtung - Google Patents
Mikrotiterplatte mit elektrisch leitfähiger und optisch transparenter BeschichtungInfo
- Publication number
- DE10214250A1 DE10214250A1 DE2002114250 DE10214250A DE10214250A1 DE 10214250 A1 DE10214250 A1 DE 10214250A1 DE 2002114250 DE2002114250 DE 2002114250 DE 10214250 A DE10214250 A DE 10214250A DE 10214250 A1 DE10214250 A1 DE 10214250A1
- Authority
- DE
- Germany
- Prior art keywords
- microtiter plate
- cavities
- electrically conductive
- base plate
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005497 microtitration Methods 0.000 title abstract 2
- 239000012799 electrically-conductive coating Substances 0.000 title description 2
- 238000000034 method Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 8
- 239000012780 transparent material Substances 0.000 claims description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims 1
- 239000011810 insulating material Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 5
- 239000002861 polymer material Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 19
- 239000010410 layer Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000011835 investigation Methods 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000013553 cell monolayer Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5085—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5302—Apparatus specially adapted for immunological test procedures
- G01N33/5304—Reaction vessels, e.g. agglutination plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0645—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0829—Multi-well plates; Microtitration plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
- B01L2300/168—Specific optical properties, e.g. reflective coatings
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Die Erfindung betrifft eine Mikrotiterplatte, die eine Mehrzahl an Kavitäten aufweist, bestehend aus einer Bodenplatte und einem mit dieser verbundenen Multiwellaufsatz, der die Mikrotiterplatte in Kavitäten aufteilt, wobei die Bodenplatte aus einem transparenten Material besteht, welches einseitig auf der dem Multiwellaufsatz zugewandten Seite mit einem optisch transparenten elektrisch leitfähigen Material beschichtet ist. Des Weiteren betrifft die Erfindung ein Verfahren zur Bestimmung optischer und elektrischer Parameter an einer Mehrzahl von Untersuchungssystemen, welches von einer Mikrotiterplatte gemäß einem der Ansprüche 1 bis 6 Gebrauch macht und wobei sich die Untersuchungssysteme in den Kavitäten der Mikrotiterplatte befinden und während der Untersuchung der elektrischen Eigenschaften eine mit einem Messgerät verbundene Gegenelektrode in das jeweilige Untersuchungssystem getaucht wird und vor, während oder nach der Durchführung der Bestimmung des elektrischen Parameters eine optische Untersuchung des gleichen Untersuchungssystems durchgeführt wird.
Description
- Die vorliegende Erfindung betrifft eine Mikrotiterplatte mit elektrisch leitfähiger und optisch-transparenter Beschichtung sowie die Verwendung der Mikrotiterplatte in einem Verfahren zur Bestimmung optischer und elektrischer Parameter an einer Mehrzahl biologischer und/oder chemischer Untersuchungssysteme.
- Die verbreitetste Technik zur Untersuchung des transepithelialen elektrischen Widerstands (TER) verwendet poröse Filtermembranen (Polycarbonat, Polystyrol) auf denen die Zellen kultiviert werden. Zur Messung des TER müssen die benötigten Messelektroden durch einen externen Messaufbau bereit gestellt werden. Üblich sind Filtereinsätze, die eine Kultivierung von Zellen in 6-, 12-, oder 24er aber auch 96er Mikrotiterplatten zulassen. Derartige Filtersysteme sind bei World Precision Instruments Inc. (Berlin) kommerziell erhältlich. Die Kosten der Herstellung solcher Filter sind bei derartigen Messanordnungen jedoch verhältnismäßig hoch.
- Messkammern mit integrierten Gold-Film Elektroden zur Untersuchung von Gewebeschnitten (extrazelluläre Ableitung von Aktionspotentialen) sind bei Multichannel-Systems MCS GmbH (Reutlingen) erhältlich.
- Messkammern mit acht Kavitäten mit integrierten Gold-Film Elektroden werden von Applied BioPhysics, Inc. (Troy, New York) vertrieben. Ein ähnlicher Aufbau wurde auch von Wegener im J. Biochem Biophys. Methods 32 (1996) 151-170 beschrieben.
- Optische Untersuchungen lassen sich jedoch an den oben beschriebenen Vorrichtungen, die von Gold-Film-Elektroden Gebrauch machen, nur eingeschränkt durchführen. So lassen sich adhärente Zellschichten nicht mittels photometrischer Absorptionsmessungen untersuchen, da die Substrate wegen der hohen Eigenabsorption der Metallfilme ungeeignet sind. Fluoreszenz-spektroskopische oder fluoreszenzmikroskopische Untersuchungen sind nur unter Verwendung von Auflichtnicht aber inversen Mikroskopen möglich, die jedoch viele anwendungsorientierte Vorteile mit sich bringen.
- Zur Durchführung photometrischer Experimente, auch an zellulären Systemen, sind seit einiger Zeit Mikrotiterplatten mit 96 Wells zum Beispiel von der Firma Nung GmbH erhältlich.
- Aus der Fachliteratur sind Messvorrichtungen, die Indium-Zinn-Oxid (ITO) als Elektrodenmaterial zur Manipulation, insbesondere Elektroporation adhärenter Zellmonoschichten verwenden bekannt. Hierzu zählen unter anderem die von Firth et al., 1997, Biotechniques 24 (1997) 644-646, Gross et al., 1993, J. Neurosci. Methods 50 (1993) 131-143, Kimura et al., 1998, Med. Biol. Eng. Comput. 36 (1998) 493-498, und Poortinga et al., 1999, J. Microbiol. Methods 38 (1999) 183-189, beschriebenen Anordnungen. Mit derartigen Vorrichtungen sind weder gleichzeitige Messungen an einer Vielzahl von Proben bei geringem Bedarf an Zellen und Medium und höchstmöglicher Automatisierung der Messung möglich, noch eignen sich die Versuchsanordnungen zur nicht-invasiven elektrischen Charakterisierung von Zellschichten im Sinne eines Monitoring. Darüber hinaus ist die Abisolierung der Elektrodenareale bei der Herstellung einiger der genannten Vorrichtungen mittels einer Polymerbeschichtung mit weiterem Arbeits- und somit Kostenaufwand verbunden.
- Die US 6,207,369 offenbart Materialien und Verfahren aus dem Bereich der Elektrochemilumineszenz-Untersuchungen, die ebenfalls für ein nicht-invasives Monitoring im Obigen Sinne ungeeignet sind. Insbesondere wird die chemische und physikalische Kontrolle, also die Manipulation der Untersuchungssysteme beschrieben.
- Eines der Ziele der vorliegenden Erfindung war es daher die Nachteile der oben beschriebenen Vorrichtungen zu überwinden und eine universell verwendbare auch unter wirtschaftlichen Gesichtspunkten günstige Mikrotiterplatte zur Verfügung zu stellen, die gleichzeitige optische und elektrische und somit korrelierbare Messungen an einer Vielzahl von Proben biologischer und/oder chemischer Systeme erlaubt und daher für die automatisierte Durchführung einer großen Anzahl von Experimenten, bei minimaler Probengröße, auch unter Verwendung kommerziell erhältlicher Mess- und Pipettiergeräte geeignet ist.
- Die Aufgabe wurde durch Bereitstellung einer Mikrotiterplatte die eine Mehrzahl an Kavitäten aufweist, bestehend aus einer Bodenplatte und einem mit dieser verbundenen Multiwellaufsatz, der die Mikrotiterplatte in Kavitäten aufteilt, gelöst, wobei die Bodenplatte aus einem transparenten Material besteht, welches einseitig auf der dem Multiwellaufsatz zugewandten Seite mit einem optisch transparenten elektrisch leitfähigen Material beschichtet ist.
- Die Bodenplatte kann grundsätzlich aus jedem transparenten Material, wie zum Beispiel transparenten organischen Polymeren, wie zum Beispiel Polycarbonat oder Polystyrol oder anorganischen Materialien, wie Glas, ausgewählt je nach Art der durchzuführenden optischen Untersuchungen unter Berücksichtigung einer möglichst geringen Eigenabsorption des eingestrahlten und/oder emittierten Lichts, bestehen. So ist zum Beispiel bei Untersuchungen im UV-Bereich die Verwendung von Quarzglas als Bodenplatte vorteilhaft, während im Bereich des sichtbaren Lichts auf verschiedene Kunststoffe zurückgegriffen werden kann.
- Die Bodenplatte ist mit dem optisch transparenten elektrisch leitfähigen Elektrodenmaterial beschichtet. Als Elektrodenmaterial eignet sich grundsätzlich jedes optisch transparente und elektrisch leitfähige Material. So können zum Beispiel leitfähige organische Polymere und Metalloxide wie Indium-Zinn-Oxid (ITO) und Metalle in einer Schichtdicke, die Transparenz zulässt eingesetzt werden. Es muss jedoch berücksichtigt werden, dass je nach Beschichtung beziehungsweise Beschichtungsverfahren ein geeignetes Bodenplattenmaterial zu wählen ist. So eignen sich zum Beispiel auf Grund der thermischen Belastung bei einer Sputterbeschichtung mit ITO nur solche Substrate, die eine entsprechende thermische Stabilität aufweisen.
- Sofern die Elektroden auch als Zellkultursubstrat dienen, bedarf es der Verwendung biokompatibler, untoxischer Materialien. Als biokompatibel hat sich zum Beispiel das kommerziell erhältliche und preisgünstige ITO bewährt, auf welchem sich sogar üblicherweise schwer in vitro kultivierbare Neuronen erfolgreich anzüchten lassen.
- Bodenplatten auf Basis eines transparenten Kunststoffs, Glas oder Quarz mit einer ITO-Beschichtung sind zum Beispiel bei der Präzisions Glas & Optik GmbH (Iserlohn) oder Delta Technologies (Stillwater, MN, USA) erhältlich.
- Bei der Anzucht mancher Zellen, wie zum Beispiel Endothelzellen kann es vorteilhaft sein das Elektrodenmaterial mit einem die Biokompatibilität steigernden Material zu beschichten. Hierfür eigenen sich beispielsweise Proteine, wie durch Glutaraldehyd vernetzte Gelatine. Neben einer Verbesserung der Adhäsion und Proliferation der Zellen, lässt sich darüber hinaus auf diese Weise die maximale Kultivierungsdauer teilweise um das Zigfache erhöhen. Weitere Beschichtungsmaterialien sind zum Beispiel Fibronektin, Vitronektin, Laminin, Kollagen, Matrigel™ (Gemisch aus Basalmembranproteinen, erhältlich bei Firma Sigma) oder Polylysin.
- Eine Beschichtung mit vernetzter Gelatine kann zum Beispiel durch mehrstündiges Inkubieren der Kavitäten bei Raumtemperatur mit einer 0,5 gew.-%igen Gelatine- Lösung in Wasser, nachfolgendem Entfernen der Gelatine-Lösung und 15 minütigem Inkubieren mit einer 2 gew.-%igen Glutardialdehyd-Lösung und anschließender Inkubierung mit 70 vol-%igem Ethanol erhalten werden. Vor dem Ausbringen der Zellsuspension in die Kavitäten empfiehlt es sich die Kavitäten mehrfach mit Reinstwasser zu waschen. Die nachfolgende Kultivierung der Zellen erfolgt abgestimmt auf den Zelltyp unter den üblichen, dem Durchschnittsfachmann auf dem Zellkulturgebiet bekannten Bedingungen.
- Eine bevorzugte Ausführungsform der Mikrotiterplatte besitzt eine lösbare Verbindung zwischen der Bodenplatte und dem Multiwellaufsatz, die es gestattet nach erfolgter Untersuchung die Bodenplatte vom Multiwellaufsatz ohne Zerstörung der optisch transparenten elektrisch leitfähigen Beschichtung zu entfernen und gegebenenfalls sogar unter Verwendung anders aufgeteilter Multiwellaufsätze für weitere Untersuchungen wieder zur Verfügung zu stellen.
- An eine derartige lösbare Verbindung sind verschiedene Anforderungen zu stellen. Insbesondere ist eine Kompatibilität des Verbindungsmaterials mit dem zu untersuchenden System gefordert, so darf dieses zum Beispiel bei der Untersuchung lebenden Materials keine Cytotoxizität aufweisen. Eine Wechselwirkung zwischen dem Verbindungsmaterial und dem Untersuchungssystem oder Untersuchungsverfahren ist hingegen unerwünscht. Ferner sollte das Verbindungsmaterial restlos und den Untergrund, das heißt die beschichtete Bodenplatte schonend, ablösbar sein. Generell ist jedwede Art von Verbindungsmaterial, das den obigen Anforderungen genügt einsetzbar. Insbesondere Klebstoffe auf Silikon- beziehungsweise Silikonelastomerbasis haben sich hierbei als geeignet erwiesen. Insbesondere sind flexible, transparente, revisionsresistente Elastomere mit hervorragenden dielektrischen Eigenschaften, hoher Stabilität über einen weiten Temperaturbereich und niedriger Toxizität bevorzugt. Hierunter ist der unter der Bezeichnung Sylgard 184 bei der Dow Corning Corp. (Midland, Michigan, USA) erhältliche Klebstoff besonders geeignet, da er sich insbesondere bei der Untersuchung biologischer Systeme gegenüber den meisten Systemen inert verhält und eine dichte, reversible Verbindung der Bodenplatte mit dem Multiwellaufsatz ermöglicht.
- Der Multiwellaufsatz dient im Wesentlichen zur Unterteilung der Mikrotiterplatte in einzelne Kavitäten und somit zur räumlichen Begrenzung der optisch transparenten Elektrodenfläche der Bodenplatte in einzelne Flächen, die die Böden der jeweiligen Reaktions- bzw. Kultureinheit bilden. Die Wahl des Aufsatzmaterials unterliegt keinen Beschränkungen und kann den Untersuchungsanforderungen gemäß gewählt werden. Insbesondere eigenen sich die bei der Firma Nung (Wiesbaden) erhältlichen Plastik-Aufsätze mit 12, 24, 48, 96 und mehr Wells, die für Bodenplatten des Formats 8,2 cm × 12,45 cm hergestellt werden. Die für die erfindungsgemäßen Mikrotiterplatten verwendbaren Multiwellaufsätze und Bodenplatten können je nach Anforderungen beliebige andere Formate besitzen.
- Eine erfindungsgemäße Mikrotiterplatte mit 96 Kavitäten ist beispielhaft in den Fig. 1 (Aufsicht), 2 (Seitenansicht) und 3 (perspektivische Darstellung) dargestellt. Die in Fig. 2 und 3 verwendeten Bezugszeichen besitzen folgende Bedeutung: 1 Multiwellaufsatz,
2 optisch transparentes elektrisch leitfähiges Material, z. B. ITO,
3 lösbares Verbindungsmaterial, z. B. Sylgard 184 und
4 Bodenplatte aus transparentem Material, z. B. Kunststoff oder Glas.
- Die Fig. 1 bis 3 sollen nur zur Verdeutlichung der Erfindung dienen. Insbesondere der in Fig. 2 und 3 dargestellte Schichtaufbau aus Bodenplatte, optisch transparentem elektrisch leitfähigem Material und lösbarem Verbindungsmaterial ist nicht als maßstabsgetreu zu betrachten.
- Im Gegensatz zu den oben beschriebenen Messanordnungen des Stands der Technik wird bei der erfindungsgemäßen Vorrichtung auf eine coplanare Anordnung der Elektroden verzichtet. Zur Messung wird vielmehr eine zweite Elektrode in der jeweiligen Messkavität platziert. Dazu kann man in alle Kavitäten gleichzeitig je eine individuelle Elektrode eintauchen und mit Hilfe eines Relais zwischen den Elektroden hin und her schalten oder diese auf andere Weise getrennt ansteuern, oder aber man verwendet nur eine einzige Elektrode, die zum Beispiel mittels eines Roboterarms von einer Kavität zur nächsten geführt wird. Die Adressierung der Kavitäten erfolgt somit in beiden Fällen über die Gegenelektrode. Ein wesentlicher Vorteil dieser Anordnung besteht darin, dass in einem Experiment die gesamte Zellmonoschicht erfasst werden kann, so wie dies sonst nur bei den oben beschriebenen Filtersystemen der Fall ist.
- Bei einer typischen Messanordnung dient eine ITO-Beschichtung als Arbeitselektrode und eine Platinelektrode, die in die zu untersuchende Kavität getaucht wird, als Gegenelektrode. Die Aufnahme und Auswertung der Daten kann zum Beispiel mittels des von den Erfindern entwickelten und bei diesen erhältlichen LABView-Programms erfolgen, ist jedoch nicht auf dieses beschränkt. Die Messungen können zum Beispiel in einem wasserdampfgesättigten Inkubator mit einer 5 vol.-%igen CO2-Atmosphäre bei 37°C durchgeführt werden.
- Die Erfindung betrifft auch ein Verfahren zur Bestimmung der optischen und elektrischen Parameter an einer Mehrzahl von Untersuchungssystemen, wobei von der erfindungsgemäßen Mikrotiterplatte Gebrauch gemacht wird und wobei sich die jeweiligen Untersuchungssysteme in den Kavitäten der Mikrotiterplatte befinden und während der Untersuchung der elektrischen Eigenschaften die mit einem Messgerät verbundene Gegenelektrode in das jeweilige Untersuchungssystem getaucht wird und vor, während oder nach der Durchführung der Bestimmung des elektrischen Parameters eine optische Untersuchung des gleichen Untersuchungssystems durchgeführt wird.
- Das erfindungsgemäße Verfahren eignet sich sowohl für ein bloßes Monitoring, als auch zur Manipulation des zu beobachtenden Systems, wobei beide Möglichkeiten so steuerbar sind, dass sie, je nach zu untersuchenden Parametern sowohl zeitlich getrennt, als auch zeitgleich durchführbar sind.
- Bei der Durchführung des erfindungsgemäßen Verfahrens kann die Gegenelektrode eine Einzelelektrode darstellen, die nacheinander in die einzelnen Kavitäten getaucht wird oder ein Elektrodenarray aus individuellen Elektroden, wobei jeder individuellen Elektrode eine Kavität zugeordnet ist und zwischen den einzelnen Elektroden hin und her geschaltet wird.
- Als mögliche untersuchbare elektrische Parameter kommen zum Beispiel Impedanz, Widerstand und Kapazität bei unterschiedlichen Frequenzen, die transepitheliale Potentialdifferenz, der Kurzschlussstrom (transepitheliale Potentialdifferenz wird kurzgeschlossen), Charge-Transfer-Widerstand in Gegenwart redoxaktiver Marker- Ionen und aus Elektrovoltamogrammen erhältliche Parameter in Frage.
- Die Impedanzspektroskopie ist beispielsweise eine Methode, die es erlaubt verschiedene elektrochemische Eigenschaften eines Systems, so auch funktionelle Parameter einer Zellschicht zu untersuchen. Ein impedanzspektroskopisches Verfahren beruht zum Beispiel auf der Analyse der passiven elektrischen Eigenschaften einer Zellschicht und liefert als Ergebnis insbesondere den elektrischen Widerstand der Zellschicht sowie die Membrankapazität. Außerdem lassen sich auch Änderungen im Bereich des Zell-Substrat-Kontaktes beobachten.
- Impedanzspektroskopische Untersuchungen können zum Beispiel mit einem Impedanzspektrometer SI 1260 der Firma Solartron Instruments durchgeführt werden. Als Messdaten können unter anderem der Betrag der Impedanz und die Phasenverschiebung zwischen Strom und Spannung gemessen werden.
- Als optische Parameter kommen solche, die über spektroskopische oder photometrische Verfahren und Anordnungen bestimmbar sind, wie zum Beispiel Absorption oder Fluoreszenz, aber auch rein morphologische Parameter, die mit auflicht- oder durchlichtmikroskopischen Verfahren bestimmbar sind in Frage. Detektionseinheit und Einstrahlungsquelle können unterhalb der transparenten Bodenplatte und/oder neben der Gegenelektrode angeordnet sein, je nach dem welcher Parameter zu bestimmen ist.
- Die oben beschriebene Anordnung besitzt den weiteren Vorteil, dass die Konstruktion der erfindungsgemäßen Mikrotiterplatte sehr einfach gehalten werden kann und eine Vorstrukturierung der Mikrotiterplatte mit Gegenelektroden, zum Beispiel im Messkammerboden nicht notwendig ist. Je weniger strukturiert und aufwändig die Bodenplatte konzipiert ist, desto einfacher gestaltet sich deren Reinigung und Wiederverwendung und desto weniger störanfällig erweist sich diese.
- Insbesondere bei der Verwendung von Aufsätzen, welche die Mikrotiterplatte in 96 oder mehr Kavitäten unterteilen, würde eine coplanare Anordnung der Elektroden zu einem komplexen Elektrodenlayout führen, bei welchem die Zuleitungen zu den einzelnen Elektroden sehr schmal und damit hochohmig sind, was wiederum in einem schlechten Verhältnis zwischen dem Widerstand der Zellschicht, das heißt dem Signal, und dem Widerstand der Zuleitungen zum Ausdruck kommt. Eine Vergrößerung der Bodenflächen, zum Beispiel durch entsprechende Aufsätze erhöht jedoch den Bedarf an Zellmenge und verschlechtert das Verhältnis zwischen dem Signal und dem Widerstand der Zuleitungen, insbesondere bei besonders niederohmigen Zellschichten.
- Für manche Untersuchung ist es wünschenswert die Elektrodenfläche zu verkleinern, was im Falle der erfindungsgemäßen Mikrotiterplatte einfach durch Aufbringen einer polymeren Isolatorschicht auf Teile der Elektrode erreichbar ist. Wie bereits angesprochen kann durch eine Veränderung der Größe der Elektrodenfläche das Verhältnis zwischen Signal und Zuleitungswiderstand gesteuert werden. So ist die Verkleinerung der Elektrodenfläche besonders bei sehr durchlässigen Zellmonoschichten vorteilhaft.
- Eine Abisolierung der Randbereiche der Bodenflächen der einzelnen Kavitäten kann darüber hinaus Messfehler durch Leckströme, wie sie im Kontaktbereich zwischen Zellrasen und Kammerwand auftreten minimieren.
- Isolatorschichten können zum Beispiel durch Aufdrucken mittels eines Plotters oder Druckers des Tintenstrahltyps, indem die Tinte durch eine Isolatorlösung mit schnell verdampfendem Lösungsmittel ersetzt wird, aufgebracht werden. Des Weiteren kann in einem zweistufigen Verfahren zunächst eine Komplettbeschichtung mittels Spincoating erfolgen, woran sich eine Strukturierung mittels Photolithographie anschließt. Auf diese Arten lassen sich strukturierte Elektrodenoberflächen und somit verschiedenste Elektrodenlayouts erhalten. So ist es zum Beispiel möglich jeden Kavitätboden durch entsprechende Isolierung in mehrere Elektrodenflächen zu unterteilen und somit Mehrfachbestimmungen durchzuführen.
- Das erfindungsgemäße Verfahren lässt sich insbesondere im Bereich eines effektiven High-Throughput-Wirkstoff-Screenings zum Beispiel unter Verwendung von Zellen eines bestimmten Zielgewebes anwenden.
- Durch das erfindungsgemäße Verfahren und die erfindungsgemäße Mikrotiterplatte ist in vielen Fällen eine simultane In-Situ-Bestimmung elektrischer und optischer Parameter für eine Struktur-Funktions-Analyse im Bereich der biochemischen und zellbiologischen Grundlagenforschung erstmals möglich.
Claims (10)
1. Mikrotiterplatte die eine Mehrzahl an Kavitäten aufweist, bestehend aus einer
Bodenplatte und einem mit dieser verbundenen Multiwellaufsatz, der die
Mikrotiterplatte in Kavitäten aufteilt, wobei
die Bodenplatte aus einem transparenten Material besteht, welches einseitig
auf der dem Multiwellaufsatz zugewandten Seite mit einem optisch
transparenten elektrisch leitfähigen Material beschichtet ist.
2. Mikrotiterplatte gemäß Anspruch 1, wobei der Multiwellaufsatz lösbar mittels
eines Verbindungsmaterials mit der Bodenplatte verbunden ist.
3. Mikrotiterplatte gemäß Anspruch 2, wobei das Verbindungsmaterial ein
Silikonelastomer ist.
4. Mikrotiterplatte gemäß einem oder mehreren der Ansprüche 1 bis 3, wobei
das optisch transparente elektrisch leitfähige Material Indium-Zinn-Oxid ist.
5. Mikrotiterplatte gemäß einem oder mehreren der Ansprüche 1 bis 4, wobei
das optisch transparente elektrisch leitfähige Material mit einem die
Biokompatibilität steigernden Material beschichtet ist.
6. Mikrotiterplatte gemäß einem oder mehreren der Ansprüche 1 bis 5, wobei die
mit dem optisch transparenten elektrisch leitfähigen Material beschichtet
Bodenfläche einer Kavität an ihren an den Multiwellaufsatz grenzenden
Randbereichen mit einem isolierenden Material beschichtet ist.
7. Verfahren zur Bestimmung optischer und elektrischer Parameter an einer
Mehrzahl von Untersuchungssystemen,
welches von einer Mikrotiterplatte gemäß einem der Ansprüche 1 bis 6 Gebrauch macht und
wobei sich die Untersuchungssysteme in den Kavitäten der Mikrotiterplatte befinden und während der Untersuchung der elektrischen Eigenschaften eine mit einem Messgerät verbundene Gegenelektrode in das jeweilige Untersuchungssystem getaucht wird
und vor, während oder nach der Durchführung der Bestimmung des elektrischen Parameters eine optische Untersuchung des gleichen Untersuchungssystems durchgeführt wird.
welches von einer Mikrotiterplatte gemäß einem der Ansprüche 1 bis 6 Gebrauch macht und
wobei sich die Untersuchungssysteme in den Kavitäten der Mikrotiterplatte befinden und während der Untersuchung der elektrischen Eigenschaften eine mit einem Messgerät verbundene Gegenelektrode in das jeweilige Untersuchungssystem getaucht wird
und vor, während oder nach der Durchführung der Bestimmung des elektrischen Parameters eine optische Untersuchung des gleichen Untersuchungssystems durchgeführt wird.
8. Verfahren gemäß Anspruch 8, wobei die Bestimmung der optischen
Parameter und der elektrischen Parameter gleichzeitig erfolgt.
9. Verfahren gemäß Anspruch 7 oder 8, wobei die Gegenelektrode eine
Einzelelektrode ist, die nacheinander in die einzelnen Kavitäten getaucht wird
oder ein Elektrodenarray aus individuellen Elektroden ist, wobei jeder
individuellen Elektrode eine Kavität zugeordnet ist und zwischen den
einzelnen Elektroden hin und her geschaltet wird.
10. Verwendung einer Mikrotiterplatte gemäß einem oder mehreren der
Ansprüche 1 bis 6 bei der In-Situ-Bestimmung optischer und elektrischer
Parameter.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20220620U DE20220620U1 (de) | 2002-03-30 | 2002-03-30 | Mikrotiterplatte mit elektrisch leitfähiger und optisch transparenter Beschichtung |
DE2002114250 DE10214250A1 (de) | 2002-03-30 | 2002-03-30 | Mikrotiterplatte mit elektrisch leitfähiger und optisch transparenter Beschichtung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2002114250 DE10214250A1 (de) | 2002-03-30 | 2002-03-30 | Mikrotiterplatte mit elektrisch leitfähiger und optisch transparenter Beschichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10214250A1 true DE10214250A1 (de) | 2003-10-23 |
Family
ID=28458479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2002114250 Withdrawn DE10214250A1 (de) | 2002-03-30 | 2002-03-30 | Mikrotiterplatte mit elektrisch leitfähiger und optisch transparenter Beschichtung |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE10214250A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1600213A1 (de) * | 2004-05-21 | 2005-11-30 | Schott Ag | Vorrichtung in Form einer Mikrotiterplatte zum multiplexierten Array |
DE102007059476B3 (de) * | 2007-12-11 | 2009-07-30 | Advalytix Ag | Vorrichtung und Verfahren zur Vermehrung und zur anschließenden Charakterisierung von Zellen |
DE102016223077A1 (de) * | 2016-11-23 | 2018-05-24 | Bayerische Motoren Werke Aktiengesellschaft | Vorrichtung, Messanordnung und Verfahren zur Bestimmung einer dielektrischen Eigenschaft einer Messprobe, Verwendung der Messanordnung |
CN113164959A (zh) * | 2018-12-13 | 2021-07-23 | 弗劳恩霍夫应用研究促进协会 | 用于生物样品的样品保持装置,包括由碳基材料制成的样品容纳部 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2902026B2 (de) * | 1979-01-19 | 1981-02-12 | J. Hinrich Dr. 5064 Roesrath Peters | Biologisches Gefäß |
JPS5799188A (en) * | 1980-12-12 | 1982-06-19 | Nippon Tectron Co Ltd | Culture cell device in measuring device for culture of microorganism |
DE19646505A1 (de) * | 1996-11-12 | 1998-05-14 | Itt Ind Gmbh Deutsche | Vorrichtung zur Durchführung von Untersuchungen an Zellproben und dergleichen |
WO1998036266A1 (en) * | 1997-02-12 | 1998-08-20 | Sakari Mikael Kulmala | Electrical excitation of label substances at coated electrodes |
US5861306A (en) * | 1995-08-24 | 1999-01-19 | Millenium Biologix, Inc. | Multi-well bone culture device for use in assessment of bone cell activity |
WO2003001889A2 (en) * | 2001-06-29 | 2003-01-09 | Meso Scale Technologies, Llc. | Assay plates reader systems and methods for luminescence test measurements |
-
2002
- 2002-03-30 DE DE2002114250 patent/DE10214250A1/de not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2902026B2 (de) * | 1979-01-19 | 1981-02-12 | J. Hinrich Dr. 5064 Roesrath Peters | Biologisches Gefäß |
JPS5799188A (en) * | 1980-12-12 | 1982-06-19 | Nippon Tectron Co Ltd | Culture cell device in measuring device for culture of microorganism |
US5861306A (en) * | 1995-08-24 | 1999-01-19 | Millenium Biologix, Inc. | Multi-well bone culture device for use in assessment of bone cell activity |
DE19646505A1 (de) * | 1996-11-12 | 1998-05-14 | Itt Ind Gmbh Deutsche | Vorrichtung zur Durchführung von Untersuchungen an Zellproben und dergleichen |
WO1998036266A1 (en) * | 1997-02-12 | 1998-08-20 | Sakari Mikael Kulmala | Electrical excitation of label substances at coated electrodes |
WO2003001889A2 (en) * | 2001-06-29 | 2003-01-09 | Meso Scale Technologies, Llc. | Assay plates reader systems and methods for luminescence test measurements |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1600213A1 (de) * | 2004-05-21 | 2005-11-30 | Schott Ag | Vorrichtung in Form einer Mikrotiterplatte zum multiplexierten Array |
DE102007059476B3 (de) * | 2007-12-11 | 2009-07-30 | Advalytix Ag | Vorrichtung und Verfahren zur Vermehrung und zur anschließenden Charakterisierung von Zellen |
WO2009074245A3 (de) * | 2007-12-11 | 2009-11-26 | Beckman Coulter, Inc. | Vorrichtung und verfahren zur charakterisierung von zellen |
DE102016223077A1 (de) * | 2016-11-23 | 2018-05-24 | Bayerische Motoren Werke Aktiengesellschaft | Vorrichtung, Messanordnung und Verfahren zur Bestimmung einer dielektrischen Eigenschaft einer Messprobe, Verwendung der Messanordnung |
CN113164959A (zh) * | 2018-12-13 | 2021-07-23 | 弗劳恩霍夫应用研究促进协会 | 用于生物样品的样品保持装置,包括由碳基材料制成的样品容纳部 |
CN113164959B (zh) * | 2018-12-13 | 2023-01-17 | 弗劳恩霍夫应用研究促进协会 | 用于生物样品的样品保持装置,包括由碳基材料制成的样品容纳部 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3024920B1 (de) | Vorrichtungen und systeme für elektrophysiologie mit hohem durchsatz | |
EP1539992B1 (de) | Vorrichtungen auf impedanzbasis sowie verfahren zur verwendung in assays | |
EP1311655B1 (de) | Vorrichtung und verfahren zum elektrischen kontaktieren von in einer flüssigkeit in suspension befindlichen biologischen zellen | |
EP2766724B1 (de) | Vorrichtung und verfahren zur parallelen aufzeichnung von impedanzspektren und feldpotenzial | |
EP1368488B1 (de) | Sensoranordnung, vorrichtung und verfahren zur amperometrischen und/oder potentiometrischen, pharmakologischen wirkort- und/oder wirkstofftestung | |
DE112006000743T5 (de) | Probenplatte mit mehreren Vertiefungen mit integrierten Impedanzelektroden und Verbindungsanordnung | |
JPWO2002055653A1 (ja) | 細胞外電位測定用デバイス、それを用いた細胞外電位測定方法およびそれを備えた高速薬品スクリーニング装置 | |
DE102014116777A1 (de) | Mikrofluidischer Sensor | |
WO2008011876A2 (de) | Anordnung für online-messungen an zellen | |
DE102015219023B3 (de) | Vorrichtung zum Analysieren von biologischen Substanzen in einer Testlösung, Herstellungsverfahren und Betriebsverfahren | |
DE10203686A1 (de) | Verfahren zur Durchführung von elektrischen Messungen an biologischen Membrankörpern | |
DE10214250A1 (de) | Mikrotiterplatte mit elektrisch leitfähiger und optisch transparenter Beschichtung | |
US7807042B2 (en) | System for and method of patch clamp analysis | |
EP2798348A1 (de) | Anordnung und verfahren zur elektrochemischen analyse von flüssigen proben mit lateral flow assays | |
EP1623224B1 (de) | Biokompatible sensorelektrodenanordnung und verfahren zu deren herstellung | |
DE20220620U1 (de) | Mikrotiterplatte mit elektrisch leitfähiger und optisch transparenter Beschichtung | |
WO2011018107A1 (de) | Verfahren und vorrichtung zur messung von physikalischen eigenschaften biologischer proben | |
WO2004021002A1 (de) | Vorrichtung und methoden zur durchführung von elektrischen messungen an membrankörpern | |
DE10323638B4 (de) | Verfahren und Vorrichtung zur Entwicklung einer elektrochemischen Messanordnung | |
EP1594613B1 (de) | Verfahren zur untersuchung zellulärer proben | |
Cote | Development and Characterization of a Bioelectronic Scaffold for a Hybrid Brain Model | |
DE19857692C1 (de) | Verfahren und Vorrichtung zur zellspurbasierten Zelluntersuchung | |
DE20104431U1 (de) | Sensorelektrodeneinrichtung, Sensoranordnung und Vorrichtung zur amperometrischen und/oder potentiometrischen, insbesondere pharmakologischen Wirkort- und/oder Wirkstofftestung | |
Weber | Manufacturing of Gold Nanoelectrode Ensembles for Intracellular Recording on Living Cells | |
DE102007034935A1 (de) | Anordnung für Online-Messungen an Zellen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8130 | Withdrawal | ||
8165 | Unexamined publication of following application revoked |