DE102010014370B4 - LDMOS-Transistor und LDMOS - Bauteil - Google Patents
LDMOS-Transistor und LDMOS - Bauteil Download PDFInfo
- Publication number
- DE102010014370B4 DE102010014370B4 DE102010014370.7A DE102010014370A DE102010014370B4 DE 102010014370 B4 DE102010014370 B4 DE 102010014370B4 DE 102010014370 A DE102010014370 A DE 102010014370A DE 102010014370 B4 DE102010014370 B4 DE 102010014370B4
- Authority
- DE
- Germany
- Prior art keywords
- drain
- region
- ldmos
- area
- floating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 description 14
- 238000002513 implantation Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 230000015556 catabolic process Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0212—Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0221—Manufacture or treatment of FETs having insulated gates [IGFET] having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended-drain MOSFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/603—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/106—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/017—Manufacturing their source or drain regions, e.g. silicided source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
- H10D62/116—Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
P-LDMOS-Transistor bestehend aus Source (1), Gate (2), Drain (3), STI-Gebiet und Drain-Driftgebiet (7), wobei sich in einem Drain-Aktiv-Gebiet in der Umgebung des Drains (3) mindestens ein floatendes, hochdotiertes Gebiet (6) mit einer Dotierung entgegengesetzten Leitungstyps zu dem der Source (1) und des Drains (3) befindet;- wobei das wenigstens eine hochdotierte, floatende Gebiet (6) eine dem Drain (3) zugewandte Kante des STI-Gebietes (5) begrenzt;- das Drain-Aktiv-Gebiet an der Oberfläche mit Ausnahme des wenigstens einen hochdotierten, floatenden Gebiets (6) und eines Drain-Kontaktgebietes nicht silizidiert ist.
Description
- Die Erfindung betrifft in CMOS-Prozessen herstellbare laterale DMOS-Transistoren (LDMOS Transistoren) mit verbesserten Eigenschaften.
- DMOS-Transistoren ursprünglich: Double Diffused MOS sind in den letzten Jahren zu unverzichtbaren Bauelementen in Halbleiter-Hochvolt HV- und Power-Prozessen geworden. Ihr Wirkprinzip beruht auf verlängerten Drain-Anschlussgebieten, über denen derjenige Teil der zu verarbeitenden hohen Spannung abfällt, der den Gatebereich beschädigen würde und ihn daher nicht erreichen soll. Bei lateralen DMOS-Transistoren LDMOS ist dieses Drain-Extension- oder Drift-Gebiet parallel zur Chipoberfläche angeordnet, was eine einfache Integration in vorhandene CMOS-Prozesse ermöglicht. Oftmals werden in solchen HVCMOS-Prozessen sowohl n- wie p-leitende LDMOS-Transistoren benötigt (n-LDMOS-Transistoren, p-LDMOS-Transistoren). Die aufwandsarme Optimierung beider Leitungstypen zugleich stellt dann eine besondere Herausforderung dar. Diese Problematik ist in der
WO 2008/116880 A1 - Die jüngste Entwicklung (bezogen auf den Anmeldetag) bei DMOS-Transistoren ist durch die konsequente Nutzung des RESURF-Prinzips Reduced Electrical Surface Field gekennzeichnet, wobei es immer besser gelingt, den charakteristischen Widerspruch zwischen möglichst hoher Durchbruchsspannung im gesperrten Zustand (off-breakdown BVoff) und geringem Einschaltwiderstand Drain-Source-on-Widerstand (RDSon) zu lösen. Eine besondere Klasse bilden hierbei die sogenannten Superjunction-Transistoren, bei denen außerordentlich hohe Leitfähigkeiten im Drift-Gebiet bei hohen BVoff mittels n/p-Mehrfachschichten erreicht werden. Man spricht deshalb auch von Unterschreitung des Silizium-Limits.
- Mit der Forderung nach größeren digitalen Schaltungsanteilen in HVCMOS-Anwendungen hat sich ein Trend zu kleineren Strukturmaßen der jeweiligen Basisprozesse ergeben. HVCMOS-Entwicklungen finden typischerweise heute in 0,35 bis 0,13 µm-Prozessen statt, deren Feldisolation fast ausschließlich auf flachen Trenches beruht (shallow trench isolation, STI). Die Mehrzahl der in solchen Prozessen entwickelten LDMOS-Transistoren besitzt unter der Trench-Isolation verlaufende vergrabene Drift-Strecken, wobei man von dem hochwertigen Trench-Liner als oberer Begrenzung des Strompfades profitiert. Allerdings bedarf die Gate- und Drain-seitige Einbindung des Drift-Gebietes solcher Transistoren in der Regel besonderer konstruktiver Maßnahmen, da der Strompfad hier ohne Einschränkungen der Bauelemente-Zuverlässigkeit aus dem Gebiet unter dem Trench zurück an die Oberfläche geführt werden muss. Darüber hinaus soll natürlich auch in diesen Bereichen ein optimales Verhältnis von Potentialabfall und Leitfähigkeit bestehen.
- Als konstruktive Lösung der Gate-seitigen Einbindung des Drift-Gebietes wurden unter anderem Split-Gate-Transistoren vorgeschlagen, die eine vom Kanalfeld unabhängige Manipulation des Gate-nahen elektrischen Feldes am Beginn der Drift-Strecke gestatten. Zur Konstruktion der Drain-seitigen Einbindung wird andererseits von
WO 2007/103610 A2 1 . Die Folge ist ein verbreiterter und unter geringerem Anstieg verlaufender Strompfad zum Drain-Anschluss hin, wodurch sich RDSon verringert. - Gleichzeitig nimmt infolge der verringerten Stromdichte auch die Neigung zur Stoßionisation Avalanche ab.
- Somit wird bei gleichem Drainstrom weniger Bulkstrom generiert. Dadurch wird das Einschalten des internen parasitären Bipolartransistors Snap-back beim n-LDMOS verzögert und damit eine höhere on-Durchbruchspannung erreicht. Insbesondere dann, wenn - wie in kostengünstigen Prozessen mit Mehrfachnutzung von Masken typisch - das Dotierungsprofil der Drift-Zone nicht ausschließlich auf einen Transistortyp zugeschnitten werden kann, ist bei dieser Lösung infolge unvollständiger Verarmung in der Umgebung des Drain-Anschlusses oftmals BVoff zu gering.
-
US 7 074 681 B2 zeigt ein Halbleiterbauelement, das ein Substrat mit einer Oberfläche, einem Kanalbereich, der in dem Substrat angeordnet ist, einen nicht elektrisch leitfähigen Bereich, der im Wesentlichen unter einer ebenen Ebene liegt, die durch die Oberfläche des Substrats definiert ist, einen Driftbereich, der in dem Substrat und zwischen dem Kanalbereich und dem nicht elektrisch leitenden Bereich angeordnet ist, und einen elektrisch isolierenden Bereich, der in dem Substrat angeordnet ist und an dem nicht-elektrisch leitenden Bereich anliegt, umfasst. -
WO 2007/103610 A2 -
US 6 392 274 B1 offenbart ein Verfahren zur Herstellung eines HVMOS-Transistors, der Hysterese verringern kann. Der Halbleiterwafer umfasst ein N-Typ-Siliziumsubstrat und eine P-Typ-Epitaxieschicht, die auf der Oberfläche des Siliziumsubstrats ausgebildet ist. Der HVMOS-Transistor umfasst einen ersten P-Wannenbereich, der in der Epitaxieschicht ausgebildet ist, einen zweiten P-Wannenbereich, der innerhalb des ersten P-Wannenbereichs einen in dem zweiten P-Wannenbereich gebildeten Sourcebereich bildet, einen N-Drain-Bereich, Epitaxieschicht, ein Gate und ein N-Diffusionsbereich, der sowohl in der Epitaxieschicht als auch in dem Siliziumsubstrat ausgebildet ist. Der diffundierte Bereich befindet sich unter dem ersten P-Wannenbereich und überlappt den ersten P-Wannenbereich. -
US 2008/0067617 A1 -
US 2006/0006461 A1 2 , sowie ein entgegengesetzt dotiertes floatendes Gebiet 80 im Drain-Driftgebiet, dort Absatz [022] bis [024] und ]038]. - Der Erfindung liegt die Aufgabe zugrunde, die Durchbruchspannung BVoff bei LDMOS-Transistoren mit verlängertem Drain-seitigem Aktiv-Gebiet durch eine konstruktive Maßnahme zu erhöhen, die eine möglichst kostensparende Herstellung von n- wie p-leitenden LDMOS-Transistoren in einem CMOS-Prozess ohne zusätzlichen Prozessierungsaufwand ermöglicht.
- Gelöst wird die Aufgabe mit den in den unabhängigen Ansprüchen 1 und 2 angegebenen Merkmalen.
- Die Erfindung erbringt die Vorteile, dass höhere Off-Durchbruchspannungen bei geringem On-Widerstand und speziell beim n-LDMOS-Transistor gleichzeitig höhere On-Durchbruchspannungen als bei herkömmlichen Lösungen erreichbar sind, ohne dass zusätzliche Maskenschritte bei der Herstellung benötigt werden.
- Die Erfindung wird nun anhand von Ausführungsbeispielen unter Zuhilfenahme der schematischen Zeichnung erläutert. Es zeigen
-
1 einen Schnitt durch einen n-LDMOS-Transistor bekannter Konstruktion, wie er inWO 2007/103610 A2 -
2 einen Schnitt durch einen erfindungsgemäßen p-LDMOS-Transistor. -
3 einen Schnitt durch einen erfindungsgemäßen n-LDMOS-Transistor. - Der LDMOS-Transistor in
1 besteht aus dem n+-dotierten Source118 , dem p-dotierten Bulk-Gebiet110 , dem p+-dotierten Bulk-Anschlussgebiet120 , dem Gate-Isolator116 , der Polysilizium-Gateelektrode114 , dem n-dotierten Driftbereich108 , dem Trench-Isolationsgebiet112 , der als „Silicide-Block“ bezeichneten dielektrischen Schicht124 und dem n+-dotierten Drain122 . Die Drift-Strecke des n-LDMOS-Transistors ist nur Gate-seitig unter Trench geführt. -
2 zeigt einen erfindungsgemäßen p-LDMOS-Transistor bestehend aus p-Source 1, Gate2 , p-Drain3 , p-Bulk-Gebiet, STI-Gebiet5 und Drain-Driftgebiet7 . In einem Drain-Aktiv-Gebiet in der Umgebung des Drains3 befindet sich mindestens ein floatendes hochdotiertes Gebiet6 mit einer n-Dotierung. -
3 zeigt einen erfindungsgemäßen n-LDMOS-Transistor bestehend aus p-Bulk-Gebiet 10, n-Source 11, Gate12 , n-Drain13 , STI-Gebiet15 und Drain-Driftgebiet18 . In einem Drain-Aktiv-Gebiet in der Umgebung des Drains13 befindet sich mindestens ein floatendes hochdotiertes Gebiet16 mit einer p-Dotierung. - Gemäß
2 und3 begrenzt das wenigstens eine hochdotierte floatende Gebiet6 in2 und das wenigstens eine hochdotierte floatende Gebiet16 der3 eine dem (jeweiligen) Drain-Kontakt zugewandte Kante des STI-Gebietes5 , alternativ 15. Gemäß2 und3 weist das jeweilige Drain-Aktiv Gebiet an der Oberfläche, mit Ausnahme des jeweiligen hochdotierten, floatenden Gebiets6 , alternativ 16 und des jeweiligen Drain-Kontaktgebietes einen Silizid-Blocker9 auf (es ist nicht silizidiert). - Die in
2 und3 gezeigten LDMOS-Transistoren sind vom Aufbau her ähnlich, unterscheiden sich untereinander aber in der Art des Leitfähigkeitstyps und darin, dass das beim p-LDMOS die Driftstrecke bildende Implantationsgebiet7 unter dem Gate endet. - Beim n-LDMOS besteht die Driftstrecke aus dem entsprechenden Teil der n-Wanne 18.
- Beide LDMOS-Transistoren besitzen Driftstrecken, die teilweise unter dem jeweiligen STI-Gebiet
5 , alternativ 15 verlaufen, wobei an der dem Drainkontakt zugewandten STI-Kante jeweils ein hochdotierter Bereich6 , alternativ 16 angeordnet ist, der eine dem Drain-Leitungstyp entgegengesetzte Dotierung aufweist. - Bei einem Verfahren zur gleichzeitigen Herstellung von n-LDMOS- und p-LDMOS-Transistoren,
wobei der p-LDMOS-Transistor besteht aus Source1 , Gate2 , Drain3 , STI-Gebiet5 , und Drain-Driftgebiet7 und
wobei der n-LDMOS-Transistor besteht aus Source11 , Gate12 , Drain13 und STI-Gebiet15 ,
wird mindestens ein floatendes hochdotiertes Gebiet6 , alternativ 16 mit einer n-Dotierung bei dem p-LDMOS-Transistor, alternativ mit einer p-Dotierung bei dem n-LDMOS-Transistor im Drain-Aktiv-Gebiet in der Umgebung des jeweiligen Drains3/13 mit einem einheitlichen CMOS-Prozess ausgebildet. - Hierbei wird die Dotierung des hochdotierten floatenden Gebietes
16 beim n-LDMOS-Transistor der Source/Drain-Implantation des p-LDMOS und die Dotierung des hochdotierten floatenden Gebietes6 beim p-LDMOS wird mit der Source/Drain-Implantation des n-LDMOS ausgeführt. - In einer Ausgestaltung wird die Dotierung des wenigstens einen hochdotierten floatenden Gebietes beim n-LDMOS mit der LDD-Implantation (Lightly Doped Drain-Implantation) des p-LDMOS und beim p-LDMOS mit der LDD-Implantation des n-LDMOS ausgeführt.
- In einer weiteren Ausgestaltung wird die Dotierung des wenigstens einen hochdotierten floatenden Gebietes beim n-LDMOS mit einer Kombination von LDD- und Source/Drain-Implantation des p-LDMOS ausgeführt. Beim p-LDMOS kann auch sie auch mit einer Kombination aus LDD- und Source-Drain-Implantation des n-LDMOS ausgeführt werden.
- Mit dem vorstehenden Verfahren wird demnach ein LDMOS-Transistor-Bauteil bestehend aus einem p-LDMOS-Transistor mit p-Source 1, Gate
2 , p-Drain3 , STI-Gebiet5 und Drain-Driftgebiet7 und einem n-LDMOS-Transistor n-LDMOS mit n-Source 11, Gate12 , n-Drain13 und STI-Gebiet15 hergestellt, wobei sich im Drain-Aktiv-Gebiet in der Umgebung des jeweiligen Drains jeweils mindestens ein floatendes hochdotiertes Gebiet6 , alternativ 16 mit einer n-Dotierung bei dem p-LDMOS-Transistor und mit einer p-Dotierung bei dem n-LDMOS-Transistor befindet. - Bei der Herstellung der beiden Typen n-LDMOS-Transistor und p-LDMOS-Transistor können für die hochdotierten Gebiete
1 ,3 ,4 , und6 in2 bzw. die hochdotierten Gebiete11 ,13 ,14 , und16 jeweils die gleichen Verfahren eingesetzt werden, d. h. auch gleiche Maskenebenen, was eine kostengünstige und zuverlässige Fertigung ermöglicht. - Im Ausführungsbeispiel werden für die hochdotierten Gebiete
6 (nach2 ) und 16 (nach3 ) ausschließlich die im Standard-CMOS Prozess vorhandenen Implantationsschritte für Source und Drain benutzt, es werden keine zusätzlichen Maskenschritte benötigt. - Dabei gewährleisten die floatenden Gebiete eine Zwangsführung des Potentiallinien-Bendings in der Umgebung des Drain-Anschlusses ohne das RESURF-Gleichgewicht in der Tiefe zu stören oder elektrisch aufladbare Zonen zu bilden. Von besonderem Vorteil ist hier die Einstellbarkeit der Ziel-Geometrie und/oder der Ziel-Konzentration der floatenden Gebiete durch Zusammenwirken von STI-Kante und Implantations-Masken.
Claims (2)
- P-LDMOS-Transistor bestehend aus Source (1), Gate (2), Drain (3), STI-Gebiet und Drain-Driftgebiet (7), wobei sich in einem Drain-Aktiv-Gebiet in der Umgebung des Drains (3) mindestens ein floatendes, hochdotiertes Gebiet (6) mit einer Dotierung entgegengesetzten Leitungstyps zu dem der Source (1) und des Drains (3) befindet; - wobei das wenigstens eine hochdotierte, floatende Gebiet (6) eine dem Drain (3) zugewandte Kante des STI-Gebietes (5) begrenzt; - das Drain-Aktiv-Gebiet an der Oberfläche mit Ausnahme des wenigstens einen hochdotierten, floatenden Gebiets (6) und eines Drain-Kontaktgebietes nicht silizidiert ist.
- LDMOS-Transistor-Bauteil bestehend aus einem p-LDMOS-Transistor mit p-Source (1), Gate (2), p-Drain (3), STI-Gebiet (5) und Drain-Driftgebiet (7) sowie einem n-LDMOS-Transistor mit n-Source (11), Gate (12), n-Drain (13), STI-Gebiet (15) und Drain - Driftgebiet (18) wobei sich in einem Drain-Aktiv-Gebiet in der Umgebung des jeweiligen Drains (3;13) jeweils mindestens ein floatendes, hochdotiertes Gebiet (6;16) mit einer n-Dotierung bei dem p-LDMOS-Transistor und mit einer p-Dotierung bei dem n-LDMOS-Transistor befindet; - wobei das jeweilige wenigstens eine hochdotierte, floatende Gebiet (6;16) eine dem jeweiligen Drain (3) zugewandte Kante des jeweiligen STI-Gebietes (5;15) begrenzt; und das Drain-Aktiv-Gebiet an der Oberfläche mit Ausnahme des jeweiligen mindestens einen hochdotierten, floatenden Gebietes (6;16) und eines jeweiligen Drain-Kontaktgebietes nicht silizidiert ist.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010014370.7A DE102010014370B4 (de) | 2010-04-09 | 2010-04-09 | LDMOS-Transistor und LDMOS - Bauteil |
PCT/IB2011/051505 WO2011125043A1 (de) | 2010-04-09 | 2011-04-07 | Ldmos -transistoren für cmos - technologien sowie ein zugehöriges herstellverfahren |
US13/635,535 US9224856B2 (en) | 2010-04-09 | 2011-04-07 | LDMOS transistors for CMOS technologies and an associated production method |
US14/971,699 US20160126350A1 (en) | 2010-04-09 | 2015-12-16 | Ldmos transistors for cmos technologies and an associated production method |
US15/798,792 US10388785B2 (en) | 2010-04-09 | 2017-10-31 | LDMOS transistors for CMOS technologies and an associated production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010014370.7A DE102010014370B4 (de) | 2010-04-09 | 2010-04-09 | LDMOS-Transistor und LDMOS - Bauteil |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102010014370A1 DE102010014370A1 (de) | 2011-10-13 |
DE102010014370B4 true DE102010014370B4 (de) | 2021-12-02 |
Family
ID=44146935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102010014370.7A Active DE102010014370B4 (de) | 2010-04-09 | 2010-04-09 | LDMOS-Transistor und LDMOS - Bauteil |
Country Status (3)
Country | Link |
---|---|
US (3) | US9224856B2 (de) |
DE (1) | DE102010014370B4 (de) |
WO (1) | WO2011125043A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8775980B2 (en) * | 2012-11-27 | 2014-07-08 | GlobalFoundries, Inc. | Trench silicide mask generation using designated trench transfer and trench block regions |
US9368623B2 (en) * | 2013-11-21 | 2016-06-14 | Microsemi SoC Corporation | High voltage device fabricated using low-voltage processes |
US9666709B2 (en) * | 2015-01-29 | 2017-05-30 | Globalfoundries Inc. | Non-planar semiconductor structure with preserved isolation region |
JP6509665B2 (ja) * | 2015-07-23 | 2019-05-08 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US10424647B2 (en) * | 2017-10-19 | 2019-09-24 | Texas Instruments Incorporated | Transistors having gates with a lift-up region |
US10998439B2 (en) * | 2018-12-13 | 2021-05-04 | Ningbo Semiconductor International Corporation | Gate driver integrated circuit |
KR102274813B1 (ko) | 2020-02-27 | 2021-07-07 | 주식회사 키 파운드리 | 게이트 전극 통과 이온 주입을 이용한 반도체 소자 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6392274B1 (en) | 2000-04-04 | 2002-05-21 | United Microelectronics Corp. | High-voltage metal-oxide-semiconductor transistor |
US20060006461A1 (en) | 2004-07-08 | 2006-01-12 | Chidambaram Pr | Drain extended MOS transistors and methods for making the same |
US7074681B2 (en) | 2001-06-27 | 2006-07-11 | Freescale Semiconductor, Inc. | Semiconductor component and method of manufacturing |
WO2007103610A2 (en) | 2006-02-24 | 2007-09-13 | Freescale Semiconductor Inc. | Method and apparatus for a stepped-drift mosfet |
US20080067617A1 (en) | 2006-09-15 | 2008-03-20 | Sanyo Electric Co., Ltd. | Semiconductor device and manufacturing method thereof |
WO2008116880A1 (de) | 2007-03-26 | 2008-10-02 | X-Fab Semiconductor Foundries Ag | Maskensparende herstellung komplementärer lateraler hochvolttransistoren mit resurf-struktur |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1254799B (it) * | 1992-02-18 | 1995-10-11 | St Microelectronics Srl | Transistore vdmos con migliorate caratteristiche di tenuta di tensione. |
US5374569A (en) * | 1992-09-21 | 1994-12-20 | Siliconix Incorporated | Method for forming a BiCDMOS |
US5777362A (en) * | 1995-06-07 | 1998-07-07 | Harris Corporation | High efficiency quasi-vertical DMOS in CMOS or BICMOS process |
DE19526183C1 (de) * | 1995-07-18 | 1996-09-12 | Siemens Ag | Verfahren zur Herstellung von mindestens zwei Transistoren in einem Halbleiterkörper |
JPH10189762A (ja) * | 1996-12-20 | 1998-07-21 | Nec Corp | 半導体装置およびその製造方法 |
JPH11204786A (ja) * | 1998-01-14 | 1999-07-30 | Mitsubishi Electric Corp | 高耐圧絶縁ゲート型電界効果トランジスタを有する半導体装置およびその製造方法 |
JP3443355B2 (ja) * | 1999-03-12 | 2003-09-02 | 三洋電機株式会社 | 半導体装置の製造方法 |
US6380004B2 (en) * | 2000-02-02 | 2002-04-30 | International Rectifier Corp. | Process for manufacturing radhard power integrated circuit |
US6528850B1 (en) * | 2000-05-03 | 2003-03-04 | Linear Technology Corporation | High voltage MOS transistor with up-retro well |
KR100377130B1 (ko) * | 2000-11-22 | 2003-03-19 | 페어차일드코리아반도체 주식회사 | 반도체 소자 및 그 제조 방법 |
US20020098637A1 (en) * | 2001-01-23 | 2002-07-25 | Semiconductor Components Industries, Llc | High voltage laterally diffused metal oxide semiconductor with improved on resistance and method of manufacture |
US20020125530A1 (en) * | 2001-03-07 | 2002-09-12 | Semiconductor Components Industries, Llc. | High voltage metal oxide device with multiple p-regions |
WO2003017349A2 (de) * | 2001-08-17 | 2003-02-27 | IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik | Dmos-transistor |
KR100456691B1 (ko) * | 2002-03-05 | 2004-11-10 | 삼성전자주식회사 | 이중격리구조를 갖는 반도체 소자 및 그 제조방법 |
US6747332B2 (en) * | 2002-04-01 | 2004-06-08 | Motorola, Inc. | Semiconductor component having high voltage MOSFET and method of manufacture |
US7719054B2 (en) * | 2006-05-31 | 2010-05-18 | Advanced Analogic Technologies, Inc. | High-voltage lateral DMOS device |
US7635621B2 (en) * | 2002-11-22 | 2009-12-22 | Micrel, Inc. | Lateral double-diffused metal oxide semiconductor (LDMOS) device with an enhanced drift region that has an improved Ron area product |
DE10255116B4 (de) * | 2002-11-26 | 2015-04-02 | Infineon Technologies Ag | LDMOS-Transistor und Verfahren zu dessen Herstellung |
JP4198006B2 (ja) * | 2003-07-25 | 2008-12-17 | 株式会社リコー | 半導体装置の製造方法 |
DE10345347A1 (de) * | 2003-09-19 | 2005-04-14 | Atmel Germany Gmbh | Verfahren zur Herstellung eines DMOS-Transistors mit lateralem Driftregionen-Dotierstoffprofil |
US6924531B2 (en) * | 2003-10-01 | 2005-08-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | LDMOS device with isolation guard rings |
US6903421B1 (en) * | 2004-01-16 | 2005-06-07 | System General Corp. | Isolated high-voltage LDMOS transistor having a split well structure |
US6995428B2 (en) * | 2004-02-24 | 2006-02-07 | System General Corp. | High voltage LDMOS transistor having an isolated structure |
US7710460B2 (en) * | 2004-07-21 | 2010-05-04 | Hewlett-Packard Development Company, L.P. | Method of compensating for an effect of temperature on a control system |
US7122876B2 (en) * | 2004-08-11 | 2006-10-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Isolation-region configuration for integrated-circuit transistor |
DE102004043284A1 (de) * | 2004-09-08 | 2006-03-23 | X-Fab Semiconductor Foundries Ag | DMOS-Transistor für hohe Drain- und Sourcespannungen |
US7414287B2 (en) * | 2005-02-21 | 2008-08-19 | Texas Instruments Incorporated | System and method for making a LDMOS device with electrostatic discharge protection |
US7419863B1 (en) * | 2005-08-29 | 2008-09-02 | National Semiconductor Corporation | Fabrication of semiconductor structure in which complementary field-effect transistors each have hypoabrupt body dopant distribution below at least one source/drain zone |
JP4875338B2 (ja) | 2005-09-13 | 2012-02-15 | ソニー株式会社 | 情報処理装置および方法、並びにプログラム |
WO2007033692A1 (de) * | 2005-09-20 | 2007-03-29 | Austriamicrosystems Ag | Hochvolttransistor und verfahren zu seiner herstellung |
US7375408B2 (en) * | 2005-10-11 | 2008-05-20 | United Microelectronics Corp. | Fabricating method of a high voltage metal oxide semiconductor device |
US7372104B2 (en) * | 2005-12-12 | 2008-05-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | High voltage CMOS devices |
US7544558B2 (en) * | 2006-03-13 | 2009-06-09 | Bcd Semiconductor Manufacturing Limited | Method for integrating DMOS into sub-micron CMOS process |
EP1852916A1 (de) * | 2006-05-05 | 2007-11-07 | Austriamicrosystems AG | Hochvolttransistor |
US7855414B2 (en) * | 2006-07-28 | 2010-12-21 | Broadcom Corporation | Semiconductor device with increased breakdown voltage |
US7476591B2 (en) * | 2006-10-13 | 2009-01-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lateral power MOSFET with high breakdown voltage and low on-resistance |
US7683427B2 (en) * | 2007-09-18 | 2010-03-23 | United Microelectronics Corp. | Laterally diffused metal-oxide-semiconductor device and method of making the same |
US7910951B2 (en) * | 2008-06-18 | 2011-03-22 | National Semiconductor Corporation | Low side zener reference voltage extended drain SCR clamps |
US7906810B2 (en) * | 2008-08-06 | 2011-03-15 | United Microelectronics Corp. | LDMOS device for ESD protection circuit |
US8159029B2 (en) * | 2008-10-22 | 2012-04-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | High voltage device having reduced on-state resistance |
US8119507B2 (en) * | 2008-10-23 | 2012-02-21 | Silergy Technology | Lateral double-diffused metal oxide semiconductor (LDMOS) transistors |
US20100295126A1 (en) * | 2009-05-22 | 2010-11-25 | Broadcom Corporation | High dielectric constant gate oxides for a laterally diffused metal oxide semiconductor (LDMOS) |
US8138049B2 (en) * | 2009-05-29 | 2012-03-20 | Silergy Technology | Fabrication of lateral double-diffused metal oxide semiconductor (LDMOS) devices |
US8115253B2 (en) * | 2009-09-10 | 2012-02-14 | United Microelectronics Corp. | Ultra high voltage MOS transistor device |
JP2011181709A (ja) * | 2010-03-02 | 2011-09-15 | Hitachi Ltd | 半導体装置およびその製造方法 |
US9171916B1 (en) * | 2011-10-13 | 2015-10-27 | Maxim Integrated Products, Inc. | LDMOS with thick interlayer-dielectric layer |
-
2010
- 2010-04-09 DE DE102010014370.7A patent/DE102010014370B4/de active Active
-
2011
- 2011-04-07 WO PCT/IB2011/051505 patent/WO2011125043A1/de active Application Filing
- 2011-04-07 US US13/635,535 patent/US9224856B2/en active Active
-
2015
- 2015-12-16 US US14/971,699 patent/US20160126350A1/en not_active Abandoned
-
2017
- 2017-10-31 US US15/798,792 patent/US10388785B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6392274B1 (en) | 2000-04-04 | 2002-05-21 | United Microelectronics Corp. | High-voltage metal-oxide-semiconductor transistor |
US7074681B2 (en) | 2001-06-27 | 2006-07-11 | Freescale Semiconductor, Inc. | Semiconductor component and method of manufacturing |
US20060006461A1 (en) | 2004-07-08 | 2006-01-12 | Chidambaram Pr | Drain extended MOS transistors and methods for making the same |
WO2007103610A2 (en) | 2006-02-24 | 2007-09-13 | Freescale Semiconductor Inc. | Method and apparatus for a stepped-drift mosfet |
US20080067617A1 (en) | 2006-09-15 | 2008-03-20 | Sanyo Electric Co., Ltd. | Semiconductor device and manufacturing method thereof |
WO2008116880A1 (de) | 2007-03-26 | 2008-10-02 | X-Fab Semiconductor Foundries Ag | Maskensparende herstellung komplementärer lateraler hochvolttransistoren mit resurf-struktur |
Also Published As
Publication number | Publication date |
---|---|
US9224856B2 (en) | 2015-12-29 |
US20160126350A1 (en) | 2016-05-05 |
US20180166567A1 (en) | 2018-06-14 |
US10388785B2 (en) | 2019-08-20 |
US20130175615A1 (en) | 2013-07-11 |
DE102010014370A1 (de) | 2011-10-13 |
WO2011125043A1 (de) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112006000156B4 (de) | LDMOS Halbleitertransistorstruktur und Verfahren zu deren Herstellung | |
DE102010014370B4 (de) | LDMOS-Transistor und LDMOS - Bauteil | |
US7602037B2 (en) | High voltage semiconductor devices and methods for fabricating the same | |
DE102009030086B4 (de) | Feldeffekteinrichtung, Verfahren zum Betreiben dieser Feldeffekteinrichtung und Verfahren zum Herstellen einer Feldeffekteinrichtung | |
US8158475B2 (en) | Gate electrodes of HVMOS devices having non-uniform doping concentrations | |
US7768071B2 (en) | Stabilizing breakdown voltages by forming tunnels for ultra-high voltage devices | |
US20080093641A1 (en) | Method of manufacturing a multi-path lateral high-voltage field effect transistor | |
DE112013006308T5 (de) | Siliziumcarbid-Halbleitervorrichtung und Verfahren zu ihrer Herstellung | |
KR102068842B1 (ko) | 반도체 전력소자 | |
KR100299554B1 (ko) | 저전압측방dmos장치의드레인신장영역및그형성방법 | |
US9184278B2 (en) | Planar vertical DMOS transistor with a conductive spacer structure as gate | |
US9178054B2 (en) | Planar vertical DMOS transistor with reduced gate charge | |
KR101244139B1 (ko) | 반도체 장치 | |
KR20100027056A (ko) | 반도체 장치 및 그의 제조 방법 | |
TW201801289A (zh) | 半導體裝置以及半導體裝置的製造方法 | |
KR102424768B1 (ko) | Pldmos 트랜지스터 및 이의 제조 방법 | |
DE102023132762A1 (de) | Halbleitervorrichtung | |
US9105721B2 (en) | Semiconductor device and manufacturing method thereof | |
US20120007140A1 (en) | ESD self protecting NLDMOS device and NLDMOS array | |
DE102022211565A1 (de) | Halbleitervorrichtung | |
US11222961B2 (en) | Lateral semiconductor device having raised source and drain, and method of manufacture thererof | |
DE102017130213A1 (de) | Planarer feldeffekttransistor | |
KR102359373B1 (ko) | 고전압 반도체소자의 제조방법 | |
EP2058862A1 (de) | Feldeffekttransistor und Verfahren zur Herstellung eines Feldeffekttransistors | |
DE10303232B4 (de) | Hochvolt-MOS-Feldeffekttransistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R082 | Change of representative |
Representative=s name: LEONHARD & PARTNER PATENTANWAELTE, DE |
|
R002 | Refusal decision in examination/registration proceedings | ||
R125 | Request for further processing filed | ||
R126 | Request for further processing allowed | ||
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final | ||
R082 | Change of representative |
Representative=s name: LEONHARD, REIMUND, DIPL.-ING., DE |
|
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: H01L0029780000 Ipc: H10D0030600000 |