DE102009048604A1 - Organische Leuchtdiodenvorrichtung - Google Patents
Organische Leuchtdiodenvorrichtung Download PDFInfo
- Publication number
- DE102009048604A1 DE102009048604A1 DE102009048604A DE102009048604A DE102009048604A1 DE 102009048604 A1 DE102009048604 A1 DE 102009048604A1 DE 102009048604 A DE102009048604 A DE 102009048604A DE 102009048604 A DE102009048604 A DE 102009048604A DE 102009048604 A1 DE102009048604 A1 DE 102009048604A1
- Authority
- DE
- Germany
- Prior art keywords
- light
- emitting diode
- diode device
- organic light
- fluorescent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010410 layer Substances 0.000 claims description 47
- 239000000463 material Substances 0.000 claims description 10
- 230000003595 spectral effect Effects 0.000 claims description 9
- 239000002800 charge carrier Substances 0.000 claims description 7
- 239000012044 organic layer Substances 0.000 claims description 7
- 239000011368 organic material Substances 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000005215 recombination Methods 0.000 claims description 3
- 230000006798 recombination Effects 0.000 claims description 3
- 125000001424 substituent group Chemical group 0.000 claims 8
- -1 cyanovinyl Chemical group 0.000 claims 5
- 125000003118 aryl group Chemical group 0.000 claims 3
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical class C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 claims 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims 2
- 125000000524 functional group Chemical group 0.000 claims 2
- 238000004770 highest occupied molecular orbital Methods 0.000 claims 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 241001606112 Ixias pyrene Species 0.000 claims 1
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- 150000001336 alkenes Chemical class 0.000 claims 1
- 125000003545 alkoxy group Chemical group 0.000 claims 1
- 125000000217 alkyl group Chemical group 0.000 claims 1
- 125000003277 amino group Chemical group 0.000 claims 1
- 150000005840 aryl radicals Chemical class 0.000 claims 1
- 150000001556 benzimidazoles Chemical class 0.000 claims 1
- 125000000707 boryl group Chemical group B* 0.000 claims 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims 1
- 229910052794 bromium Inorganic materials 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- KDUIUFJBNGTBMD-VXMYFEMYSA-N cyclooctatetraene Chemical compound C1=C\C=C/C=C\C=C1 KDUIUFJBNGTBMD-VXMYFEMYSA-N 0.000 claims 1
- 125000005265 dialkylamine group Chemical group 0.000 claims 1
- 125000005266 diarylamine group Chemical group 0.000 claims 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims 1
- 150000002220 fluorenes Chemical class 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 229910052736 halogen Inorganic materials 0.000 claims 1
- 150000002367 halogens Chemical class 0.000 claims 1
- 229910052740 iodine Inorganic materials 0.000 claims 1
- 239000011630 iodine Substances 0.000 claims 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims 1
- 150000002576 ketones Chemical class 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 150000002902 organometallic compounds Chemical class 0.000 claims 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 claims 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 claims 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 claims 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 claims 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 claims 1
- 150000003219 pyrazolines Chemical class 0.000 claims 1
- 150000003967 siloles Chemical class 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims 1
- 229930192474 thiophene Natural products 0.000 claims 1
- 150000003577 thiophenes Chemical class 0.000 claims 1
- 125000003944 tolyl group Chemical group 0.000 claims 1
- 125000005259 triarylamine group Chemical group 0.000 claims 1
- 150000003852 triazoles Chemical class 0.000 claims 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 4
- 238000013461 design Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract description 2
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 8
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 6
- 238000009877 rendering Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 5
- MQRCTQVBZYBPQE-UHFFFAOYSA-N 189363-47-1 Chemical compound C1=CC=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MQRCTQVBZYBPQE-UHFFFAOYSA-N 0.000 description 4
- WPUSEOSICYGUEW-UHFFFAOYSA-N 4-[4-(4-methoxy-n-(4-methoxyphenyl)anilino)phenyl]-n,n-bis(4-methoxyphenyl)aniline Chemical compound C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 WPUSEOSICYGUEW-UHFFFAOYSA-N 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 2
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 2
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 2
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000012736 patent blue V Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/19—Tandem OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Bisher werden in gestapelten, organischen Leuchtdioden für jedes Emittermolekül eigene Leuchteinheiten verwendet. Dieser Konstruktionsansatz hat für entsprechende weiße Leuchtdioden einen stark erhöhten Prozessierungsaufwand zur Folge. Bei der Verwendung von fluoreszenten blauen Emittern in solchen gestapelten OLEDs rekombiniert ein großer Teil der Exzitonen strahlungslos. Um die Anzahl der Leuchteinheiten und damit die Produktionskosten zu verringern, werden in den einzelnen Leuchteinheiten mehrere Emitter kombiniert. Bei fluoreszenten Emittern geschieht dies auf die Art, dass die Singulettexzitonen auf dem fluoreszenten Emitter rekombinieren, während die Triplettexzitonen auf mindestens einen phosphoreszenten Emitter übertragen werden. Die beschriebenen Bauelemente können aufgrund ihrer hohen Lichtausbeute gut für allgemeine Anzeige- und Beleuchtungszwecke verwendet werden.
Description
- Gebiet
- Die Erfindung betrifft eine organische Leuchtdiodenvorrichtung, insbesondere eine weißes Licht emittierende organische Leuchtdiodenvorrichtung, welche aus mehreren aufeinander gestapelten Leuchteinheiten besteht. Die Erfindung trägt zu einer deutlichen Steigerung der Effizienz sowie der Farbwiedergabeeigenschaften der Leuchtdiodenvorrichtung bei.
- Stand der Technik
- Das Interesse an effizienteren, neuartigen Lichtquellen ist in den letzten Jahren vor dem Hintergrund der Energiekrise stark gestiegen. Weiße organische Leuchtdioden (OLEDs) stellen als effiziente, flächige Lichtquellen mit guten Farbwiedergabeeigenschaften eine mögliche Alternative zu herkömmlichen Beleuchtungsvorrichtungen dar. Die Herstellung erfolgt im Fall von auf kleinen Molekülen basierenden OLEDs meist durch Sublimation und anschließender Kondensation auf einem Substrat im Hochvakuum. Im Fall von auf Polymeren basierenden OLEDs erfolgt die Prozessierung durch Aufschleudern von Lösungen oder verschiedene Nassdruckverfahren.
- Das Erreichen niedriger Betriebsspannungen durch Tang et al. 1987 (C.W. Tang et al. Appl. Phys. Lett. 51 (1987), 913) gilt als der größte Entwicklungsschritt auf diesem Gebiet.
- Der allgemeine Aufbau einer OLED enthält entweder einen Teil oder alle der folgenden Schichten (vgl.
2 ), eine Kathode (8 ), wobei eine von beiden zumindest semitransparent sein muss, sowie eine Licht emittierende organische Schicht (5 ). - Die Schichtabfolge kann auch an der Licht emittierenden Schicht (
5 ) gespiegelt werden, so dass die Kathode und die Elektronen transportierende Seite dem Substrat zugewandt sind (G. Gu et al. Appl. Phys. Lett. 68 (1996), 2606;US 5703436 A ;US 5757026 A ;US 5969474 A ). - Die Ladungsträgerinjektion von den Elektroden in die organischen Schichten sowie die Ladungsträgerbeweglichkeit in den Transportschichten (
3 ,7 ) und damit die Betriebsspannungen können deutlich verbessert werden durch eine elektrische Dotierung dieser Schichten (US 5093698 A ;DE 10058578 A1 ). In Kombination mit den Blockerschichten (4 ,6 ) wird eine gute Ladungsträgerbalance in der Licht emittierenden Schicht erreicht, was wiederum Quanten- und Leistungseffizienz entscheidend verbessert (DE 10058578 A1 ). - Die Licht emittierenden Materialien können entweder als reine Schicht (C.W. Tang et al. Appl. Phys. Lett. 51 (1987), 913) oder als Beimischung eines Wirtsmaterials verwendet werden (C.W. Tang et al, J. Appl. Phys. 65 (1989), 3610). Dies ist für einige Emittermaterialien notwendig, da effizienzbegrenzende Wechselwirkungen zwischen angeregten Emittermolekülen auftreten können, wenn der Abstand zwischen diesen zu gering ist (H. Mattoussi et al. J. Appl. Phys. 86 (1999), 2642).
- Bei den Emittern unterscheidet man zwischen fluoreszenten und phosphoreszenten Materialien. Da bei fluoreszenten Emittern die Übergänge von den angeregten Triplettzuständen zum Singulettgrundzustand verboten sind und aufgrund der Spinstatistik nur jedes vierte elektrisch erzeugte Exziton ein Singulett ist, sind diese Emitter auf eine interne Quanteneffizienz von 25% begrenzt. Durch die Einführung von Schwermetallionen in die organischen Moleküle und der damit verbundenen Aufweichung der Spinerhaltung wie zum Beispiel von Baldo et al. (M.A. Baldo et al. Nature 395 (1998), 151) gezeigt, gelang es auch die Triplettexzitonen für die Lichtemission nutzbar zu machen und eine interne Quanteneffizienz von 100% zu ermöglichen. Die logische Schlussfolgerung ist auf die Verwendung von fluoreszenten Emittern zu verzichten und sich auf die phosphoreszenten zu beschränken. Trotzdem werden für die Emission im blauen Wellenlängenbereich hauptsächlich die ineffizienten fluoreszenten Emitter genutzt, da diese zum einen langlebiger als die entsprechenden phosphoreszenten Emitter sind und zum anderen noch keine tiefblauen phosphoreszenten Emitter existieren. Mit den vorhandenen himmelblauen phosphoreszenten Emittern ist es schwer weißes Licht zu erzeugen. Nur durch einen überhöhten Anteil an roter Emission ist es möglich, einen Farbpunkt nahe der Black-Body-Kurve zu erreichen, daraus resultieren Einbußen bei den Farbwiedergabeeigenschaften und es kann nur warm weißes Licht erzeugt werden.
- Eine einfache Möglichkeit weißes Licht zu erzeugen besteht darin, mehrere monochromatische OLEDs direkt übereinander zu prozessieren (P.E. Burrows et al. Appl. Phys. Lett. 69 (1996), 2959). Mit Elektroden zwischen den einzelnen Leuchteinheiten, welche jeweils aus den Schichten
3 bis7 beziehungsweise einem Teil dieser Schichten bestehen, ist es möglich, jede der Leuchteinheiten einzeln anzusprechen. Dies ist ein Vorteil bei der Konstruktion von Display-Anwendungen. Bei der Anwendung als Beleuchtungsvorrichtung ist die zusätzliche Ansteuerelektronik jedoch unerwünscht. Des Weiteren werden neben der Absorption durch die Elektroden in der OLED zusätzliche optische Kavitäten geschaffen, welche das Auskoppeln des Lichtes erschweren. Ladungsträger erzeugende Bereiche stellen eine für Beleuchtungsanwendungen günstigere Möglichkeit der Kontaktierung der einzelnen Leuchteinheiten miteinander dar. Unter einem Ladungsträger erzeugenden Bereich versteht man dabei eine Schicht oder eine Vielzahl von aufeinander folgenden Schichten von organischen oder anorganischen Materialien, welche, unter dem Einfluss eines elektrischen Feldes, eine Trennung von Elektronen und Löchern bewirkt. Für jedes an der Kathode injizierte Elektron entsteht an jedem Übergang zwischen zwei Leuchteinheiten ein weiteres. Das entspricht einer Reihenschaltung der Leuchteinheiten, wobei die Ansteuerung ausschließlich über die beiden äußeren Elektroden erfolgt. Liao et al. demonstrierten die Umsetzung eines solchen Ladungsträger erzeugenden Bereiches durch organische Schichten (L.S. Liao et al. Appl. Phys. Lett. 84 (2004), 167;EP 1804308 A1 ). Hier dient ein elektrisch dotierter pn-Übergang zur Erzeugung freier Ladungsträger zwischen zwei. Leuchteinheiten. Bei Anlegen eines äußeren Feldes können an diesem wegen der starken Bandverbiegung Elektronen und Löcher getrennt werden. - Die Leistungseffizienzen dieser gestapelten OLEDs sind vergleichbar mit denen von einfachen OLEDs, da sich jeweils die Quanteneffizienzen und Betriebsspannungen der einzelnen Leuchteinheiten addieren und auf diese Weise gegenseitig aufheben. Daraus ergibt sich folgendes Problem bei der Erzeugung von Licht mit guten Farbwiedergabeeigenschaften. Da zu diesem Zweck drei bis vier verschiedene Emittermaterialien benötigt werden, müssen drei bis vier Leuchteinheiten übereinander gestapelt werden. Der Prozessierungsaufwand und die damit verbundenen Kosten steigen jedoch rapide mit jeder Leuchteinheit.
- G. Schwartz et al. haben an nicht gestapelten OLEDs gezeigt, dass es möglich ist, die Triplettexzitonen eines fluoreszenten Emitters auf einen phosphoreszenten Emitter zu übertragen und auf diese Art interne Quanteneffizienzen von bis zu 100% zu erreichen (Schwartz et al. Adv. Funct. Mater. 19(2009), 1319;
DE 10 2007 020 644 A1 ). Dieser Übertrag kann stattfinden, wenn die Anregungsenergie des Triplettzustandes des phosphoreszenten Emitters unter der des fluoreszenten Emitters liegt. Bei den bekannten effizienten fluoreszenten Blauemittern ist dieses Prinzip auf orange und rote phosphoreszente Emitter anwendbar, jedoch nicht auf grüne (mit einem Emissionsmaximum zwischen 490 und 510 nm), da die Triplettzustände der Blauemitter zu tief liegen. So ist bei fluoreszenten Blauemittern der energetische Unterschied zwischen dem ersten angeregten Singulett- und Triplettzustand meist größer als 0.5 eV (Schwartz et al. Adv. Funct. Mater. 19(2009), 1319). Dies entspricht bei einer typischen Blauemission von 450 nm einem Phosphoreszenzmaximum von 550 nm. Dieser energetische Unterschied lässt sich nicht beliebig verringern, da damit die Wahrscheinlichkeit eines Übertrages von Singulettexzitonen auf die niederenergetischen Triplettzustände steigt und die Effizienz der Fluoreszenz herabgesetzt wird. In nicht gestapelten OLEDs sind daher, bei der Verwendung von grünen phosphoreszenten Emittern, nur auf Kosten der ohnehin geringen Blauemission interne Quanteneffizienzen von 100% möglich. Dieser Nachteil ergibt sich aus der Rekombination von Singulettexzitonen auf dem Grünemitter, welche sich nicht verhindern lässt. Die Einschränkung der Blauemission beschränkt wiederum die erreichbaren Farbkoordinaten für auf diesem Prinzip beruhenden OLEDs auf den warmweißen Bereich. - Aufgabenstellung
- Der Erfindung liegt die Aufgabe zugrunde, die Begrenzung der Quanteneffizienz bei Verwendung von fluoreszenten Emittern in gestapelten OLEDs zu überwinden.
- Eine weitere Aufgabe der Erfindung ist es bei der Verwendung von fluoreszenten Emittern auch solche phosphoreszenten Emitter, welche ein höheres Triplettniveau als der fluoreszente Emitter besitzen, ohne Einschränkungen der Emission des fluoreszenten Emitters nutzen zu können.
- Eine weitere Aufgabe der Erfindung ist dabei die Anzahl der benötigten Leuchteinheiten zu minimieren um den Prozessierungsaufwand so gering wie möglich zu halten.
- Diese Aufgaben werden erfindungsgemäß durch die Kombination mehrerer verschiedener Emittermaterialien in einer Leuchteinheit einer gestapelten OLED gelöst. Dadurch werden bei der Verwendung von fluoreszenten Emittern die Triplettexzitonen, welche sonst strahlungslos rekombinieren würden, auf einen phosphoreszenten Emitter übertragen und auf diese Weise in jeder einzelnen Leuchteinheit der gestapelten OLED eine interne Quanteneffizienz von 100% erreicht. Phosphoreszente Emitter, welche ein höheres Triplettniveau als die fluoreszenten Emitter haben, werden erfindungsgemäß in anderen Leuchteinheiten untergebracht als die fluoreszenten Emitter.
- Um weißes Licht mit guten Farbwiedergabeeigenschaften zu erzeugen, muss die Emission des fluoreszenten Blauemitters zwischen 430 und 490 nm liegen, wobei ein Maximum der Fluoreszenz bei 450 nm ideal wäre. Für fluoreszente Blauemitter ist der energetische Unterschied zwischen Singulett- und Triplettzustand typischerweise größer als 0.5 eV (Schwartz et al. Adv. Funct. Mater. 19(2009), 1319). Liegt das Fluoreszenzmaximum an der Untergrenze von 430 nm, kann ein Übertrag von Triplettexzitonen nur auf phosphoreszente Emitter, mit einem Emissionsmaximum oberhalb von 521 nm, erfolgen. Grünemitter, welche ihrer Natur nach bei kürzeren Wellenlängen emittieren, werden erfindungsgemäß in einer eigenen Leuchteinheit verwendet.
- Im Sinne der Erfindung sind unter anderem folgende, aus den beschriebenen Leuchteinheiten zusammengesetzte, weiße OLEDs:
- – Eine OLED mit einer Leuchteinheit, in welcher die Triplettexzitonen eines fluoreszenten Blauemitters zur strahlenden Emission auf einen phosphoreszenten Rotemitter übertragen werden, und einer Leuchteinheit, welche auf phosphoreszenter Grünemission basiert;
- – Eine OLED mit einer Leuchteinheit, in welcher die Triplettexzitonen eines fluoreszenten Blauemitters zur strahlenden Emission auf einen phosphoreszenten Rotemitter übertragen werden, und einer Leuchteinheit, welche sowohl die Emission eines phosphoreszenten Rotemitters als auch die Emission eines phosphoreszenten Grünemitters nutzt;
- – Eine OLED mit einer Leuchteinheit, in welcher die Triplettexzitonen eines fluoreszenten Blauemitters zur strahlenden Emission auf einen phosphoreszenten Rotemitter übertragen werden, und einer Leuchteinheit, welche sowohl die Emission eines phosphoreszenten Gelbemitters als auch die Emission eines phosphoreszenten Grünemitters nutzt; und
- – Eine OLED mit einer Leuchteinheit, in welcher die Triplettexzitonen eines fluoreszenten Blauemitters zur strahlenden Emission auf einen phosphoreszenten Rotemitter übertragen werden, und zwei getrennten Leuchteinheiten, welche die Emission eines phosphoreszenten Gelb- oder Rotemitters beziehungsweise die Emission eines phosphoreszenten Grünemitters nutzten.
- Die Effizienzen der auf der Erfindung basierenden OLEDs können durch die Auskopplung verbessernde Maßnahmen, wie zum Beispiel durch Verwendung von speziellen Gläsern mit hohem Brechungsindex oder solchen mit strukturierten Oberflächen (S. Reineke et al. Nature 459 (2009), 234; C.L. Mulder et al. Appl. Phys. Lett. 90 (2007), 211109), weiter gesteigert werden.
- Ausführungsbeispiele der Erfindung
- Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert. Dabei wird auf die nachstehenden Abbildungen Bezug genommen. Es zeigen:
-
-
-
-
-
-
-
-
- Beispiel 1
- Ein einfaches Ausführungsbeispiel besteht in der folgenden Schichtanordnung, welche in
-
9 : 55 nm MeO-TPD: NDP2(2wt%)/Lochtransport -
10 : 10 nm Spiro-TAD/Elektronenblocker -
11 : 5 nm 4P-NPD: Ir(MDQ)2acac(5wt%)/Emission1a -
12 : 5 nm 4P-NPD/Emission1b -
13 : 10 nm BPhen/Löcherblocker -
14 : 90 nm BPhen:Cs/Elektronentransport -
15 : 80 nm MeO-TPD: NDP2(2wt%) /Lochtransport -
16 : 10 nm Spiro-TAD /Elektronenblocker -
17 : 10 nm TCTA: Ir(ppy)3/Emission2a -
18 : 10 nm TPBi: Ir(ppy)3/Emission2b -
19 : 10 nm BPhen/Löcherblocker -
20 : 50 nm BPhen:Cs/Elektronentransport -
21 : 100 nm Al/Kathode - In diesem Aufbau stellen die Schichten
9 bis14 die erste und die Schichten15 bis20 die zweite Leuchteinheit dar. Die Aluminium Schicht (21 ) dient als Kathode. Erfindungsgemäß wird zum Einen durch die Kombination von roter und blauer Emission in der ersten Leuchteinheit gegenüber einer gewöhnlichen gestapelten OLED eine komplette Leuchteinheit gespart und zum Anderen erlaubt die Wahl der Emitter in dieser ersten Leuchteinheit die ansonsten ungenutzten Triplettexzitonen des fluoreszenten Blauemitters 4P-NPD auf den phosphoreszenten Rotemitter Ir(MDQ)2acac zu übertragen und durch diesen strahlend rekombinieren zu lassen. Dies wird wie folgt ermöglicht. Die Lochleitfähigkeit des 4P-NPD liegt deutlich über dessen Elektronenleitfähigkeit (Schwartz et al. Adv. Funct. Mater. 19(2009), 1319). Die Exzitonenbildung aus Elektronen und Löchern erfolgt daher an der Grenzfläche zwischen der Emissionszone (12 ) und dem Löcherblocker Bphen (13 ). Aufgrund der höheren Lebensdauer können die Triplettexzitonen bis zum rotdotierten Teil der Emissionszone (11 ) diffundieren, während die Singulettexzitonen direkt auf dem undotierten Blauemitter (12 ) rekombinieren. Da das Tripletniveau des phosphoreszierenden Grünemitters Ir(ppy)3(2.4 eV) höher liegt als das des fluoreszierenden Blauemitters 4P-NPD(2.3 eV), erfolgt die Erzeugung des grünen Lichtes erfindungsgemäß in einer, durch einen Ladungsträger erzeugenden Bereich, von dem fluoreszierenden Emitter getrennten Leuchteinheit. -
- Beispiel 2
- Ein weiteres Ausführungsbeispiel besteht in der folgenden, weitestgehend dem Beispiel 1 entsprechenden Schichtanordnung. Motivation der Veränderung ist den Rotanteil des Spektrums zu steigern und den Grünanteil etwas abzuschwächen, um Farbkoordinaten nahe der Black-Body-Kurve zu erreichen. Erfindungsgemäß wurde den Schichten
17 und18 zusätzlich Ir(MDQ)2acac in einer Konzentration von 1wt% beigemischt. Die gering konzentrierte Beimischung in eine gemeinsame Matrix bewirkt einen teilweise Übertrag der Exzitonen von dem grünen Emitter Ir(ppy)3 auf den roten Emitter. Da beide Emitter hoch effizient sind, geschieht dies nahezu ohne Verluste, bezüglich der internen Quanteneffizienz. Auf diese Weise wird die Notwendigkeit der Einführung einer weiteren Leuchteinheit umgangen. Die Kavität wurde durch Anpassen der Dicken der Schichten9 und15 auf 50 nm beziehungsweise 75 nm auf das neue interne Spektrum optimiert, Dieses Beispiel zeigt, dass die Erfindung eine Lichtquelle mit (weißen) Farbkoordinaten (x, y) = (0.523, 0.353), einem Farbwiedergabeindex von 74.4, hoher Lichtausbeute (19 lm/W) bei hohen Leuchtdichten von 1000 cd/m2 ermöglicht (siehe17 und18 einstellen. Da auch auf diese OLED keine die Auskopplung verbessernde Maßnahmen angewendet wurden, kann die Effizienz noch deutlich gesteigert werden. - Bezugszeichenliste
-
- 1
- Substrat (häufig Glas)
- 2
- Anode
- 3
- Löcher transportierende Schicht
- 4
- Elektronen und Exzitonen blockende Schicht
- 5
- Licht emittierende Schicht
- 6
- Löcher und Exzitonen blockende Schicht
- 7
- Elektronen transportierende Schicht
- 8
- Kathode
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- US 5703436 A [0005]
- US 5757026 A [0005]
- US 5969474 A [0005]
- US 5093698 A [0006]
- DE 10058578 A1 [0006, 0006]
- EP 1804308 A1 [0009]
- DE 102007020644 A1 [0011]
- Zitierte Nicht-Patentliteratur
-
- C.W. Tang et al. Appl. Phys. Lett. 51 (1987), 913 [0003]
- G. Gu et al. Appl. Phys. Lett. 68 (1996), 2606 [0005]
- C.W. Tang et al. Appl. Phys. Lett. 51 (1987), 913 [0007]
- C.W. Tang et al, J. Appl. Phys. 65 (1989), 3610 [0007]
- H. Mattoussi et al. J. Appl. Phys. 86 (1999), 2642 [0007]
- M.A. Baldo et al. Nature 395 (1998), 151 [0008]
- P.E. Burrows et al. Appl. Phys. Lett. 69 (1996), 2959 [0009]
- L.S. Liao et al. Appl. Phys. Lett. 84 (2004), 167 [0009]
- Schwartz et al. Adv. Funct. Mater. 19(2009), 1319 [0011]
- Schwartz et al. Adv. Funct. Mater. 19(2009), 1319 [0011]
- Schwartz et al. Adv. Funct. Mater. 19(2009), 1319 [0016]
- S. Reineke et al. Nature 459 (2009), 234 [0018]
- C.L. Mulder et al. Appl. Phys. Lett. 90 (2007), 211109 [0018]
- Schwartz et al. Adv. Funct. Mater. 19(2009), 1319 [0029]
Claims (27)
- Organische Leuchtdiodenvorrichtung (OLED), bestehend aus einer Anode, einer Kathode, sowie einer Anzahl von Leuchteinheiten, welche aufeinander prozessiert und jeweils durch einen Ladungsträger erzeugenden Bereich getrennt sind, dadurch gekennzeichnet, dass zur strahlenden Rekombination der Exzitonen in mindestens einer der Leuchteinheiten mindestens zwei unterschiedliche Emittermaterialien enthalten sind.
- Organische Leuchtdiodenvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass innerhalb mindestens einer Leuchteinheit die Emittermaterialien so beschaffen sind, dass die strahlende Rekombination von Singulett- und Triplettexzitonen nutzbar ist.
- Organische Leuchtdiodenvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens eine Leuchteinheit einen oder mehrere überwiegend im blauen oder blaugrünen Spektralbereich Licht emittierende, fluoreszierende Emitter enthält, den(m) ein oder mehrere überwiegend im nicht-blauen Spektralbereich Licht emittierende(r) phosphoreszierende(r) Emitter beigemischt ist/sind.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Triplettenergie für ein Energieniveau eines Triplettzustandes der fluoreszierenden Emitter in der Emissionsschicht größer als eine Triplettenergie für ein Energieniveau eines Triplettzustandes der beigemischten phosphoreszierenden Emitter ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Exzitonen von einem Triplettzustand der fluoreszierenden Emitter auf einen Triplettzustand der phosphoreszierenden Emitter übertragbar sind.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Maximum der fluoreszenten Emission unterhalb von 490 nm und das Maximum der phosphoreszenten Emission oberhalb von 510 nm liegt.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die lichtemittierende Schicht mindestens einer Leuchteinheit aus einer massiven Schicht eines fluoreszierenden Emitters besteht, welcher ein oder mehrere phosphoreszierende Emitter beigemischt sind.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die lichtemittierende Schicht mindestens einer Leuchteinheit aus einem organischen Material besteht, in das ein oder mehrere fluoreszierende Emitter in einer Konzentration zwischen 0,1 und 50 Mol% und ein oder mehrere phosphoreszierende Emitter beigemischt sind.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass von mindestens einer Leuchteinheit ein mindestens 5%-iger Anteil des in dieser Leuchteinheit erzeugten Lichtes im sichtbaren Spektralbereich als Fluoreszenzlicht von Singulettzuständen der fluoreszierenden Emitter abgebbar ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass von mindestens einer Leuchteinheit ein mindestens 10%-iger Anteil des in dieser Leuchteinheit erzeugten Lichtes im sichtbaren Spektralbereich als Fluoreszenzlicht von Singulettzuständen der fluoreszierenden Emitter abgebbar ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass von mindestens einer Leuchteinheit ein mindestens 15%-iger Anteil des in dieser Leuchteinheit erzeugten Lichtes im sichtbaren Spektralbereich als Fluoreszenzlicht von Singulettzuständen der fluoreszierenden Emitter abgebbar ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass von mindestens einer Leuchteinheit ein mindestens 20%-iger Anteil des in dieser Leuchteinheit erzeugten Lichtes im sichtbaren Spektralbereich als Fluoreszenzlicht von Singulettzuständen der fluoreszierenden Emitter abgebbar ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass von mindestens einer Leuchteinheit ein mindestens 25%-iger Anteil des in dieser Leuchteinheit erzeugten Lichtes im sichtbaren Spektralbereich als Fluoreszenzlicht von Singulettzuständen der fluoreszierenden Emitter abgebbar ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die lichtemittierende Schicht mindestens einer Leuchteinheit mehrschichtig gebildet ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die lichtemittierenden Schichten der Leuchteinheiten eine Dicke zwischen etwa 5 nm und etwa 100 nm aufweisen.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass angrenzend an die lichtemittierende Schicht mindestens einer Leuchteinheit eine Löcherblockschicht angeordnet ist, wobei die Löcherblockschicht Elektronen transportierend ist und ein organisches Material der Löcherblockschicht ein HOMO-Niveau aufweist, welches um wenigstens etwa 0.3 eV tiefer liegt als ein HOMO-Niveau des fluoreszierenden Emitters.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass angrenzend an die lichtemittierende Schicht mindestens einer Leuchteinheit eine Elektronenblockschicht angeordnet ist, wobei die Elektronenblockschicht Löcher transportierend ist und ein organisches Material der Elektronenblockschicht ein LUMO-Niveau aufweist, welches um wenigstens etwa 0.3 eV höher liegt als ein LUMO-Niveau des fluoreszierenden Emitters.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass eine minimale Energie von Singulettexzitonen und von Triplettexzitonen in der Löcherblockschicht oder in der Elektronenblockschicht größer ist als eine minimale Energie von Singulettexzitonen und von Triplettexzitonen in der lichtemittierenden Schicht der entsprechenden Leuchteinheit.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass mindestens eine elektrisch dotierte, organische Schicht zum Ladungsträgertransport ausgebildet ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Lochinjektion an der Anode und/oder die Elektroneninjektion an der Kathode über eine jeweilige elektrisch dotierte, organische Schicht erfolgt.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass mindestens einer der Ladungsträger erzeugenden Bereiche aus einer oder mehreren elektrisch dotierten, organischen Schichten besteht.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, dass die jeweilige dotierte organische Schicht eine mit einem Akzeptor-Material p-dotierte oder eine mit einem Donator-Material n-dotierte Schicht ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass mindestens einer der fluoreszierenden Emitter eine metall-organische Verbindung oder eine Komplexverbindung mit einem Metall mit einer Ordnungszahl kleiner als 40 ist.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass mindestens einer der fluoreszierenden Emitter einen Elektronen ziehenden Substituenten aus einer der folgenden Klassen umfasst: a. Halogene wie Fluor, Chlor, Brom oder Iod; b. CN; c. halogenierte oder cyanosubstituierte Alkane oder Alkene, insbesondere Trifluormethyl, Pentafluorethyl, Cyanovinyl, Dicyanovinyl, Tricyanovinyl; d. halogenierte oder cyanosubstituierte Arylreste, insbesondere Pentafluorphenyl; oder e. Borylreste, insbesondere Dialkyl-boryl, Dialkylboryl mit Substituenten an den Alkylgruppen, Diarylboryl oder Diaryl-boryl mit Substituenten an den Arylgruppen.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass mindestens einer der fluoreszierenden Emitter einen Elektronen schiebenden Substituenten aus einer der folgenden Klassen umfasst: a. Alkylreste wie Methyl, Ethyl, Tertiärbutyl, Isopropyl; b. Alkoxyreste; c. Arylreste mit oder ohne Substituenten am Aryl, insbesondere Tolyl und Mesithyl; oder d. Aminogruppen insbesondere NH2, Dialkylamin, Diarylamin und Diarlyamin mit Substituenten am Aryl.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass mindestens einer der fluoreszierenden Emitter eine funktionale Gruppe mit einer Elektronen-Akzeptor-Eigenschaft aus einer der folgenden Klassen umfasst: a. Oxadiazol b. Triazol c. Benzothiadiazole d. Benzimidazole und N-Aryl-Benzimidazole e. Bipyridin f. Cyanovinyl g. Quinoline h. Triarylboryl i. Silol-Einhieten, insbesondere Derivat-Gruppen von Silacyclopentadien j. Cyclooctatetraen k. Chinoide Strukturen und Ketone, inkl. chinoide Thiophen-Derivate l. Pyrazoline m. Pentaaryl-Cyclopentadien n. Benzothiadiazole o. Oligo-Para-Phenyl mit elektronenziehenden Substituenten oder p. Fluorene und Spiro-Bifluorene mit elektronenziehenden Substituenten.
- Organische Leuchtdiodenvorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass mindestens einer der fluoreszierenden Emitter eine funktionale Gruppe mit einer Elektronen-Donator-Eigenschaft aus einer der folgenden Klassen umfasst: a. Triarylamine b. Oligo-Para-Phenyl oder Oligo-Meta-Phenyl c. Carbazole d. Fluoren oder Spiro-Bifluorene e. Phenylen-vinylen-Einheiten f. Naphtalen g. Anthrazen h. Perylen i. Pyren oder j. Thiophen.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009048604A DE102009048604A1 (de) | 2009-10-02 | 2009-10-02 | Organische Leuchtdiodenvorrichtung |
PCT/DE2010/001175 WO2011038727A1 (de) | 2009-10-02 | 2010-10-02 | Organische leuchtdiodenvorrichtung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009048604A DE102009048604A1 (de) | 2009-10-02 | 2009-10-02 | Organische Leuchtdiodenvorrichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102009048604A1 true DE102009048604A1 (de) | 2011-04-07 |
Family
ID=43608155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102009048604A Withdrawn DE102009048604A1 (de) | 2009-10-02 | 2009-10-02 | Organische Leuchtdiodenvorrichtung |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102009048604A1 (de) |
WO (1) | WO2011038727A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012202839A1 (de) * | 2012-02-24 | 2013-08-29 | Osram Opto Semiconductors Gmbh | Organische Leuchtdiode |
EP2811524A1 (de) * | 2013-06-05 | 2014-12-10 | Cambridge Display Technology Limited | Organische lichtemittierende Vorrichtung |
DE102016206681B3 (de) * | 2016-04-20 | 2017-08-31 | Technische Universität Dresden | Leuchtdiodenanordnung, Verfahren zum Betrieb einer Leuchtdiodenanordnung, OLED-Display und Verfahren zum Betrieb eines OLED-Displays |
DE102016202927A1 (de) | 2016-02-25 | 2017-08-31 | Technische Universität Dresden | Halbleiterbauelement, Mikroresonator und Verfahren zum Betrieb eines Halbleiterbauelements |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5093698A (en) | 1991-02-12 | 1992-03-03 | Kabushiki Kaisha Toshiba | Organic electroluminescent device |
US5703436A (en) | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US5757026A (en) | 1994-12-13 | 1998-05-26 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5969474A (en) | 1996-10-24 | 1999-10-19 | Tdk Corporation | Organic light-emitting device with light transmissive anode and light transmissive cathode including zinc-doped indium oxide |
DE10058578A1 (de) | 2000-11-20 | 2002-06-06 | Univ Dresden Tech | Lichtemittierendes Bauelement mit organischen Schichten |
EP1705727A1 (de) * | 2005-03-15 | 2006-09-27 | Novaled GmbH | Lichtemittierendes Bauelement |
EP1804308A1 (de) | 2005-12-23 | 2007-07-04 | Novaled AG | Organische lichtemittierende Vorrichtung mit mehreren aufeinander gestapelten organischen elektrolumineszenten Einheiten |
US20070252516A1 (en) * | 2006-04-27 | 2007-11-01 | Eastman Kodak Company | Electroluminescent devices including organic EIL layer |
DE102007020644A1 (de) | 2007-04-30 | 2008-11-06 | Novaled Ag | Lichtemittierendes Bauelement |
US20080286610A1 (en) * | 2007-05-17 | 2008-11-20 | Deaton Joseph C | Hybrid oled with fluorescent and phosphorescent layers |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9070884B2 (en) * | 2005-04-13 | 2015-06-30 | Universal Display Corporation | Hybrid OLED having phosphorescent and fluorescent emitters |
US8945722B2 (en) * | 2006-10-27 | 2015-02-03 | The University Of Southern California | Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs |
KR101316752B1 (ko) * | 2007-05-31 | 2013-10-08 | 삼성디스플레이 주식회사 | 백색 유기발광소자 |
-
2009
- 2009-10-02 DE DE102009048604A patent/DE102009048604A1/de not_active Withdrawn
-
2010
- 2010-10-02 WO PCT/DE2010/001175 patent/WO2011038727A1/de active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5093698A (en) | 1991-02-12 | 1992-03-03 | Kabushiki Kaisha Toshiba | Organic electroluminescent device |
US5703436A (en) | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US5757026A (en) | 1994-12-13 | 1998-05-26 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5969474A (en) | 1996-10-24 | 1999-10-19 | Tdk Corporation | Organic light-emitting device with light transmissive anode and light transmissive cathode including zinc-doped indium oxide |
DE10058578A1 (de) | 2000-11-20 | 2002-06-06 | Univ Dresden Tech | Lichtemittierendes Bauelement mit organischen Schichten |
EP1705727A1 (de) * | 2005-03-15 | 2006-09-27 | Novaled GmbH | Lichtemittierendes Bauelement |
EP1804308A1 (de) | 2005-12-23 | 2007-07-04 | Novaled AG | Organische lichtemittierende Vorrichtung mit mehreren aufeinander gestapelten organischen elektrolumineszenten Einheiten |
US20070252516A1 (en) * | 2006-04-27 | 2007-11-01 | Eastman Kodak Company | Electroluminescent devices including organic EIL layer |
DE102007020644A1 (de) | 2007-04-30 | 2008-11-06 | Novaled Ag | Lichtemittierendes Bauelement |
US20080286610A1 (en) * | 2007-05-17 | 2008-11-20 | Deaton Joseph C | Hybrid oled with fluorescent and phosphorescent layers |
Non-Patent Citations (10)
Title |
---|
C.L. Mulder et al. Appl. Phys. Lett. 90 (2007), 211109 |
C.W. Tang et al, J. Appl. Phys. 65 (1989), 3610 |
C.W. Tang et al. Appl. Phys. Lett. 51 (1987), 913 |
G. Gu et al. Appl. Phys. Lett. 68 (1996), 2606 |
H. Mattoussi et al. J. Appl. Phys. 86 (1999), 2642 |
L.S. Liao et al. Appl. Phys. Lett. 84 (2004), 167 |
M.A. Baldo et al. Nature 395 (1998), 151 |
P.E. Burrows et al. Appl. Phys. Lett. 69 (1996), 2959 |
S. Reineke et al. Nature 459 (2009), 234 |
Schwartz et al. Adv. Funct. Mater. 19(2009), 1319 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012202839A1 (de) * | 2012-02-24 | 2013-08-29 | Osram Opto Semiconductors Gmbh | Organische Leuchtdiode |
CN104115299A (zh) * | 2012-02-24 | 2014-10-22 | 奥斯兰姆奥普托半导体有限责任公司 | 有机发光二极管 |
US9196870B2 (en) | 2012-02-24 | 2015-11-24 | Osram Oled Gmbh | Organic light-emitting diode |
DE102012202839B4 (de) * | 2012-02-24 | 2019-07-11 | Osram Oled Gmbh | Organische Leuchtdiode |
EP2811524A1 (de) * | 2013-06-05 | 2014-12-10 | Cambridge Display Technology Limited | Organische lichtemittierende Vorrichtung |
DE102016202927A1 (de) | 2016-02-25 | 2017-08-31 | Technische Universität Dresden | Halbleiterbauelement, Mikroresonator und Verfahren zum Betrieb eines Halbleiterbauelements |
DE102016206681B3 (de) * | 2016-04-20 | 2017-08-31 | Technische Universität Dresden | Leuchtdiodenanordnung, Verfahren zum Betrieb einer Leuchtdiodenanordnung, OLED-Display und Verfahren zum Betrieb eines OLED-Displays |
EP3236462A2 (de) | 2016-04-20 | 2017-10-25 | Technische Universität Dresden | Leuchtdiodenanordnung, verfahren zum betrieb einer leuchtdiodenanordnung, oled-display und verfahren zum betrieb eines oled-displays |
Also Published As
Publication number | Publication date |
---|---|
WO2011038727A1 (de) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1705727B1 (de) | Lichtemittierendes Bauelement | |
DE112008001738B4 (de) | Licht emittierendes Bauelement | |
EP2193559B1 (de) | Strahlungsemittierende vorrichtung | |
DE102011054644B4 (de) | Organische licht emittierende vorrichtung | |
DE102011116661B4 (de) | Organische leuchtdiodenvorrichtung | |
WO2008131750A2 (de) | Licht emittierendes bauelement und verfahren zum herstellen | |
DE102013017361B4 (de) | Organisches Licht emittierendes Bauelement und Verfahren zur Herstellung eines organischen Licht ermittierenden Bauelements | |
DE102012111877A9 (de) | Weisse tandem-organische lichtemittierende vorrichtung | |
DE10224021A1 (de) | Phosphoreszentes lichtemittierendes Bauelement mit organischen Schichten | |
DE102010006280A1 (de) | Farbkonvertierung | |
Kumar et al. | Mixed-host systems with a simple device structure for efficient solution-processed organic light-emitting diodes of a red-orange TADF emitter | |
WO2012079956A1 (de) | Organisches lichtemittierendes bauelement und verwendung eines kupferkomplexes in einer ladungstransportschicht | |
WO2010046788A2 (de) | Strahlungsemittierende vorrichtung | |
DE112012001410T5 (de) | Organisches Elektrolumineszenzelement | |
DE102012203583A1 (de) | Organisches Licht emittierendes Bauelement | |
DE102011007052A1 (de) | Optoelektronisches Bauelement und Verwendung eines Kupferkomplexes als Dotierstoff zum Dotieren einer Schicht | |
DE102007020644A1 (de) | Lichtemittierendes Bauelement | |
EP2652811A1 (de) | Optoelektronisches bauelement und verwendung eines kupferkomplexes in einer ladungserzeugungsschichtfolge | |
DE112012001417T5 (de) | Weißes Licht emittierendes organisches Elektrolumineszenzelement und weißes Licht emittierende organische Elektrolumineszenzplatte | |
DE102009048604A1 (de) | Organische Leuchtdiodenvorrichtung | |
DE112014007311B3 (de) | Organisches lichtemittierendes Bauelement | |
DE102011079063A1 (de) | Lichtemittierendes Bauelement und Verfahren zum Herstellen eines lichtemittierenden Bauelements | |
US20180254438A1 (en) | Top Emitting OLEDs with Increased Brightness | |
DE102015106941A1 (de) | Organische Emitterschicht, organische Leuchtdiode und Verwendung von Schweratomen in einer organischen Emitterschicht einer organischen Leuchtdiode | |
DE102007061755A1 (de) | Bauelement zur phosphoreszenten Lichtemission aus Triplett-Zuständen und Verfahren zur Herstellung solcher Bauelemente |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
R016 | Response to examination communication | ||
R120 | Application withdrawn or ip right abandoned | ||
R002 | Refusal decision in examination/registration proceedings | ||
R016 | Response to examination communication | ||
R120 | Application withdrawn or ip right abandoned |
Effective date: 20110830 |