DE102007046306A1 - Beschleunigungssensor - Google Patents
Beschleunigungssensor Download PDFInfo
- Publication number
- DE102007046306A1 DE102007046306A1 DE102007046306A DE102007046306A DE102007046306A1 DE 102007046306 A1 DE102007046306 A1 DE 102007046306A1 DE 102007046306 A DE102007046306 A DE 102007046306A DE 102007046306 A DE102007046306 A DE 102007046306A DE 102007046306 A1 DE102007046306 A1 DE 102007046306A1
- Authority
- DE
- Germany
- Prior art keywords
- electrodes
- electrode
- acceleration sensor
- acceleration
- spring elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 33
- 230000010355 oscillation Effects 0.000 title claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000011248 coating agent Substances 0.000 claims abstract description 7
- 238000000576 coating method Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/125—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0831—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pressure Sensors (AREA)
Abstract
Die Erfindung betrifft einen Beschleunigungssensor mit mindestens einer ersten Elektrode und mindestens zwei zweiten Elektroden, welche relativ zur ersten Elektrode beweglich gelagert sind, wobei die zweiten Elektroden beabstandet zur ersten Elektrode angeordnet und um jeweils eine Achse schwenkbar sind, wobei Federelemente vorgesehen sind, welche bei einer Auslenkung der zweiten Elektroden aus der Ruhelage eine Rückstellkraft erzeugen und sich die Frequenzen der Eigenschwingungen der beiden zweiten Elektroden unterscheiden. Weiterhin betrifft die Erfindung ein Verfahren zum Betrieb des Beschleunigungssensors sowie dessen Verwendung.
Description
- Die Erfindung betrifft einen Beschleunigungssensor mit mindestens einer ersten Elektrode, welche auf einem Trägersubstrat angeordnet ist, mindestens zwei zweiten Elektroden, welche relativ zum Trägersubstrat beweglich gelagert sind, wobei die zweiten Elektroden beabstandet zur ersten Elektrode angeordnet und um jeweils eine Achse schwenkbar sind, wobei Federelemente vorgesehen sind, welche bei einer Auslenkung der zweiten Elektroden aus der Ruhelage eine Rückstellkraft erzeugen. Solche Beschleunigungssensoren werden beispielsweise in Kraftfahrzeugen eingesetzt, um Sicherheitseinrichtungen auszulösen, wenn ein bestimmter, kritischer Beschleunigungswert überschritten wird.
- Aus der
EP 0 244 581 A1 ist ein Beschleunigungssensor der eingangs erwähnten Art bekannt. Bei diesem Sensor besteht die erste Elektrode aus monokristallinen Silizium, aus welchem in Ätztechnik zwei gleiche Pendel mit asymmetrisch ausgebildeten Drehmassen als zweite Elektroden ausgearbeitet sind. Die Drehachsen, um welche die Siliziumpendel schwenkbar sind, verlaufen im Wesentlichen parallel zur ersten Elektrode und stehen zueinander im Wesentlichen senkrecht. Dadurch kann der Kippwinkel des Sensors und eines mit diesem verbundenem Gegenstand in zwei Richtungen gleichzeitig bestimmt werden. Bei einer linearen Beschleunigung, welche im Wesentlichen senkrecht zur Oberfläche des Siliziumsubstrates verläuft, werden beide Pendel gleichförmig ausgelenkt. - Die Auslenkung der Pendel mit den daran befestigten zweiten Elektroden wird nach dem Stand der Technik dadurch bestimmt, dass die elektrische Kapazität zwischen den pendelnd gelagerten Elektroden und der darunter liegenden Fläche des Substra tes bestimmt wird. Dieser so gebildete Plattenkondensator ändert seine Kapazität mit dem relativen Abstand der Platten.
- Nachteilig an diesem Stand der Technik ist jedoch, dass nicht nur mechanische Verformungen des Sensors zu einer Änderung der Kapazität führen, sondern auch Änderungen der elektronischen Eigenschaften der Elektrodenoberfläche. Diese sind von der den Sensor umgebenden Atmosphäre und seiner Temperatur abhängig. Daher können diese Änderungen auch zeitabhängig variieren. Diese Offset-Änderung des Ausgangssignals verringert die Messgenauigkeit des Beschleunigungssensors.
- Der Erfindung liegt demnach die Aufgabe zugrunde, einen Beschleunigungssensor und ein Verfahren zur Messung einer Beschleunigung anzugeben, bei welchem das Messsignal durch Änderung der Umgebungsbedingungen des Sensors nicht beeinflusst wird.
- Die Aufgabe wird erfindungsgemäß gelöst durch einen Beschleunigungssensor mit mindestens einer ersten Elektrode und mindestens zwei zweiten Elektroden, welche relativ zur ersten Elektrode beweglich gelagert sind, wobei die zweiten Elektroden beabstandet zur ersten Elektrode angeordnet und um jeweils eine Achse schwenkbar sind und bei welchem Federelemente vorgesehen sind, welche bei einer Auslenkung der zweiten Elektroden aus der Ruhelage eine Rückstellkraft erzeugen, wobei sich die Frequenzen der Eigenschwingungen der beiden zweiten Elektroden unterscheiden.
- Auch der erfindungsgemäß vorgeschlagene Beschleunigungssensor misst die Kapazität zwischen einer ersten, feststehenden Elektrode und einer zweiten, beweglich gelagerten Elektrode. Durch eine auf den Sensor einwirkende Beschleunigungskraft wird die beweglich gelagerte Elektrode aus ihrer Ruhelage ausgelenkt. Die dadurch hervorgerufene Abstandsänderung ändert die Kapazität des Plattenkondensators zwischen erster und zweiter Elektrode. Erfindungsgemäß wird vorgeschlagen, diese Anordnung zumindest doppelt in engem räumlichen Abstand vorzusehen. Als Messsignal wird die Differenz der Kapazitätsänderung des ersten Elektrodenpaares und des zweiten Elektrodenpaares ausgewertet. Änderungen der Kapazität der Elektrodenpaare aufgrund von Änderungen der elektronischen Eigenschaften der Elektrodenoberflächen betreffen aufgrund der räumlichen Nähe der Elektrodenanordnungen jeweils alle Elektroden in gleichem Maße. Somit wird das Differenzsignal zu null.
- Sofern eine Beschleunigung auf die Anordnung einwirkt, werden beide Elektroden aus Ihrer Ruhelage durch die Beschleunigungskraft ausgelenkt. Da die Frequenzen der Eigenschwingungen der schwenkbar und federnd gelagerten Elektroden unterschiedlich sind, ist auch die Auslenkung aus der Ruhelage für beide Elektroden bei gleicher Beschleunigung unterschiedlich. Dies führt zu einem unterschiedlichen Abstand der beiden zweiten Elektroden zur ersten Elektrode und somit zu einer ungleichen Kapazitätsänderung. Nach der Differenzbildung verbleibt ein messbares Signal.
- Die erfindungsgemäß verwendeten, schwenkbar gelagerten zweiten Elektroden stellen ein Drehpendel dar. Somit kann eine unterschiedliche Frequenz der Eigenschwingung der beiden zweiten Elektroden in einer Ausführungsform der Erfindung durch ein unterschiedliches Trägheitsmoment der mindestens zwei zweiten Elektroden erzielt werden. Das Trägheitsmoment kann entweder durch die Länge der Elektroden oder durch eine auf einer Elektrode angebrachte Zusatzmasse variiert werden. Eine Zusatzmasse lässt sich durch eine unterschiedliche Dicke der Elektroden oder durch Aufdampfen oder Sputtern von zusätzlichem Material auf eine Elektrode realisieren.
- In einer weiteren Ausführungsform wird eine unterschiedliche Frequenz der Eigenschwingungen der beiden zweiten Elektroden dadurch erzielt, dass die Federelemente bei gleicher Verformung eine unterschiedliche Rückstellkraft erzeugen. Sofern die Elektroden zusammen mit den Drehachsen und den Federelementen mikromechanisch aus einem Siliziumsubstrat durch Ätzen hergestellt werden, wird das Federelement zusammen mit der Drehachse in besonders einfacher Weise als dünner Siliziumstab ausgeführt. Dieser Siliziumstab erfährt durch die Auslenkung der Elektrode eine Torsion. Über die Breite des Stabes lässt sich die Federkonstante und damit die Rückstellkraft bei einer gegebenen Auslenkung sehr exakt einstellen.
- Um die Messgenauigkeit der erfindungsgemäßen Anordnung zu erhöhen, kann sowohl die erste, als auch die beiden zweiten Elektroden eine laterale Strukturierung aufweisen. Beispielsweise ist es möglich, die erste Elektrode zweiteilig auszuführen. Dadurch steht jeder zweiten Elektrode eine eigene erste Elektrode gegenüber; welche elektrisch voneinander isoliert sind. In einer weiteren Ausführungsform kann auch die zweite Elektrode nochmals unterteilt sein. Beispielsweise können die zwei Teilflächen einer zweiten Elektrode relativ zur Drehachse so angeordnet werden, dass sich bei Auslenkung der Abstand der einen Teilfläche verringert, während der Abstand der anderen Teilfläche vergrößert wird. Bei einer solchen Anordnung kann auch die erste Elektrode nochmals unterteilt sein, sodass sich bei einer Ausführungsform mit zwei jeweils zweiteiligen zweiten Elektroden eine vierteilige erste Elektrode ergibt. Durch mehrfache Messung der Kapazitätswerte und mehrfache Differenzbildung kann auf diese Weise die Zuverlässigkeit der Messung erhöht werden. Da beide zweiten Elektroden mit der ersten Elektrode nach wie vor in einem Gehäuse eng benachbart angeordnet sind, sind alle Teilelektroden Elektroden nach wie vor denselben Umgebungsbedingungen ausgesetzt. Somit betreffen Änderungen der elektrischen Eigenschaften durch Veränderung der Oberfläche weiterhin alle gemessenen Kapazitätswerte gleichermaßen.
- Die Elektroden können erfindungsgemäß einstückig durch Ätzen oder mikromechanische Bearbeitung einer Silizium- oder Metallschicht hergestellt werden. Alternativ ist auch eine mehrteilige Herstellung aus einem Trägersubstrat und einer leitfähigen Beschichtung möglich. Als Trägersubstrat kommt beispielsweise Silizium oder Keramik in Betracht. Eine leitfähige Beschichtung kann durch Aufdampfen oder Sputtern eines Metalls oder einer Legierung oder von Kohlenstoff hergestellt werden.
- Die Drehachsen der mindestens zwei beweglich gelagerten zweiten Elektroden können je nach den gewünschten Eigenschaften des Beschleunigungssensors zueinander angeordnet werden. Beispielsweise ist es möglich, die Drehachsen im Wesentlichen senkrecht zueinander in einer Ebene anzuordnen. Bei einer Beschleunigung, welche im Wesentlichen senkrecht zu dieser Ebene verläuft, sprechen damit beide zweiten Elektroden im gleichen Maße an. Eine Drehbeschleunigung um eine Achse parallel zur Erstreckungsebene der zweiten Elektroden führt jedoch nur zum Ansprechen einer Elektrode. Somit kann durch eine Auswerteschaltung aus den Messsignalen bestimmt werden, ob eine Drehung oder eine laterale Beschleunigung vorliegt.
- Nachfolgend soll die Erfindung anhand eines Ausführungsbeispiels, welches in der anliegenden Figur dargestellt ist, ohne Beschränkung des allgemeinen Erfindungsgedankens näher erläutert werden.
- Die Figur zeigt eine Aufsicht auf zwei zweite Elektroden
1 und2 . Die zweiten Elektroden haben eine im Wesentlichen rechteckige Grundfläche. Innerhalb dieser Grundfläche verlaufen die beiden Drehachsen3 und4 . Diese fixieren die zweiten Elektroden1 und2 mittels einer Halterung5 über der ersten Elektrode. Die erste Elektrode ist daher in der Aufsicht von den zweiten Elektroden verdeckt und in1 nicht dargestellt. Die Drehachsen3 und4 dienen gleichzeitig als Torsionsfedern. Bei Auslenkung der Elektroden1 und2 aus ihrer Ruhelage erfahren die jeweils zugeordneten Drehachsen eine Torsion, welche eine Rückstellkraft auf die zweiten Elektroden1 und2 ausübt. Die Breite der Drehachse3 ist dabei grö ßer gewählt als die Breite der Drehachse4 . Bei gleicher Dicke ergibt sich damit für die Drehachse3 eine größere Federkonstante. Diese führt bei gleicher Auslenkung der Elektrode1 zu einer höheren Rückstellkraft als bei Elektrode2 . Weiterhin ist die Eigenfrequenz der Elektrode1 höher als die der Elektrode2 . Bei gleicher auf beide Elektroden einwirkenden Kraft ist die Auslenkung der Elektrode1 geringer. - Die beiden zweiten Elektroden
1 und2 können zusammen mit den Drehachsen3 und4 aus einem leitfähigen Substrat durch Ätzen hergestellt werden. - Zum Betrieb des Beschleunigungssensors wird jeweils die Kapazität zwischen der Elektrode
1 und der nicht dargestellten ersten Elektrode und der zweiten Elektrode2 und der nicht dargestellten ersten Elektrode bestimmt. Dieser Kapazitätswert wird in einem Differenzverstärker weiterverarbeitet. Das Ausgangssignal des Differenzverstärkers6 nimmt nur dann einen von null verschiedenen Wert an, wenn die Kapazität beider Elektrodenpaare unterschiedliche Werte aufweist. - Dies ist der Fall, wenn beide Elektrodenpaare eine identische Beschleunigungskraft erfahren. Durch die unterschiedlichen Federkonstanten der Drehachsen
3 und4 erreicht die Auslenkung der Elektrode2 einen größeren Wert. Damit fällt auch die Kapazitätsänderung des durch die zweite Elektrode2 gebildeten Plattenkondensators größer aus als die Kapazitätsänderung des durch die zweite Elektrode1 gebildeten Plattenkondensators. - Sofern die Änderung der Kapazität eine andere Ursache hat, beispielsweise die Kontamination der Elektroden mit einem Adsorbat, betrifft diese Kapazitätsänderung beide Kapazitäten in gleichem Maße. Die Differenz ist daher null.
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- - EP 0244581 A1 [0002]
Claims (11)
- Beschleunigungssensor mit mindestens einer ersten Elektrode, mindestens zwei zweiten Elektroden, welche relativ zur ersten Elektrode beweglich gelagert sind, wobei die zweiten Elektroden beabstandet zur ersten Elektrode angeordnet und um jeweils eine Achse schwenkbar sind, wobei Federelemente vorgesehen sind, welche bei einer Auslenkung der zweiten Elektroden aus der Ruhelage eine Rückstellkraft erzeugen, dadurch gekennzeichnet, dass sich die Frequenzen der Eigenschwingungen der beiden zweiten Elektroden unterscheiden.
- Beschleunigungssensor nach Anspruch 1, dadurch gekennzeichnet, dass die Federelemente bei gleicher Verformung eine unterschiedliche Rückstellkraft erzeugen.
- Beschleunigungssensor nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die zweiten Elektroden um eine Achse schwenkbar sind, welche innerhalb der Elektroden verläuft.
- Beschleunigungssensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die erste Elektrode und/oder die zweiten Elektroden ein Trägersubstrat und eine leitfähige Beschichtung aufweisen, welche zumindest als Teilbeschichtung ausgeführt ist.
- Beschleunigungssensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die erste Elektrode und/oder die zweiten Elektroden eine laterale Strukturierung aufweisen.
- Beschleunigungssensor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Federelement eine Torsionsfeder umfasst.
- Beschleunigungssensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schwenkachsen der beiden zweiten Elektroden im Wesentlichen senkrecht zueinander verlaufen.
- Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine Einrichtung zur Bestimmung der elektrischen Kapazität zwischen den ersten und den zweiten Elektroden vorgesehen ist.
- Verwendung eines Beschleunigungssensors nach einem der Ansprüche 1 bis 8 zur Messung einer Längsbeschleunigung.
- Kraftfahrzeug mit einem Beschleunigungssensor nach einem der Ansprüche 1 bis 8
- Verfahren zur Messung einer Beschleunigung, bei welchem die Differenz der elektrischen Kapazitäten bestimmt wird zwischen mindestens einer ersten Elektrode und mindestens zwei zweiten Elektroden, welche relativ zur ersten Elektrode beweglich gelagert sind, wobei die zweiten Elektroden beabstandet zur ersten Elektrode angeordnet und um jeweils eine Achse schwenkbar sind, wobei Federelemente vorgesehen sind, welche bei einer Auslenkung der zweiten Elektroden aus der Ruhelage eine Rückstellkraft erzeugen, wobei sich die Frequenzen der Eigenschwingungen der beiden zweiten Elektroden unterscheiden
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007046306.7A DE102007046306B4 (de) | 2007-09-27 | 2007-09-27 | Beschleunigungssensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007046306.7A DE102007046306B4 (de) | 2007-09-27 | 2007-09-27 | Beschleunigungssensor |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102007046306A1 true DE102007046306A1 (de) | 2009-04-02 |
DE102007046306B4 DE102007046306B4 (de) | 2021-10-14 |
Family
ID=40384324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102007046306.7A Active DE102007046306B4 (de) | 2007-09-27 | 2007-09-27 | Beschleunigungssensor |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102007046306B4 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011085717A1 (de) * | 2010-01-12 | 2011-07-21 | Flsmidth A/S | Vorrichtung und verfahren zur kontrolle der verfestigung einer kohleschüttung |
US20230068118A1 (en) * | 2021-08-25 | 2023-03-02 | Murata Manufacturing Co., Ltd. | Seesaw accelerometer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0244581A1 (de) | 1986-04-04 | 1987-11-11 | Robert Bosch Gmbh | Sensor zur selbsttätigen Auslösung von Insassenschutzvorrichtungen |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0821722B2 (ja) | 1985-10-08 | 1996-03-04 | 日本電装株式会社 | 半導体振動・加速度検出装置 |
US7104129B2 (en) | 2004-02-02 | 2006-09-12 | Invensense Inc. | Vertically integrated MEMS structure with electronics in a hermetically sealed cavity |
EP1832841B1 (de) | 2006-03-10 | 2015-12-30 | STMicroelectronics Srl | Mikroelektromechanische integrierte Sensorstruktur mit Rotationsantriebsbewegung |
-
2007
- 2007-09-27 DE DE102007046306.7A patent/DE102007046306B4/de active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0244581A1 (de) | 1986-04-04 | 1987-11-11 | Robert Bosch Gmbh | Sensor zur selbsttätigen Auslösung von Insassenschutzvorrichtungen |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011085717A1 (de) * | 2010-01-12 | 2011-07-21 | Flsmidth A/S | Vorrichtung und verfahren zur kontrolle der verfestigung einer kohleschüttung |
US20230068118A1 (en) * | 2021-08-25 | 2023-03-02 | Murata Manufacturing Co., Ltd. | Seesaw accelerometer |
Also Published As
Publication number | Publication date |
---|---|
DE102007046306B4 (de) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008040525B4 (de) | Mikromechanisches Sensorelement | |
DE102009000167A1 (de) | Sensoranordnung | |
DE102011083487B4 (de) | Beschleunigungssensor und Verfahren zum Betrieb eines Beschleunigungssensors | |
DE102008043524B4 (de) | Beschleunigungssensor und Verfahren zu seiner Herstellung | |
DE69206770T2 (de) | Dreiachsiger Beschleunigungsmesser | |
EP2263093B1 (de) | Mikromechanischer beschleunigungssensor | |
DE102010029645B4 (de) | Mikromechanisches Bauelement mit einer Teststruktur zur Bestimmung der Schichtdicke einer Abstandsschicht und Verfahren zum Herstellen einer solchen Teststruktur | |
DE102016208925B4 (de) | Mikromechanischer Sensor und Verfahren zum Herstellen eines mikromechanischen Sensors | |
DE102008043788A1 (de) | Mikromechanisches Bauelement | |
DE102009026462A1 (de) | Beschleunigungssensor | |
DE19810534A1 (de) | Mehrachsenbeschleunigungssensor und Herstellungsverfahren eines Mehrachsenbeschleunigungssensor | |
DE102017219901B3 (de) | Mikromechanischer z-Inertialsensor | |
DE102010038809A1 (de) | Inertialsensor und Verfahren zum Herstellen eines Inertialsensors | |
DE102004043259B4 (de) | Dynamischer Halbleitersensor mit variablem Kondensator auf laminiertem Substrat | |
DE102011006422A1 (de) | Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil | |
DE102015209941A1 (de) | Mikromechanischer Beschleunigungssensor | |
DE69736429T2 (de) | Tunneleffektmessaufnehmer mit linearer kraftrückkopplung | |
WO1992014161A1 (de) | Kapazitiver beschleunigungssensor | |
WO1999014613A1 (de) | Sensorelement | |
DE102015207639A1 (de) | Seismisches Erfassungselement für einen mikromechanischen Sensor | |
DE102009045420A1 (de) | Drehratensensor, Drehratensensoranordnung und Verfahren zum Betrieb eines Drehrtensensors | |
DE102007046306A1 (de) | Beschleunigungssensor | |
DE3742385A1 (de) | Beschleunigungsempfindliches elektronisches bauelement | |
DE10134558A1 (de) | Halbleitersensor für dynamische Größen | |
DE102019200843B4 (de) | Mikromechanisches kapazitiv auswertbares Bauelement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed |
Effective date: 20140219 |
|
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |