DE10126630A1 - Verfahren zur Zellsortierung - Google Patents
Verfahren zur ZellsortierungInfo
- Publication number
- DE10126630A1 DE10126630A1 DE10126630A DE10126630A DE10126630A1 DE 10126630 A1 DE10126630 A1 DE 10126630A1 DE 10126630 A DE10126630 A DE 10126630A DE 10126630 A DE10126630 A DE 10126630A DE 10126630 A1 DE10126630 A1 DE 10126630A1
- Authority
- DE
- Germany
- Prior art keywords
- polynucleotide
- probe
- cell
- complementary
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 239000000523 sample Substances 0.000 claims abstract description 87
- 239000000203 mixture Substances 0.000 claims abstract description 30
- 108091033319 polynucleotide Proteins 0.000 claims description 76
- 102000040430 polynucleotide Human genes 0.000 claims description 76
- 239000002157 polynucleotide Substances 0.000 claims description 75
- 239000002773 nucleotide Substances 0.000 claims description 34
- 125000003729 nucleotide group Chemical group 0.000 claims description 34
- 230000000295 complement effect Effects 0.000 claims description 29
- 238000009396 hybridization Methods 0.000 claims description 28
- 239000007787 solid Substances 0.000 claims description 27
- 108020004518 RNA Probes Proteins 0.000 claims description 7
- 239000003391 RNA probe Substances 0.000 claims description 7
- 108020004635 Complementary DNA Proteins 0.000 claims description 3
- 108020003215 DNA Probes Proteins 0.000 claims description 3
- 239000003298 DNA probe Substances 0.000 claims description 3
- 239000011236 particulate material Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 5
- 238000002372 labelling Methods 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 121
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 24
- 229960002685 biotin Drugs 0.000 description 13
- 239000011616 biotin Substances 0.000 description 13
- 235000020958 biotin Nutrition 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 108010090804 Streptavidin Proteins 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 102000003992 Peroxidases Human genes 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 239000012876 carrier material Substances 0.000 description 5
- 238000007901 in situ hybridization Methods 0.000 description 5
- 238000010369 molecular cloning Methods 0.000 description 5
- 108040007629 peroxidase activity proteins Proteins 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 238000009739 binding Methods 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 108020004465 16S ribosomal RNA Proteins 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 108010028263 bacteriophage T3 RNA polymerase Proteins 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000007479 molecular analysis Methods 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 150000007523 nucleic acids Chemical group 0.000 description 2
- 239000003161 ribonuclease inhibitor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 1
- 108020004463 18S ribosomal RNA Proteins 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 238000007900 DNA-DNA hybridization Methods 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- BACYUWVYYTXETD-UHFFFAOYSA-N N-Lauroylsarcosine Chemical compound CCCCCCCCCCCC(=O)N(C)CC(O)=O BACYUWVYYTXETD-UHFFFAOYSA-N 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001317 epifluorescence microscopy Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Die vorliegende Erfindung betrifft Verfahren zur Sortierung von Zellgemischen, wobei rRNA-gerichtete Sonden verwendet werden, die eine spezifische Markierung und Abtrennung gesuchter Organismen einer Population erlauben.
Description
- Die vorliegende Erfindung betrifft Verfahren zur Sortierung von Zellgemischen, wobei Polynukleotidsonden verwendet werden, die eine spezifische Markierung und Abtrennung gesuchter Organismen einer Population erlauben.
- Die Identifizierung und Charakterisierung von Bakterien spielt vor allem in der mikrobiellen Ökologie eine wichtige Rolle. Da nur etwa 1% aller in Ökosystemen, wie z. B. in Erde, vorkommender Bakterien in vitro kultivierbar sind, gewinnen Kultur-unabhängige Verfahren zur Untersuchung von Mikroorganismen der unterschiedlichsten Ökosysteme an Bedeutung. Allerdings ist die Isolierung bislang unbekannter nicht-kultivierbarer Organismen häufig durch verschiedene Populations-bedingte Faktoren erschwert. So kann beispielsweise eine Population von bereits bekannten Organismen dominiert sein, wodurch die Auffindung der gesuchten, bislang unbekannten Organismen erschwert und möglicherweise verhindert wird.
- Eines der ersten Verfahren zur Sortierung von Zellen basiert auf der Manipulation von Bakterienzellen und Viren mittels eines Infrarotlasers (Ashkin, A. und Dziedzic, J. M. (1987), Science 235, 1517-1520). Mit dieser Methode ist es möglich, einzelne Zellen für eine phylogenetische Analyse anzusammeln. Allerdings stellt dieses Verfahren ein technisch sehr aufwendiges Verfahren mit relativ geringer Spezifität und Sensitivität dar. Daher findet die Manipulation von Zellen mit Infrarotlasern zur Anreicherung von nicht-kultivierbaren Organismen nur in sehr wenigen Fällen Anwendung.
- Die Durchflusszytometrie (FCM, Flowcytometry) stellt ein weiteres Verfahren zur Anreicherung von Bakterienzellen aus einem Zellgemisch dar. Das Verfahren ermöglicht eine schnelle Zellanalyse (mehr als 103 Zellen pro Sekunde) und ein Sortieren von einzelnen Zellen einer Zellpopulation. Dabei erlauben verschiedene FCM-Kriterien, wie Zellgröße, Zellmorphologie, DNA- Gehalt und spezifische Anfärbung mit fluoreszenzmarkierten Antikörpern (Porter, J., Edwards, C., Morgan, J. A. W. und Pickup, R. (1993), Appl. Environ. Microbiol. 59, 3327-3333) oder fluoreszenzmarkierte rRNA- gerichtete Olinukleotidsonden (Wallner, G., Erhardt, R. und Amann, R. (1995), Appl. Environ. Microbiol. 61: 1859-1866) eine Abtrennung von Zellen im Durchflusszytometer und damit eine Sortierung von Zellpopulationen aus verschiedensten Systemen. Allerdings stellt die Durchflusszytometrie ein technisch sehr aufwendiges Verfahren dar, das eine teure Laborausrüstung erfordert und abhängig von den jeweils untersuchten FCM-Kriterien nur über eine geringe Spezifität verfügt.
- Ein Kultur-unabhängiges, schnelles und flexibles Verfahren zur Abreicherung von Bakterienzellen aus Zellgemischen verwendet Biotin- markierte rRNA-Sonden (Stoffels, M. et al. (1999), Enviromental Microbiology 1 (3), 259-271). Dabei werden die gesuchten Zellen durch in situ Hybridisierung mit biotinylierten Polyribonukleotidsonden markiert und anschließend mit paramagnetischen Streptavidin-beschichteten Partikeln inkubiert. Die so markierten Zielzellen werden dann über eine mit Stahlwolle gefüllte Säule, die sich im Feld eines permanenten Magneten befindet, von den restlichen Zellen des Zellgemisches abgetrennt. Dieses Verfahren ermöglicht eine sensitive und spezifische Markierung der gesuchten Zellen des Zellgemisches anhand der Biotin-markierten rRNA- Sonden. Ein Nachteil des Verfahrens ist jedoch, dass die Anreicherung der markierten Zellen über Bindeproteine erfolgt (hier Biotin-Streptavidin- Bindung), die häufig auch unspezifische Bindungen eingehen, wodurch eine hochspezifische Abreicherung der gesuchten Zellen erschwert wird.
- Zusammenfassend ist in der Literatur bisher kein geeignetes Kultur- unabhängiges Verfahren zur Sortierung von gesuchten Zellen aus einem Zellgemisch beschrieben, das eine Spezies-spezifische Markierung einzelner Zielzellen und eine hochsensitive und hochspezifische Abtrennung dieser Zellen ermöglicht, technisch einfach, automatisierbar und kostengünstig ist.
- Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, Verfahren zur Sortierung eines mindestens eine Zielzelle enthaltenden Zellgemisches bereitzustellen, welche die genannten Nachteile entsprechend dem Stand der Technik nicht aufweisen.
- Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zur Sortierung eines eine Zielzelle mit mindestens einer gesuchten Nukleotidsequenz enthaltenden Zellgemisches, wobei
- 1. das Zellgemisch unter Hybridisierungsbedingungen mit mindestens einer Polynukleotidsequenz als Sonde behandelt wird, welche zur gesuchten Nukleotidsequenz der Zielzelle komplementär ist,
- 2. das so behandelte Zellgemisch mit einer an einem festen Träger fixierten Polynukleotidsequenz, welche zu der Sondenpolynukleotidsequenz komplementär ist, unter Hybridisierungsbedingungen kontaktiert wird und
- 3. die an den festen Träger fixierten Zielzellen von den nicht fixierten Zellen abgetrennt werden.
- Durch den erfindungsgemäßen Einsatz von Polynukleotidsequenzen als Sonde, die so ausgewählt werden, dass die Sondennukleotidsequenz komplementär zu einer gesuchten Nukleotidsequenz der Zielzelle und komplementär zu einer an einem festen Träger fixierten Polynukleotidsequenz ist, wird ein Verfahren zur Sortierung eines Zellgemisches bereitgestellt, das eine hochspezifische und sensitive Abreicherung einer gesuchten Zielzelle des Zellgemisches erlaubt. Dem erfindungsgemäßen Verfahren liegt dabei das Prinzip der zweifachen Hybridisierung der Polynukleotidsonde zugrunde.
- Der Ausdruck "komplementär", wie hierin verwendet, umfasst die Möglichkeit, dass die Nukleotidsequenzen vollständig komplementär sind, d. h. eine vollständige Basenpaarung eingehen. Erfindungsgemäß sind unter komplementären Sequenzen aber auch Sequenzen zu verstehen, in denen weniger als 100%, beispielsweise mehr als 80%, bevorzugt mehr als 90 % und mehr bevorzugt mehr als 95% der Basen komplementär sind, d. h. eine Basenpaarung eingehen können. Darüber hinaus ist es erfindungsgemäß nicht erforderlich, dass die vollständige Sondennukleotidsequenz zu der gesuchten Nukleotidsequenz komplementär ist, vielmehr ist bereits eine Komplementarität von Teilbereichen der Sequenzen, insbesondere von Teilbereichen mit einer Länge von mindestens 15, mehr bevorzugt mindestens 18 und besonders bevorzugt mindestens 20 Basen im Sinne der Erfindung ausreichend. Wesentlich ist, dass die Sondennukleotidsequenz mit der gesuchten Nukleotidsequenz der Zielzelle und der an einem festen Träger fixierten Polynukleotidsequenz unter Hybridisierungsbedingungen hybridisiert.
- Aufgrund des geringen technischen Aufwands des erfindungsgemäßen Verfahrens kann das Verfahren in jedem herkömmlichen Standardlabor eingesetzt werden, um jede Art von bislang unbekannten Organismen, wie prokaryontische Zellen und eukaryontische Zellen, insbesondere nicht- kultivierbare Bakterienzellen, Hefezellen und tierische Zellen, für eine mikrobiologische Charakterisierung, wie molekulare Analyse oder genomische Untersuchung, zu isolieren. Dabei stellt das erfindungsgemäße Verfahren zwei mögliche Isolierungswege bereit. Zum einen kann der bislang unbekannte Organismus, vorzugsweise eine eukaryontische oder prokaryontische Zelle, durch eine Spezies-spezifische Polynukleotidsonde markiert und über einen festen Träger abgetrennt bzw. angereichert werden. Zum anderen können häufig vorkommende Organismen der Zellpopulation entweder durch entsprechende Spezies-spezifische oder weniger spezifische Polynukleotidsonden markiert und über einen festen Träger abgetrennt werden. Dadurch erfolgt eine Abreicherung der dominierenden Zellen der Zellpopulation und damit eine Anreicherung des bislang unbekannten Organismus.
- Schritt (1) des erfindungsgemäßen Verfahrens umfasst die Behandlung eines zu untersuchenden Zellgemisches mit mindestens einer Polynukleotidsonde, welche zu mindestens einer gesuchten Nukleotidsequenz der gesuchten Zielzelle komplementär ist und basiert auf der in situ Hybridisierung zwischen den komplementären Bereichen der Polynukleotidsonde und der gesuchten Nukleotidsequenz der Zielzelle des Zellgemisches. Geeignete Hybridisierungsbedingungen sind dem Fachmann bekannt und werden z. B. bei Maniatis, T., Fritsch, E. F. und Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y. und Amann, R., Ludwig, W. und Schleifer, K. H., 1995, Phylogenetic identification and in situ hybridization of individual microbiol cells without cultivation, Microbiol. Rev. 59, S. 143-169 beschrieben. Vorzugsweise erfolgt die in situ Hybridisierung entsprechend der vorliegenden Erfindung in Hybridisierungspuffer mit 0,01 % SDS für 5 bis 16 Stunden bei 50 bis 60°C, vorzugsweise bei 50 bis 55 °C und besonders bevorzugt bei 53°C. Gegebenenfalls kann der Hybridisierungsansatz vor der in situ Hybridisierung für 15 bis 30 Minuten, vorzugsweise 20 Minuten bei 70 bis 85°C, vorzugsweise 80°C inkubiert werden.
- Die dem erfindungsgemäßen Verfahren zugrundeliegenden Polynukleotidsonden haben die entscheidende Eigenschaft, dass sie bei einer Hybridisierung nicht vollständig in die Zielzelle eindringen. Ein Teil der Polynukleotidsonde wird nicht in die Zelle eingeschleust und verbleibt außerhalb der Zellwand der Zielzelle. Dieser aus der Zielzelle herausragende Bereich der Polynukleotidsonde weist erfindungsgemäß einen Bereich auf, der zu einer an einen festen Träger fixierten Nukleotidsequenz komplementär ist. Mit Hilfe dieses Phänomens ist es möglich, die gesuchten Zielzellen in Schritt (1) des erfindunsgemäßen Verfahrens Spezies-spezifisch mit der Polynukleotidsonde zu markieren und über den extrazellulär befindlichen Bereich der Polynukleotidsonde von nicht mit der Polynukleotidsonde markierten Zellen abzutrennen (Schritt (2) des erfindungsgemäßen Verfahrens).
- Schritt (2) des erfindungsgemäßen Verfahrens umfasst die Fixierung bzw. Immobilisierung der in Schritt (1) mit einer Polynukleotidsonde markierten Zielzellen des Zellgemisches an einen festen Träger. Entsprechend der vorliegenden Erfindung erfolgt die Fixierung bzw. Immobilisierung der Polynukleotidsonden-markierten Zielzellen über eine Hybridisierung zwischen dem extrazellulär befindlichen Sequenzbereich der Polynukleotidsonde und einer dazu komplementären, an einen festen Träger fixierten Nukleotidsequenz. Die Hybridisierung erfolgt vorzugsweise nach bekannten Hybridisierungsverfahren und unter bekannten Hybridisierungsbedingungen (siehe z. B. Maniatis, T., Fritsch, E. F. und Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.). Vorzugsweise erfolgt die Hybridisierung entsprechend der vorliegenden Erfindung für 1 bis 2 Stunden bei 50 bis 60°C, vorzugsweise 50 bis 55°C und besonders bevorzugt bei 53°C. Dadurch können die Polynukleotidsonden-markierten Zielzellen an dem mit der zur Sondennukleotidsequenz komplementären Nukleotidsequenz fixierten festen Träger immobilisiert und angereichert werden.
- Handelt es sich bei den Polynukleotidsonden-markierten Zielzellen um den bisher unbekannten Organismus, so erfolgt die Isolierung des unbekannten Organismus über die Immobilisierung bzw. Anreicherung an einem festen Träger. Werden hingegen die dominierenden Organismen einer Zellpopulation Polynukleotidsonden markiert, so werden diese durch Immobilisierung an einem festen Träger entfernt bzw. aus der Zellpopulation abgereichert, was zu einer Anreicherung des bislang unbekannten Organismus im Medium der Zellpopulation führt.
- Als feste Träger können in dem erfindungsgemäßen Verfahren bekannte Trägermaterialien, wie Mikrotiterplatten, z. B. Mikrotiterplatten, die eine spezielle Oberflächenbeschichtung aufweisen und so eine nicht-kovalente, hydrophobe oder hydrophile Kopplung von Polynukleotiden ermöglichen, und herkömmliche Mikrotiterplatten, bei denen die Polynukleotidkopplung über eine kovalente Bindung, über Amino-Linker oder Phosphorylierung erfolgt; Membranen; partikelförmige Trägermaterialien, die entweder direkt mit Polynukleotiden beschichtet werden können oder bei denen die Bindung über Bindeproteine erfolgt (Streptavidin-Biotin-Bindung); und Biochips, verwendet werden. Vorzugsweise werden Mikrotiterplatten in dem erfindungsgemäßen Verfahren verwendet, da sie für einen hohen Probendurchsatz geeignet sind und eine Automatisierung des Verfahrens ermöglichen.
- In einer bevorzugten Ausführungsform der Erfindung wird bei einer Abreicherung von dominierenden Zielorganismen eine Mikrotiterplatte, vorzugsweise Maxisorp Micro Wells (NalgenNunc Int., Naperville, IL, USA), als fester Träger eingesetzt, da Mikrotiterplatten eine sehr hohe Bindungskapazität aufweisen. Handelt es sich bei den dominierenden Zielorganismen jedoch um eukaryontische Zellen, sind partikelförmige Trägermaterialien bevorzugt, da die im Vergleich zu prokaryontischen Zellen wesentlich größeren eukaryontischen Zellen bei einer Fixierung an eine plane Oberfläche, wie z. B. Mikrotiterplatten, leicht weggespült werden.
- Wird das erfindungsgemäße Verfahren in einer weiteren Ausführungsform hingegen dazu verwendet, eine gesuchte Zellart aus einem großen Zellgemisch herauszuholen und durch Fixierung zu gewinnen, werden vorzugsweise partikelförmige Trägermaterialien eingesetzt. Ein an einen partikelförmigen Träger gebundener Zielorganismus kann nach der Anreicherung sofort weiterverarbeitet werden und kann im fixierten Zustand beispielsweise für eine mikroskopische Analyse, eine PCR oder eine Sequenzierung eingesetzt werden.
- Die Beschichtung der Trägermaterialien mit der zu fixierenden Polynukleotidsequenz, die zur Polynukleotidsonde komplementär ist, erfolgt gemäß der vorliegenden Erfindung nach bekannten Polynukleotid- Beschichtungsverfahren (für Mikrotiterplatten, siehe z. B. Ezaki, T., Hashimoto, Y. und Yabuuchi, E., 1989, Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains, Int. J. Syst. Bacteriol. 39, S. 224-229; für Membranen oder andere Trägermaterialien siehe z. B. Maniatis, T., Fritsch, E. F. und Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N. Y.; oder nach Angaben des Herstellers). Die Kopplung der Polynukleotidsonde an den festen Träger erfolgt dabei vorzugsweise kovalent, durch Adsorption oder über spezifische Bindepartner. Die an dem Träger fixierte Polynukleotidsequenz kann eine beliebige Nukleinsäuresequenz sein und ist vorzugsweise eine DNA-Sequenz oder RNA-Sequenz.
- In Schritt (3) des erfindungsgemäßen Verfahrens erfolgt eine Abtrennung der an den festen Träger fixierten, Polynukleotidsonden-markierten Zielzellen von nicht fixierten Zellen des Zellgemisches und damit eine Isolierung und An- bzw. Abreicherung der Zielzellen, wobei die Zielzelle gemäß dem erfindungsgemäßen Verfahren entweder ein bislang unbekannter Organismus oder mindestens ein dominierender Organismus sein kann.
- Beim erfindungsgemäßen Verfahren werden neuartige Polynukleotidsonden eingesetzt, die die folgenden Sequenzabschnitte umfassen:
- a) mindestens eine erste Polynukleotidsequenz, welche komplementär zu einer Nukleotidsequenz der Zielzelle ist, wobei die Polynukleotidsequenz vorzugsweise komplementär zu einer hochvariablen Nukleotidsequenz der Zielzelle ist und
- b) mindestens eine zweite Polynukleotidsequenz, welche komplementär zu einer an einem festen Träger fixierten Polynukleotidsequenz ist.
- Die neuartigen Polynukleotidsonden des erfindungsgemäßen Verfahrens ermöglichen eine Spezies-spezifische und hochselektive Zellsortierung. Die Sequenzabschnitte (i) und (ii) der Polynukleotidsonde können frei gewählt werden, solange die oben genannten Kriterien erfüllt sind. Vorzugsweise besitzt die Polynukleotidsonde eine Gesamtlänge von mindestens 50 Nukleotiden, vorzugsweise mindestens 100 Nukleotiden, mehr bevorzugt mindestens 150 Nukleotiden. Die Obergrenze der Gesamtlänge ist nicht beschränkt, bevorzugt weisen die Polynukleotidsonden jedoch eine Länge von max. 1000 Nukleotiden, mehr bevorzugt max. 800 Nukleotiden auf.
- Erfindungsgemäß kann die Polynukleotidsonde in einem Stück hergestellt werden, z. B. synthetisch, durch in vitro Transkription oder PCR, wobei die Polynukleotidsonden-Matrize die beiden Sequenzabschnitte (i) und (ii) umfasst oder aus den beiden Sequenzabschnitten (i) und (ii) - nach deren Synthese - zusammengesetzt werden.
- Wenigstens der Sequenzabschnitt (i) der Polynukleotidsonde ist vorzugsweise komplementär zu einer häufig vorkommenden, hochvariablen Sequenz innerhalb der gesuchten Zielzelle, die üblicherweise in einer Menge von mindestens 100 Kopien pro Zelle vorliegt. Solche hochvariablen Sequenzen können beispielsweise schwach konservierte Regionen der zellulären rRNA, wie hochvariable Regionen der 23S rRNA bzw. 16S rRNA oder der 28S rRNA bzw. 18S rRNA oder Plasmide sein, die in der Zelle in größerer Anzahl vorhanden sind. Diese Sequenzen ermöglichen eine zuverlässige Hybridisierung mit der in die Zielzelle eindringenden Polynukleotidsonde.
- In einer bevorzugten Ausführung besitzt der Sequenzabschnitt (i) der erfindungsgemäßen Polynukleotidsonde eine Sequenz, die komplementär zu einer hochvariablen Region der 23S rRNA (Domäne III) oder/und 16S rRNA ist. Für diesen Fall kann bei der Auswahl der Sondensequenz auf einen Datensatz von derzeit ca. 2000 bzw. 22000 Sequenzen zurückgegriffen werden. In einem speziellen Fall kann für eine Zielzellart, die jeweilige nicht vorher beschriebene, häufig vorkommende Sequenz aber auch zunächst identifiziert werden und als Ausgangspunkt für die Konstruktion geeigneter Polynukleotidsonden dienen. Für eine unbekannte Spezies kann beispielsweise mit Hilfe von Primern, die die hochvariable 23S rRNA- Domäne III flankieren und dabei an stark konservierte Stellen binden, die hochvariable Region der 23S rRNA (Domäne III) bestimmt werden.
- Vorzugsweise sollte der Sequenzabschnitt (i) der Polynukleotidsonde eine Länge von mindestens 15, bevorzugt mindestens 18, besonders bevorzugt mindestens 20 und mehr bevorzugt mindestens 25 Nukleotiden aufweisen, um eine spezifische Bindung zwischen Polynukleotidsonde und Nukleinsäure der Zielzelle zu gewährleisten. Oftmals ist es für eine in vitro Hybridisierung jedoch ausreichend, wenn der Sequenzabschnitt (i) eine Länge von bevorzugt ≤ 100 Nukleotiden, mehr bevorzugt ≤ 50 Nukleotiden und am meisten bevorzugt ≤ 40 Nukleotiden aufweist.
- Der Sequenzabschnitt (ii) der Polynukleotidsonde ist komplementär zu einer an einem festen Träger fixierten Nukleotidsequenz. Bei einer zusammengesetzten Polynukleotidsonde wird dieser Sequenzabschnitt vorzugsweise so gewählt, dass eine einfache, schnelle und quantitative Hybridisierung mit der an dem festen Träger fixierten Nukleotidsequenz erfolgt.
- In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Polynukleotidsonde eine Ribonukleinsäuresonde (RNA-Sonde). Diese kann auf bekannte Weise, z. B. synthetisch, hergestellt werden. Vorzugsweise werden die RNA-Sonden des erfindungsgemäßen Verfahrens durch traditionelle in vitro Transkription hergestellt (siehe z. B. Maniatis, T., Fritsch, E. F. und Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.). RNA- Sonden ermöglichen vorteilhafterweise eine starke und quantitative Hybridisierung zwischen der Sondensequenz und der Ziel-rRNA und bilden extrem stabile RNA-RNA-Hybride.
- In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist die Polynukleotidsonde eine Desoxyribonukleinsäuresonde (DNA-Sonde). Die DNA-Sonde kann durch traditionelle Verfahren entweder synthetisch durch Oligonukleotidsynthese oder durch Amplifikation mittels PCR hergestellt werden (siehe z. B. Maniatis, T., Fritsch, E. F. und Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.).
- Zusätzlich kann die Polynukleotidsonde in einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens mit geeigneten Markierungssubstanzen, wie z. B. Biotin und Digoxygenin oder Fluoreszenzfarbstoffe, die in der Epifluoreszenzmikroskopie verwendet werden wie Fluorescein, Cy3, Cy5, Rhodamin und Texas Red, markiert werden, um eine spätere Detektion der Polynukleotidsonden-markierten Zielzellen zu ermöglichen. Vorzugsweise werden in der vorliegenden Erfindung Biotin und Digoxygenin als Markierungsreagenzien verwendet. Dies ermöglicht eine Überwachung der mit dem erfindungsgemäßen Verfahren durchgeführten Zellsortierung im Mikroskop, indem die mit der Polynukleotidsonde markierten Zielzellen über Streptavidin-Fluorescein bzw. Anti-Digoxygenin-Fluorescein detektiert werden. Zudem wird eine Quantifizierung der an den festen Träger, vorzugsweise eine Mikrotiterplatte, fixierten Zielzellen entweder unter dem Mikroskop durch Auszählen der Zielzellen oder durch fotometrische Detektion mittels Streptavidin-Peroxidase bzw. Anti-Degoxygenin- Peroxidase ermöglicht. Allerdings sieht die Erfindung auch vor, dass eine Quantifizierung der an den festen Träger fixierten Zielzellen mittels semiquantitativer PCR erfolgt. Dabei wird eine PCR mit Verdünnungsreihen der Zellsuspension des zu untersuchenden Zellgemisches vor und nach der An-/Abreicherung durchgeführt. Ein Vergleich, bis zu welcher Verdünnungsstufe noch ein PCR-Produkt gebildet wird ermöglicht eine Quantifizierung der an den festen Träger fixierten Zielzellen.
- In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird das zu untersuchende Zellgemisch zunächst fixiert, vorzugsweise mit Paraformaldehyd, besonders bevorzugt mit 4% Paraformaldehyd. Die Fixierung erfolgt für 10 bis 16 Stunden, vorzugsweise 12 Stunden bei z. B. 4°C. Bei Hefen und anderen eukaryontischen Organismen ist eine Fixierung nicht unbedingt nötig, jedoch empfehlenswert. Bakterienzellen werden vorzugsweise fixiert, um die Zellen für die Sonde besser zugänglich zu machen.
- Das erfindungsgemäße Verfahren ist durch seine breite Anwendbarkeit, hohe Spezifität, hohe Sensitivität und durch die Möglichkeit der Automatisierbarkeit in weiten Bereichen der Mikrobiologie einsetzbar. So können praktisch alle bislang unbekannten, kultivierbaren und/oder nicht kultivierbaren Zellen einer beliebigen Zellpopulation detektiert und isoliert werden und stehen so einer nachfolgenden molekularen Analyse und/oder genomischen Untersuchung zur Verfügung. Durch den erfindungsgemäßen Einsatz der Polynukleotidsonden zur Sortierung eines Zellgemisches wird die relativ unspezifische Anreicherung der Zielzellen über Bindeproteine umgangen. Zudem erleichtert das erfindungsgemäße Verfahren die Freisetzung der Zielzellen vom fixierten festen Träger.
- Die nachfolgenden Figuren und Beispiele sollen die Erfindung näher veranschaulichen.
- Fig. 1 zeigt eine schematische Abbildung des erfindungsgemäßen Verfahrens zur Sortierung von Zellgemischen. Durch Hybridisierung zwischen einer erfindungsgemäßen Biotinmarkierten Polynukleotidsonde und einer gesuchten Nukleotidsequenz der Zielzelle werden die Zielzellen markiert. Die Polynukleotidsonde dringt dabei nur soweit in die Zelle ein, dass eine Hybridisierung zwischen Sonde und Nukleotidsequenz der Zielzelle erfolgen kann. Die Immobilisierung und Abreicherung der Zielzellen erfolgt durch nachfolgende Hybridisierung zwischen dem extrazellulär befindlichen Bereich der Polynukleotidsonde und einer an einem festen Träger (vorzugsweise eine Mikrotiterplatte) fixierten Polynukleotidsequenz. Die Detektion der immobilisierten Zielzellen kann über einen Streptavidin- Fluorescein-Nachweis der mit Biotin markierten Sonde im Mikroskop oder fotometrisch über einen Streptavidin- Peroxidase-Nachweis der mit Biotin markierten Sonde auf dem festen Träger erfolgen.
- Eine Zellsuspension wird abzentrifugiert (15 min, 5000 rpm) und das Zellpellet anschließend in PBS (137 mM NaCl, 10 mM Na2HPO4/KH2PO4, 2,7 mM KCl, pH 7,2) resuspendiert. Zu der Zellsuspension werden 3 vol. Fixierungslösung (4% Paraformaldehyd [w/v] in PBS, pH 7,0) gegeben. Die Fixierung erfolgt bei 4°C für 12 Stunden. Anschließend werden die Zellen abzentrifugiert (2 min, 12.000 rpm), mit 1 ml PBS gewaschen und schließlich in 0,5 ml PBS aufgenommen. Zur Lagerung werden die Zellen mit 1 vol. EtOH abs. versehen. Die so fixierten Zellen sind bei -20°C für einige Monate lagerbar.
- Aus gereinigter genomischer DNA wird mittels PCR eine hochvariable Region der 23S rRNA (Domäne III) amplifiziert. Hierfür wird das modifizierte Primerpaar 1900VN und 317RT3 mit den folgenden Nukleotidsequenzen verwendet. 1900VN: 5'-MADGCGTAGBCGAWGG-3', 317RT3: 5'- ATAGGTATTAACCCTCACTAAAG GGACCWGTGTCSGTTTHBGTAC-3'. Der Primer 317RT3 enthält die Promotorsequenz für die T3-RNA- Polymerase (unterstrichen), die für die in vitro Transkription nötig ist. Die PCR-Amplifikation wird nach folgendem Protokoll durchgeführt: 100 ng genomische DNA, jeweils 50 µmol 1900VN und 317RT3, 80 nmol dNTP, 10 × PCR-Puffer (Takara Suzo, Co., Otsu, Japan) und 3U Taq-Polymerase (Takara rTaq) werden mit H2O auf ein Volumen von 100 µl aufgefüllt. Nach einer Anfangsdenaturierung von 94°C, 3 min folgen 30 Zyklen von 94°C, 1 min Denaturierung, 50°C, 1 min Primaerannealing und 72°C, 1 min Primerextension, sowie eine finale Elongation von 72°C für 5 min, Die PCR-Produkte werden mittels einer QIAquick-Matrix (QIAGEN, Hilden, Deutschland) aufgereinigt. Für die in vitro Transkription werden 1 bis 2 µg PCR-Amplifikat verwendet).
- Im Zuge der Transkription werden die Sonden wahlweise mit Biotin bzw. Digoxygenin markiert. Der Transkriptionsansatz setzt sich wie folgt zusammen: 200 nmol NTPs (bestehend aus ATP, CTP, GTP, UTP und Biotin-16-UTP (Roche) bzw. DIG-11-UTP (Roche) im Verhältnis 1 : 1 : 1 : 0,35 : 0,65), 3 µl 10 × Transkriptionspuffer (Roche), 3 µl T3-RNA- Polymerase (Roche), 1,5 µl RNase-Inhibitor (Roche), 1 bis 2 µg PCR- Produkt in einem Endvolumen von 30 µl. Der Ansatz wird 3 bis 4 h bei 37°C inkubiert. Anschließend werden 3 µl DNasel (Roche, RNase-frei) zugegeben und für weitere 15 min bei 37°C inkubiert. Die Reaktion wird durch Zugabe von 3 µl 0,2 M EDTA abgestoppt und die RNA mit 16 µl NH4-Acetat und 156 µl EtOH abs. für 2 h bei -20°C gefällt. Die RNA wird abzentrifugiert (15 min, 14.000 rpm, 4°C), mit 70% EtOH gewaschen und schließlich in 50 µl H2O + 1 µl RNase-Inhibitor aufgenommen und photometrisch vermessen. Die Sonde ist bei -20°C für 2 bis 3 Monate lagerfähig.
- 20 µl PFA-fixierte Zellen werden in einem 0,5 ml Reaktionsgefäß mit 2 Vol. EtOH abs. versetzt und 3 min bei Raumtemperatur inkubiert. Anschließend werden die Zellen abzentrifugiert (3 min, 12.000 rpm), mit PBS gewaschen und schließlich in 30 µl Hybridisierungspuffer (75 mM NaCl, 20 mM Tris pH 8,0, 0,01% SDS, 80% Formamid) aufgenommen. Es werden 500 ng Sonde zugegeben und der Ansatz zunächst für 20 min bei 80°C inkubiert, um RNA-Sekundärstrukturen zu denaturieren. Im Anschluss erfolgt die Hybridisierung für 5 bis 16 h bei 53°C in einem Hybridisierungsofen.
- Es werden Maxisorp MicroWells (NalgenNunc Int., Naperville, IL, USA) verwendet, die mit zur RNA-Sonde komplementärer DNA beschichtet werden. Zu diesem Zweck wird die als Sonde verwendete Sequenz der Domäne III der 23S rDNA mittels PCR nach dem unter Punkt 1b beschriebenem Protokoll amplifiziert. Die PCR-Produkte werden durch Fällung mit 0,1 Vol. NaAC 5M, pH 5,5 und 2 Vol EtOH abs. aufgereinigt. Pro Mikrotiterkavität wird 1 µg PCR-Produkt in 50 µl PBS/MgCl2 (137 mM NaCl, 10 mM Na2HPO4/KH2PO4, 2,7 mM KCl, 100 mM MgCl2, pH 7,2) + 50 µl H2O gegeben. Die Platten werden mit Klebefolie verschlossen (Nunc, Naperville, IL, USA), 10 min auf einem Heizblock bei 94°C denaturiert und anschließend 1 h bei 37°C inkubiert. Die Platten werden auf Papier ausgeklopft und 1 bis 2 h im Ofen bei 60°C getrocknet. Mit Klebefolie verschlossen sind die beschichteten Platten bei 4°C 4 bis 5 Wochen haltbar. Vor Gebrauch werden die Platten 2 × mit je 100 µl PBS gewaschen, um evtl. nicht gebundene DNA wegzuspülen.
- Mit Polynukleotidsonden hybridisierte Zellen (siehe Punkt 1c) werden 2 × mit PBS gewaschen, um überschüssige Sonde zu entfernen und schließlich in Mikrotiterplattenpuffer (MP-Puffer: 5 × SSC, 0,02% SDS, 2% Blocking Reagens (Roche), 0,1% N-Laurylsarcosin, 33% Formamid) aufgenommen und auf mehrere mit zur RNA-Sonde komplementärer DNA beschichtete Mikrotiterkavitäten (siehe Punkt 1d) verteilt. Die Abreicherung erfolgt in einem Volumen von 50 µl. Pro Kavität werden bis zu 3 µl Zellsuspension (bezogen auf die bei der Hybridisierung mit den Sonden [siehe Punkt 1c] eingesetzte Zellmenge) verwendet. Demnach werden bei einer Ausgangsmenge von 20 µl Zellsuspension die Zellen in 350 µl MP-Puffer aufgenommen und auf 7 Mikrotiterkavitäten inklusive einer als Negativkontrolle dienenden Kavität verteilt. Die Negativkontrolle besteht aus einer Mikrotiteraktivität, die mit einer anderen als der zur Sonde komplementären DNA beschichtet ist.
- Die Mikrotiterplatten werden 1 bis 2 h bei 53°C inkubiert. Um die Abreicherungseffizienz weiter zu erhöhen, kann im Anschluss daran der Überstand in frische Kavitäten überführt und eine weitere Stunde bei 53°C inkubiert werden.
- Nach diesem Abreicherungsschritt wird der Überstand aus den Kavitäten vorsichtig abgenommen und kann zur weiteren mikroskopischen oder molekularbiologischen Analyse verwendet werden. Bei der Entfernung des Überstands aus den Kavitäten ist darauf zu achten, dass der Boden der Kavitäten nicht berührt wird um nicht versehentlich dort gebundene Zellen zu entfernen.
- Die erfolgreiche Bindung der Zellen an die Platten kann mit Hilfe eines Streptavidin-Peroxidase-Konjugats (bei der Verwendung von Biotinmarkierten Sonden) bzw. eines Anti-DIG-Peroxidase-Konjugats (bei DIG- markierten Sonden) nachgewiesen werden.
- Zunächst werden die Kavitäten 1 × mit 100 µl PBS gewaschen. Daraufhin werden 100 µl Blockingpuffer (PBS/0,1% Blocking Reagens (Roche)) zugegeben und 15 min bei Raumtemperatur inkubiert. Der Überstand wird verworfen und es werden 50 µl Streptavidin-Peroxidase-Lösung (SA-POD 1 : 1000 verdünnt in Blockingpuffer) bzw. Anti-DIG-Peroxidase-Lösung (anti- DIG-POD 1 : 1000 in Blockingpuffer) zugegeben und 30 min bei Raumtemperatur inkubiert. Anschließend werden die Kavitäten 3 × mit 100 µl PBS gewaschen. Nach Zugabe des Substrats BM-blue (Roche) erfolgt eine Farbreaktion (Umschlag nach blau), die nach 10 bis 15 min durch die Zugabe von 100 µl 1M H2SO4 (Umschlag nach gelb) abgestoppt wird. Die Farbintensität kann im Photometer bei einer Wellenlänge von 450 nm gegen eine Referenzwellenlänge von 650 nm vermessen werden.
- Detektion im Mikroskop
- Die im Überstand in den Kavitäten nach der Abreicherung enthaltenen Zellen können zur Kontrolle der Sondenspezifität und des Abreicherungserfolgs mit Fluoreszenzfarbstoffen (Streptavidin-Fluorescein bei Verwendung von Biotin-Sonden bzw. anti-DIG-Fluorescein bei DIG- Sonden) detektiert und im Mikroskop analysiert werden. Zu diesem Zweck werden die Zellen abzentrifugiert, in 10 µl H2O aufgenommen, auf ein Objektträgerfeld aufgetragen und bei 60°C im Ofen getrocknet. Anschließend wird das Objektträgerfeld mit 40 µl einer Fluoreszenzfarbstofflösung (Streptavidin-Fluorescein (Roche)) 1 : 200 in DPBS verdünnt, bzw. anti-DIG-Fluorescein (Roche) 1 : 5 in DPBS) überschichtet und 1 h im Dunkeln inkubiert. Die Lösung wird mit H2O abgespült und der Objektträger durch Eintauchen in DPBS 15 min im Dunkeln gewaschen, anschließend getrocknet und eingedeckelt. Die Analyse erfolgt in einem Epifluoreszenzsmikroskop mit einem entsprechenden Filter.
Claims (9)
1. Verfahren zur Sortierung eines mindestens eine Zielzelle mit
mindestens einer gesuchten Nukleotidsequenz enthaltenen
Zellgemisches,
dadurch gekennzeichnet,
dass man
1. das Zellgemisch unter Hybridisierungsbedingungen mit
mindestens einem Polynukleotid als Sonde behandelt, welches
zu der Nukleotidsequenz der Zielzelle komplementär ist,
2. das so behandelte Zellgemisch mit einem an einem festen
Träger fixierten Polynukleotid, welches zu dem
Sondenpolynukleotid komplementär ist, unter
Hybridisierungsbedingungen kontaktiert und
3. die an den festen Träger fixierten Zielzellen von nicht fixierten
Zellen trennt.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass man eine Polynukleotidsequenz als Sonde verwendet, welches
einer Nukleotidsequenz komplementär ist, die in einer im Zellgemisch
enthaltenen Zielzellart in einer Menge von mindestens 100 Kopien
pro Zelle vorliegt.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass die Polynukleotidsonde eine RNA-Sonde und/oder DNA-Sonde
ist.
4. Verfahren nach Anspruch 2 oder 3,
dadurch gekennzeichnet,
dass man eine RNA-Sonde verwendet, die mit einer rRNA einer
Zellart im Zellgemisch komplementär ist.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass man eine Polynukleotidsonde verwendet, die eine Länge von
mindestens 100 Nukleotiden aufweist.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass man zur Gewinnung nicht fixierbarer Zellen aus dem
Zellgemisch als festem Träger eine mit der komplementären
Nukleotidsequenz beschichtete Mikrotiterplatte verwendet.
7. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass man zur Gewinnung der Träger-fixierbaren Zellart als festen,
mit der komplementären Nukleotidsequenz beschichteten Träger ein
partikelförmiges Material verwendet.
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass man eine markierte Polynukleotidsonde verwendet.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass man eine Polynukleotid-Sonde verwendet, umfassend
Sequenzabschnitte mit
a) mindestens einer ersten Polynukleotidsequenz, welche
komplementär ist zu einer hochvariablen Nukleotidsequenz der
Zielzelle, und
b) mindestens einer zweiten Polynukleotidsequenz, welche
komplementär zu einer an einen festen Träger fixierten
Polynukleotidsequenz ist.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10126630A DE10126630A1 (de) | 2001-05-31 | 2001-05-31 | Verfahren zur Zellsortierung |
US10/479,277 US20040152100A1 (en) | 2001-05-31 | 2002-05-29 | Method for sorting cells |
EP02738127A EP1397509A2 (de) | 2001-05-31 | 2002-05-29 | Verfahren zur zellsortierung |
JP2003500294A JP2005502328A (ja) | 2001-05-31 | 2002-05-29 | 細胞選別法 |
PCT/EP2002/005940 WO2002097129A2 (de) | 2001-05-31 | 2002-05-29 | Verfahren zur zellsortierung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10126630A DE10126630A1 (de) | 2001-05-31 | 2001-05-31 | Verfahren zur Zellsortierung |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10126630A1 true DE10126630A1 (de) | 2003-01-09 |
Family
ID=7686823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10126630A Withdrawn DE10126630A1 (de) | 2001-05-31 | 2001-05-31 | Verfahren zur Zellsortierung |
Country Status (5)
Country | Link |
---|---|
US (1) | US20040152100A1 (de) |
EP (1) | EP1397509A2 (de) |
JP (1) | JP2005502328A (de) |
DE (1) | DE10126630A1 (de) |
WO (1) | WO2002097129A2 (de) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0463036B1 (de) * | 1989-03-10 | 1995-02-22 | Amoco Corporation | Immobilisierte oligonukleotidsonden und ihre verwendungen |
US5985563A (en) * | 1994-05-19 | 1999-11-16 | Dako A/S | Detection of Ribosomal RNA using PNA probes |
US6110678A (en) * | 1997-05-02 | 2000-08-29 | Gen-Probe Incorporated | Two-step hybridization and capture of a polynucleotide |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5200313A (en) * | 1983-08-05 | 1993-04-06 | Miles Inc. | Nucleic acid hybridization assay employing detectable anti-hybrid antibodies |
EP0928327A1 (de) * | 1996-01-17 | 1999-07-14 | Flinders Technologies Pty. Ltd. | Anreicherung intater zellen an einer festphase unter verwendung intrazellulärer bestandteilen |
EP0912761A4 (de) * | 1996-05-29 | 2004-06-09 | Cornell Res Foundation Inc | Bestimmung von unterschieden in der nukleisäuresequenz mittels einer kombination von ligasebestimmung und polymerase-kettenreaktion |
US6083763A (en) * | 1996-12-31 | 2000-07-04 | Genometrix Inc. | Multiplexed molecular analysis apparatus and method |
WO1998035012A2 (en) * | 1997-02-12 | 1998-08-13 | Chan Eugene Y | Methods and products for analyzing polymers |
US20020086289A1 (en) * | 1999-06-15 | 2002-07-04 | Don Straus | Genomic profiling: a rapid method for testing a complex biological sample for the presence of many types of organisms |
AU2002351193A1 (en) * | 2001-11-28 | 2003-06-10 | Mj Bioworks Incorporated | Parallel polymorphism scoring by amplification and error correction |
CA2500129C (en) * | 2002-09-30 | 2011-03-29 | F. Hoffmann-La Roche Ag | Oligonucleotides for genotyping thymidylate synthase gene |
US7354706B2 (en) * | 2003-09-09 | 2008-04-08 | The Regents Of The University Of Colorado, A Body Corporate | Use of photopolymerization for amplification and detection of a molecular recognition event |
WO2005047521A2 (en) * | 2003-11-10 | 2005-05-26 | Investigen, Inc. | Methods of preparing nucleic acid for detection |
-
2001
- 2001-05-31 DE DE10126630A patent/DE10126630A1/de not_active Withdrawn
-
2002
- 2002-05-29 WO PCT/EP2002/005940 patent/WO2002097129A2/de active Application Filing
- 2002-05-29 EP EP02738127A patent/EP1397509A2/de not_active Withdrawn
- 2002-05-29 US US10/479,277 patent/US20040152100A1/en not_active Abandoned
- 2002-05-29 JP JP2003500294A patent/JP2005502328A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0463036B1 (de) * | 1989-03-10 | 1995-02-22 | Amoco Corporation | Immobilisierte oligonukleotidsonden und ihre verwendungen |
US5985563A (en) * | 1994-05-19 | 1999-11-16 | Dako A/S | Detection of Ribosomal RNA using PNA probes |
US6110678A (en) * | 1997-05-02 | 2000-08-29 | Gen-Probe Incorporated | Two-step hybridization and capture of a polynucleotide |
Non-Patent Citations (1)
Title |
---|
Datenbank PubMed, Adresse www.ncbi.nih.gov, Zusammenfassung zu: rRNA probe-based cell fishing of bacteria. STOFFELS,M., et.al., Environ Microbiol 1999, 1 (3), S.259-271 * |
Also Published As
Publication number | Publication date |
---|---|
WO2002097129A2 (de) | 2002-12-05 |
US20040152100A1 (en) | 2004-08-05 |
WO2002097129A3 (de) | 2003-10-09 |
JP2005502328A (ja) | 2005-01-27 |
EP1397509A2 (de) | 2004-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3486467T2 (de) | Verfahren zum Nachweis, Identifizieren und Quantifizieren von Organismen und Viren | |
DE69128077T2 (de) | Nuklein-säure amplifikation mit dns abhängigen rns polymerasen aktivität von rns-replikasen | |
DE69122457T2 (de) | Verfahren zur Herstellung eines Polynukleotides zur Verwendung bei Einzelprimeramplifikation | |
DE69528670T2 (de) | Nachweis von nukleinsäuren durch nuklease-katalysierte produktbildung | |
EP0705905B1 (de) | Verfahren zum sensitiven Nachweis von Nukleinsäuren | |
DE69937447T2 (de) | Verfahren zur erkennung von nukleinsäuren | |
WO2018114674A1 (de) | Zweiteilige mediatorsonde | |
DE60032760T2 (de) | Methode zur markierung von materialien | |
DE102006014879B4 (de) | RNA-Markierungsverfahren | |
DE69636118T2 (de) | Verfahren und mittel für die bestimmung der relativen heufigkeit von mikroorganismen in gemischten populationen | |
DE4027616A1 (de) | Verfahren zur bestimmung von polymerase-aktivitaet | |
DE68928769T2 (de) | Amplifizierter dns-assay | |
DE69328951T2 (de) | Nukleinsäuresonden für Mykobacterium Tuberkulosis | |
WO1999047701A1 (de) | Verfahren zum nachweis einer nukleotidsequenz | |
DE60011177T2 (de) | Amplifikation und Detektion von Shigella spp. und enteroinvasiven Stämmen von Escherichia coli | |
EP0566050B2 (de) | Verfahren zum Nachweis von Nukleinsäuren | |
CN103866019B (zh) | Y-str荧光复合扩增检验试剂 | |
DE10126630A1 (de) | Verfahren zur Zellsortierung | |
DE60024679T2 (de) | Methoden und zusammensetzungen zur detektion von spezies des mycobacterium avium-komplexes | |
DE69835974T2 (de) | Nachweis und Quantifizierung von einen oder mehreren Nukleotidsequenzen durch Benutzung von räumlich lokalisierte Target Replikation | |
EP1390541B1 (de) | Verfahren zum nachweis von gram-positiven bakterien | |
EP1490507A1 (de) | Verfahren zum nachweis von mikroorganismen mittels in situ-hybridisierung und durchflusszytometrie | |
EP1516067B1 (de) | Detektion von toxischen algen | |
DE3853120T2 (de) | Schnelles Verfahren zur Identifizierung einer spezifischen Sequenz von Nukleinsäure. | |
DE69531526T2 (de) | Verfahren zur Amplifikation mit zwischenliegendem Renaturierungsschritt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8141 | Disposal/no request for examination |