[go: up one dir, main page]

CZ310087B6 - A learning model of the task of a weight on a spring with the measurement of spring length - Google Patents

A learning model of the task of a weight on a spring with the measurement of spring length Download PDF

Info

Publication number
CZ310087B6
CZ310087B6 CZ2021-579A CZ2021579A CZ310087B6 CZ 310087 B6 CZ310087 B6 CZ 310087B6 CZ 2021579 A CZ2021579 A CZ 2021579A CZ 310087 B6 CZ310087 B6 CZ 310087B6
Authority
CZ
Czechia
Prior art keywords
spring
length
measurement
task
springs
Prior art date
Application number
CZ2021-579A
Other languages
Czech (cs)
Other versions
CZ2021579A3 (en
Inventor
Vladimír Hlaváč
Hlaváč Vladimír Ing., Ph.D.
Original Assignee
České vysoké učení technické v Praze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by České vysoké učení technické v Praze filed Critical České vysoké učení technické v Praze
Priority to CZ2021-579A priority Critical patent/CZ310087B6/en
Publication of CZ2021579A3 publication Critical patent/CZ2021579A3/en
Publication of CZ310087B6 publication Critical patent/CZ310087B6/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/12Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving reciprocating masses
    • B06B1/14Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving reciprocating masses the masses being elastically coupled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The invention applies to the learning model of the task of a weight (4) on a spring (1) with the measurement of length of the spring (1), which contains at least one spring (1), which is connected in an electric circuit as a coil to which an evaluation device (2) is connected for the conversion of its inductance to frequency, which is a function of the length of the spring (1). The learning module can contain two springs (1), mounted in a parallel way, which have advantageously an opposite direction of rotation. The length of the spring (1) is continuously evaluated by way of connecting the spring (1) as a coil in the oscillator and the changes in its inductance with length are evaluated from the measured frequency.

Description

Vyukovy model ùlohy zavazi na pruzine s merenfm délky pruzinyA tutorial model of the problem of binding to a spring with a measurement of the length of the spring

Oblast technikyField of technology

Vynâlez se tÿkâ modelu pro vÿuku zâkladù fyziky na experimentâlnim modelu.Invent a model for teaching the basics of physics on an experimental model.

Dosavadni stav technikyCurrent state of the art

Moznost overit si teoretické vztahy z vÿuky experimentem je osvedcenÿm prostredkem, protoze usnadnuje zapamatovâni vztahù. Praktickÿ priklad tvori zazitek a usnadnuje zapamatovâni.The possibility to verify the theoretical relationships from the lesson with an experiment is a proven means, because it facilitates the memorization of the relationships. A practical example creates an experience and facilitates memorization.

Model zâvazi na pruzine se tak nalezne v kazdé laboratori, kde se na vysoké skole uci zâklady fyziky. Mnoho jich lze najit na internetu pod heslem „spring and mass system“. Vetsinou jsou tvoreny drzakem, kterÿ tvori horni zaves pruziny, na pruzine je zavesen ukazatel, a pod nim samotné zavazi. Zavazi je vÿmenné. Ukazatel ukazuje na stupnici, kde je mozné zrakem odecist aktualni polohu zavazi. Pracuje se s kombinacemi pruziny a zavazi, které vedou na netlumené kmity o frekvenci do cca 1 Hz, aby bylo mozné krajni polohy odecist. Perioda kmitu bÿvâ vetsinou merena také primo studenty, kteri napocitaji napriklad deset prùchodù rovnovaznou polohou ve stejném smeru a celkovou dobu zjisti stopkami. Spocitat lze napriklad tuhost pruziny, kterâ by mela bÿt pro rùzné hodnoty zâvazi stejnâ.The spring-loaded model can thus be found in every laboratory where the basics of physics are taught at a university. Many of them can be found on the Internet under the keyword "spring and mass system". They mostly consist of a holder, which forms the upper suspension of the spring, on which the indicator is suspended, and below it the weight itself. The obligation is exchangeable. The pointer points to a scale where it is possible to visually determine the current position of the load. We work with combinations of spring and load, which lead to undamped oscillations with a frequency of up to approx. 1 Hz, so that extreme positions can be removed. The period of oscillation is usually also measured directly by students, who count, for example, ten transitions in an equal position in the same direction and determine the total time with a stopwatch. You can calculate, for example, the stiffness of the spring, which should be the same for different values of the bond.

Dùlezitou variantou je doplneni tlumeni, nejcasteji je na zâvazi zavesen dalsi objekt, kterÿ se napriklad pohybuje v oleji, pricemz lze menit druh oleje. Vÿslednÿ casovÿ prùbeh kmitâni lze opet porovnat s teorii. Aby jej ale bylo mozné i vykreslit, musi se doplnit mereni polohy.An important variant is additional damping, most often another object is suspended on the weight, which, for example, moves in oil, which allows you to change the type of oil. The resulting time course of the oscillation can again be compared with the theory. However, in order to be able to draw it, the position measurement must be added.

Logickÿm resenim by bylo doplneni pisâtka na ukazatel. Za pisâtkem by se jednoduchÿm systémem posouval pâs papiru, popripade otâcel buben s papirem. Toto reseni se nepodarilo v dostupné literature najit.A logical solution would be to add a pen to the pointer. Behind the typewriter, a simple system would move a strip of paper, or turn a drum with paper. This solution could not be found in the available literature.

Typickÿm resenim je mereni polohy ultrazvukem. Bud primo zâvazi, coz neni mozné pri doplneni olejového tlumeni, nebo je ukazatel na protilehlé strane doplnen ploskou, jejiz poloha se ultrazvukem meri. Mereni je velmi presné, spolehlivé a relativne levné. (Amrani, Djilali & P, Paradis. Use of Computer-Based Data Acquisition to Teach Physics Laboratories: Case studySimple Harmonic Motion. Latin-American Journal of Physics Education. (2010), nebo Colm O'Sullivan, Adrian Landen and John Beechinor, Slavko Kocijancic: Enhancement of computerised experiments by means of spreadsheet macros. September 2003. Conference: GIREP International Seminar on Quality Development in Teacher Education and TrainingAt: Udine, Italy, pp 560 - 563).A typical solution is to measure the position by ultrasound. Either it is directly connected, which is not possible when adding oil damping, or the indicator on the opposite side is supplemented with a flat one whose position is measured with ultrasound. The measurement is very accurate, reliable and relatively inexpensive. (Amrani, Djilali & P, Paradis. Use of Computer-Based Data Acquisition to Teach Physics Laboratories: Case studySimple Harmonic Motion. Latin-American Journal of Physics Education. (2010), or Colm O'Sullivan, Adrian Landen and John Beechinor, Slavko Kocijancic: Enhancement of computerized experiments by means of spreadsheet macros. September 2003. Conference: GIREP International Seminar on Quality Development in Teacher Education and TrainingAt: Udine, Italy, pp 560 - 563).

Urceni polohy objektu, jehoz vzhled lze upravit, je jednou z nejjednodussich ùloh z rozpoznâvâni obrazu. Na zâvazi ci ukazatel se doplni tercik obrâcenÿ ke kamere a jeho poloha se na snimku z kamery vyhledâ. Lze vyhodnotit i nasnimanÿ kamerovÿ zâznam, kde je zajistena pravidelnost obrâzkù.Determining the position of an object whose appearance can be adjusted is one of the simplest tasks in image recognition. A third facing the camera is added to the weight or pointer and its position is found on the camera image. It is also possible to evaluate the recorded camera record, where the regularity of the images is ensured.

Drazsim resenim je doplneni LVDT snimace (https://www.tecquipment.com/free-vibration-of-amass-spring-system). Ten mâ ovsem zpravidla jisté treni na miste, kde jsou jeho merici cleny vedeny, cimz ovlivnuje experiment. Obdobne by sel pouzit odporovÿ snimac polohy, kterÿ mùze mit v nekterÿch provedenich, napriklad odporovÿ drât - jezdec, dokonce nizsi treni, nez profesionâlni LVDT.An expensive solution is the addition of an LVDT sensor (https://www.tecquipment.com/free-vibration-of-amass-spring-system). The latter usually has some friction in the place where its measuring members are guided, which affects the experiment. Similarly, a resistive position sensor could be used, which in some designs, for example a resistive wire - slider, can have even lower friction than professional LVDTs.

Pohon i mereni indukcnimi civkami, kdy se meri jen prùchod a rychlost prùchodu civkou, je popsân v „Zeylikovich, I.S., Nikitin, A.V. & Vasilevich, A.E. Excitation and Detection of aThe drive and measurement with induction coils, where only the transition and the speed of transition through the coil are measured, is described in "Zeylikovich, I.S., Nikitin, A.V. & Vasilevich, A.E. Excitation and Detection of a

- 1 CZ 310087 B6- 1 CZ 310087 B6

Nonlinear Resonance of Oscillations of a Spring-Mass System Using Electromagnetic Induction. Tech. Phys. 65, 1-6 (2020). https://doi.Org/10.l 134/S1063784220010284“.Nonlinear Resonance of Oscillations of a Spring-Mass System Using Electromagnetic Induction. Tech. Phys. 65, 1-6 (2020). https://doi.Org/10.l 134/S1063784220010284”.

V této ùloze lze také merit silu na zâvës tenzometrem. Je to drazsi metoda a men se jinâ velicina, a ne tak nâzomâ, ale pro ovëfeni vypoëtenÿch hodnot to staëi (C.A. Triana F. Fajardo: Experimental study of simple harmonie motion of a spring-mass system as a fonction of spring diameter. Rev. Bras. Ensino Fis. 35 (4) · Dec 2013. Online: SciELO - Scientific Electronic Library Online, 2014. https://doi.Org/10.1590/S1806-11172013000400005).In this task, the force on the zâvës can also be measured with a strain gauge. It is a more expensive method and a different quantity is used, and not so much, but it is enough to verify the calculated values (C.A. Triana F. Fajardo: Experimental study of simple harmony motion of a spring-mass system as a function of spring diameter. Rev. Bras. Ensino Phys. 35 (4) · Dec 2013. Online: SciELO - Scientific Electronic Library Online, 2014. https://doi.Org/10.1590/S1806-11172013000400005).

Podstata vynàlezuThe essence of the invention

Vÿse uvedené nedostatky jsou do znaëné miry odstranëny vÿukovÿm modelem ùlohy zâvazi na pruzinë s mëfenim délky pruziny, podle tohoto vynàlezu. Jeho podstatou je to, ze obsahuje alespon jednu pruzinu, ktera je zapojena do elektrického obvodu jako civka, ke které je pnpojeno vyhodnocovaci zanzeni pro pfevod jeji indukënosti na frekvenci, odpovidajici délce pruziny.The above-mentioned shortcomings are eliminated to a considerable extent by the educational model of the task of binding to a spring with a measurement of the length of the spring, according to this invention. Its essence is that it contains at least one spring, which is connected to the electrical circuit as a coil, to which an evaluation device is connected to transmit its inductance at a frequency corresponding to the length of the spring.

Vÿukovÿ model obsahuje s vÿhodou dvë pruziny, které jsou umistëné paralelnë.The educational model advantageously contains two springs that are located in parallel.

V dalsim vÿhodném provedeni maji pruziny navzâjem opaënÿ smysl otâëeni.In another preferred embodiment, the springs have the opposite direction of rotation.

Reseni podle vynàlezu vyuzivâ pro mëfeni primo samotnou pruzinu. Pokud se pruzina zapoji do vhodného oscilâtoru, je jeji indukënost zâvislâ na délce:The solution according to the invention uses the spring itself for measurement. If the spring is connected to a suitable oscillator, its inductance depends on the length:

Σ = μ0ΚΝ2 γΣ = μ 0 ΚΝ 2 γ

Indukënost civek se vzduchovÿm jâdrem je pomëmë malâ, takze vÿslednâ frekvence bude vysokâ. Pfi experimented! s kruhovÿm oscilâtorem, tj. zapojeni tri invertujicich hradel v sérii, kdy kruh je v jednom mistë pferusen civkou, byly ziskané frekvence 6 az 8 MHz.The inductance of air-core coils is relatively small, so the resulting frequency will be high. Pfi experimented! with a circular oscillator, i.e. connection of three inverting gates in series, when the circle is pierced by a coil in one place, frequencies of 6 to 8 MHz were obtained.

Ziskanÿ vÿstupni signal, kterÿ se odebirâ z oscilâtoru v mistë, kde ve spojeni hradel neni civka, je obdélnikovÿ a frekvence lze snadno zmëfit ëitaëem, osciloskopem apod.The obtained output signal, which is taken from the oscillator in the place where there is no coil in the gate connection, is rectangular and the frequency can be easily measured with a counter, oscilloscope, etc.

Principem mëfeni je moznost pouziti Arduina nebo jeho klonu, které mâ USB vÿstup, takze jej lze snadno pfipojit k poëitaëi. Mùze dokonce odmëfit celÿ prùbëh a data posilat tak, jak je schopen je pfipojenÿ poëitaë zpracovâvat. Vÿsledné reseni tak umoznuje vykreslit ëasovÿ prùbëh experimentu. Tlumeni, napriklad umistënim dalsiho kulovitého zâvazi, potopeného do oleje, je mozné snadno doplnit, ale neni souëâsti tohoto reseni.The principle of measurement is the possibility of using an Arduino or its clone, which has a USB output, so it can be easily connected to a computer. It can even measure the entire process and send the data as the connected computer is able to process them. The resulting solution thus makes it possible to plot the time course of the experiment. Damping, for example by placing another spherical bearing, immersed in oil, can be easily supplemented, but it is not part of this solution.

Klon arduina stoji okolo 200 Kë, oscilâtor je tvofen jednim integrovanÿm obvodem a ëasto jej lze doplnit primo na desku Arduina. Nejlevnëjsi konkurenëni reseni, mëfeni ultrazvukem, stoji okolo 50 USD (https://www.maxbotix.com/product-category/hrusb-maxsonar-ez-products).An Arduino clone costs around 200 K, the oscillator is made of one integrated circuit and can often be added directly to the Arduino board. The cheapest competing solutions, measured by ultrasound, cost around 50 USD (https://www.maxbotix.com/product-category/hrusb-maxsonar-ez-products).

Problémem samotného zapojeni je, ze vodiëe jsou ovlivnovâny magnetickÿm polem civky, tedy pruziny, a mëfeni tedy neni pfilis pfesné. Jako feseni se navrhuje pouziti dvou pruzin vparalelnim zapojeni. Zâvazi visi na spojee obou pruzin. Aby se pruziny jako civky neovlivnovaly, je tfeba, aby vytvâfely magnetické pole souhlasného smëru. Za tim ùëelem mâ jedna z pruzin pravé a druhâ levé stoupâni, tj. pravÿ a levÿ zâvit.The problem with the connection itself is that the conductors are affected by the magnetic field of the coil, i.e. the spring, and the measurement is therefore not precise. As a design, it is suggested to use two springs connected in parallel. The hinge hangs at the junction of the two springs. So that the springs do not affect each other like coils, it is necessary that they create a magnetic field of the same direction. Behind that goal, one of the springs has right and the other left risers, i.e. right and left coils.

Objasnëni vÿkresùClarified drawing

Vÿukovÿ model ùlohy zâvazi na pruzinë s mëfenim délky pruziny podle tohoto vynàlezu bude podrobnëji popsân na konkrétnich pfikladech provedeni, kde na obr. 1 je znâzomëno schémaThe teaching model of the task of binding to a spring with the measurement of the length of the spring according to this invention will be described in more detail on the specific implementation issues, where a diagram is shown in Fig. 1

-2CZ 310087 B6 jednodussiho provedeni. Na obr. 2 je vÿsledna podoba laboratorni ùlohy. Na obr. 3 je schéma kruhového oscilatoru a Arduina pro mereni frekvence.-2CZ 310087 B6 single-breather design. Fig. 2 shows the final form of the laboratory task. In Fig. 3 is a diagram of a circular oscillator and an Arduino for measuring frequency.

Priklady uskutecneni vynalezuExamples of the implementation of the invention

Vÿukovÿ model ùlohy zavazi 4 na pruzine 1 s merenim délky pruziny 1 obsahuje alespon jednu pruzinu 1, ktera je zapojena do elektrického obvodu jako civka, ke které je pripojeno vyhodnocovaci zarizeni 2 pro prevod jeji indukcnosti na frekvenci, ktera odpovida délce pruziny 1.The educational model of the task of binding 4 to spring 1 with measurement of the length of spring 1 contains at least one spring 1 that is connected to an electric circuit as a coil, to which an evaluation device 2 is connected for converting its inductance to a frequency that corresponds to the length of spring 1.

Na obr. 1 je znazorneno zjednodusené reseni. Toto reseni bylo vyzkouseno s civkami, tj. pruzinami 1 o strednim prùmeru 36 a 9 mm, motanÿmi z dratu urceného pro svarovani v ochranné atmosfére o prùmeru 0,8 mm2, kterÿ ma medenÿ povrch a dobre se pripojuje na elektroniku. Bylo namotano 30 zavitù pruziny 1 o volné délce 120 mm. Pohyblivÿ privod je tvoren medenÿm vodicem 7 typu lanko o prùrezu 0,25 mm2. Elektronické vyhodnocovaci zarizeni 2 je spolu s pruzinou 1 uchyceno na pevné casti experimentalniho modelu tvorené zavesem 3. Na pruzine 1 je zavazi 4 pohybujici se ve smeru 6. U zavazi 4 je ukazatel 5 pro snazsi kalibraci vÿukového modelu.Fig. 1 shows a simplified solution. This solution was tested with coils, i.e. springs 1 with a mean diameter of 36 and 9 mm, twisted from wire intended for welding in a protective atmosphere with a diameter of 0.8 mm 2 , which has a copper surface and connects well to electronics. 30 turns of spring 1 with a free length of 120 mm were wound. The movable drive consists of a copper conductor 7 of the cable type with a cross-section of 0.25 mm2. The electronic evaluation device 2 is attached together with the spring 1 to the fixed part of the experimental model formed by the suspension 3. On the spring 1 there is a load 4 moving in the direction 6. At the load 4 there is an indicator 5 for easier calibration of the teaching model.

Na obr. 2 je komplexnejsi provedeni. Byly pouzity dve civky, tj. pruziny 1 o strednim prùmeru 36 mm obdobné jako v prvnim provedeni. Kazda pruzina 1 - civka ma 24 zavitù, pricemz jsou uchyceny s opacnÿm smyslem vinuti, tj. prava a leva. Volna délka pruziny 1 je okolo 90 mm a jeji délka pri experimentu v rovnovazné poloze je okolo 130 mm. Uchyceni pruzin 1 je na zavesu 3 tvoreném drevenÿm ramem. Vyhodnocovaci zarizeni 2 s integrovanÿm obvodem (74LS00) tvoricim kruhovÿ oscilator je z druhé strany zavesu 3 nosné konstrukce, co nejblize zaveseni pruzin 1 - civek. Na pruzinach 1 je zavazi 4 pohybujici se ve smeru 6. U zavazi 4 je ukazatel 5 pro snazsi kalibraci vÿukového modelu.Fig. 2 shows a more complex design. Two coils were used, i.e. springs 1 with a mean diameter of 36 mm, similar to the first design. Each spring 1 - coil has 24 turns, whereby they are attached with the opposite sense of winding, i.e. right and left. The free length of spring 1 is about 90 mm, and its length during the experiment in the equilibrium position is about 130 mm. Spring 1 is attached to hinge 3 formed by a wooden frame. The evaluation device 2 with an integrated circuit (74LS00) forming a circular oscillator is on the other side of the suspension 3 of the supporting structure, as close as possible to the suspension spring 1 - coil. On springs 1, there is a weight 4 moving in direction 6. At weight 4, there is an indicator 5 for easier calibration of the teaching model.

Dosazené frekvence zalezi zejména na poctu zavitù a délce pruzin 1 a pro uvedena zapojeni byly od 4 MHz do témer 11 MHz, tj. na mezi prodlouzeni pruzin 1 na délku, kdy ztraci schopnost se vratit zcela zpet.The set frequency depends mainly on the number of turns and the length of springs 1, and for the indicated connections they were from 4 MHz to almost 11 MHz, i.e. on the extension of springs 1 to a length where it loses the ability to return completely.

Pokud je pruzina 1 motana tesne a hrozi, ze jednotlivé zavity se dotknou, musi bÿt vodic, ze kterého jsou pruziny 1, izolovan. Postacuje prelakovani. Pri vzajemném dotyku zavitù jinak prudce klesa indukcnost a tedy stoupa vÿstupni frekvence oscilatoru.If the spring 1 is wound tightly and there is a risk that the individual turns will touch, the conductor from which the springs 1 are made must be isolated. Repainting is enough. Otherwise, when the windings touch each other, the inductance drops sharply and thus the output frequency of the oscillator rises.

No obr. 3 je elektrické schéma pouzitého oscilatoru.Well, Fig. 3 is an electrical diagram of the oscillator used.

Prùmyslova vyuzitelnostIndustrial usability

Vÿukovÿ model podle tohoto vynalezu je urcen pro pouziti pri vÿuce fyziky, al jiz na strednich, nebo v prvnich rocnicich vysokÿch skol, kde mùze zastoupit zejména drazsi pristroje s merenim ultrazvukem, pricemz navrzené reseni je predevsim velmi levné a zarizeni lze snadno pripojit k PC, pripadne nahradit starsi pripravky bez primého vÿstupu do pocitace. Oproti mereni ultrazvukem je mozné dosahnout robustnejsi konstrukce, protoze jediné pristupné casti mohou bÿt pruziny a zavazi, zatimco elektronika mùze bÿt zabudovana a chranena v zavesu.The teaching model according to this invention is intended for use in teaching physics, even in secondary schools or in the first years of universities, where it can replace more expensive devices with ultrasound measurements, thus the proposed solution is especially very cheap and the device can be easily connected to a PC. or replace older devices without direct access to the computer. Compared to ultrasound measurement, a more robust design can be achieved, because the only accessible parts can be springs and weights, while the electronics can be built in and protected in the hinge.

Claims (3)

1. Vÿukovÿ model ùlohy zavazi (4) na pruzine (1) s merenim délky pruziny (1), vyznacujici se tim, ze obsahuje alespon jednu pruzinu (1), ktera je zapojena do elektrického obvodu jako civka, ke 5 které je pripojeno vyhodnocovaci zarizeni (2) pro prevod jeji indukcnosti na frekvenci odpovidajici délce pruziny (1).1. Educational model of the task of binding (4) to a spring (1) with measurement of the length of the spring (1), characterized by the fact that it contains at least one spring (1) which is connected to the electric circuit as a coil, to 5 which is connected to the evaluation device (2) for converting its inductance to a frequency corresponding to the length of the spring (1). 2. Vÿukovÿ model podle naroku 1, vyznacujici se tim, ze obsahuje dve pruziny (1), umistené paralelne.2. Educational model according to claim 1, characterized by the fact that it contains two springs (1) located in parallel. 3. Vÿukovÿ model podle naroku 2, vyznacujici se tim, ze pruziny (1) maji navzajem opacnÿ smysl 10 otaceni.3. Educational model according to claim 2, characterized by the fact that the springs (1) have the opposite direction of rotation.
CZ2021-579A 2021-12-17 2021-12-17 A learning model of the task of a weight on a spring with the measurement of spring length CZ310087B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CZ2021-579A CZ310087B6 (en) 2021-12-17 2021-12-17 A learning model of the task of a weight on a spring with the measurement of spring length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2021-579A CZ310087B6 (en) 2021-12-17 2021-12-17 A learning model of the task of a weight on a spring with the measurement of spring length

Publications (2)

Publication Number Publication Date
CZ2021579A3 CZ2021579A3 (en) 2023-06-28
CZ310087B6 true CZ310087B6 (en) 2024-07-31

Family

ID=86872131

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ2021-579A CZ310087B6 (en) 2021-12-17 2021-12-17 A learning model of the task of a weight on a spring with the measurement of spring length

Country Status (1)

Country Link
CZ (1) CZ310087B6 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706018A (en) * 1971-11-04 1972-12-12 Rex Chainbelt Inc Electromagnetic vibrator employing rectification of induced currents
US5902964A (en) * 1996-08-22 1999-05-11 Southwest Research Institute Measurement of mass using simple harmonic motion with active spring and active damping
WO2017105862A1 (en) * 2015-12-18 2017-06-22 Laitram, L.L.C. Conveyor measuring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706018A (en) * 1971-11-04 1972-12-12 Rex Chainbelt Inc Electromagnetic vibrator employing rectification of induced currents
US5902964A (en) * 1996-08-22 1999-05-11 Southwest Research Institute Measurement of mass using simple harmonic motion with active spring and active damping
WO2017105862A1 (en) * 2015-12-18 2017-06-22 Laitram, L.L.C. Conveyor measuring system

Also Published As

Publication number Publication date
CZ2021579A3 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
Dunn et al. Measurement and data analysis for engineering and science
CZ310087B6 (en) A learning model of the task of a weight on a spring with the measurement of spring length
Alho et al. A simple pendulum studied with a low-cost wireless acquisition board
Araújo et al. Assembling a magnetometer for measuring the magnetic propertiesof iron oxide microparticles in the classroom laboratory
Gudoshnikov et al. Investigation of the properties of Co-rich amorphous ferromagnetic microwires by means of small angle magnetization rotation method
RU2552124C1 (en) Mechanical stress measurement sensor
Bydžovský et al. Strain sensors based on stress-annealed Co69Fe2Cr7Si8B14 amorphous ribbons
Podoprygora Organization and realization of the experimental cycle of scientific cognition at Physics study.
Sedha Electronic Measurements and Instrumentation
Pérez et al. Analytical model for the sensitivity of a toroidal fluxgate sensor
CN203464986U (en) Electromagnetic-force-balanced microbalance
Csernovszky et al. Study of damped oscillations using Phyphox and Arduino controlled Hall-sensor
RU119117U1 (en) SENSOR FOR DEFECTOSCOPY OF STEEL BARS
CN201844871U (en) Novel electronic balance sensor
Connelly et al. Galvanometers and the many lives of scientific instruments
Sowiński et al. Laboratory stand for fluxgate level measurement
Malreich et al. Demonstrating and measuring relative molar magnetic susceptibility using a neodymium magnet
Simić et al. Computer sound card as a tool to study of fast changing electromagnetic phenomena
Hristoforou et al. On a new principle of a smart multisensor based on magnetic effects
Kaps et al. Using the smartphone as oscillation balance
CN214428188U (en) Experimental device for quantitatively exploring influence factors of simple pendulum period
Paunkov et al. Magnetic field measurement with microprocessor platform with intelligent sensor
Roy et al. Construction and remote demonstration of an inexpensive but efficient linear differential variable transformer (LVDT) for physics or electronics teaching during COVID-19 pandemic
Uhlig et al. Lorentz force eddy current testing: validation of numerical results
Pathare et al. Low-cost alternative for signal generators in the physics laboratory