CZ309994B6 - An equipment for medium-temperature liquid fluidized bed pyrolysis - Google Patents
An equipment for medium-temperature liquid fluidized bed pyrolysis Download PDFInfo
- Publication number
- CZ309994B6 CZ309994B6 CZ2023-264A CZ2023264A CZ309994B6 CZ 309994 B6 CZ309994 B6 CZ 309994B6 CZ 2023264 A CZ2023264 A CZ 2023264A CZ 309994 B6 CZ309994 B6 CZ 309994B6
- Authority
- CZ
- Czechia
- Prior art keywords
- heat
- liquid
- inlet
- reactor
- outlet
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/10—Treatment of sludge; Devices therefor by pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/18—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge
- C10B47/26—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge with the aid of hot liquids, e.g. molten salts
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Zarizeni pro stredneteplotni kapalinovou fluidni pyrolÿzuEquipment for medium-temperature liquid fluid pyrolysis
Oblast technikyField of technology
Vynalez se tÿkâ zarizeni pro stredneteplotni kapalinovou fluidni pyrolÿzu, zejména makromolekulâmich a polymernich organickÿch sloucenin, které obsahuje zdroj tepla napojenÿ na reaktor, kterÿ je dâle napojen na zdroj vstupni suroviny, pricemz reaktor je dâle napojen na odvod plynnÿch i kapalnÿch produktù pyrolÿzy.The invention also includes a device for medium-temperature liquid fluid pyrolysis, especially of macromolecular and polymeric organic compounds, which contains a heat source connected to a reactor, which is further connected to a source of input raw material, through which the reactor is further connected to the removal of gaseous and liquid pyrolysis products.
Dosavadni stav technikyCurrent state of the art
Soucasnâ zarizeni pro stredneteplotni (300 az 550 °C) pyrolÿzu organickÿch vysokomolekulârnich materiâlù (biomasa, drevo, guma a pryz, textil, kaly z COV, ropné odpadni produkty, gudrony apod.) pouzivaji jako ohrevnÿ systém bud spalovaci zarizeni (plynové, olejové, nebo kombinované horâky rùznÿch typù) nebo rùzné systémy elektrickÿch ohrevù (kontaktni - kondukce, proudenim - konvekce, nebo zârenim - indukce).Current devices for medium-temperature (300 to 550 °C) pyrolysis of organic high-molecular materials (biomass, wood, rubber and rubber, textiles, COV sludge, petroleum waste products, tars, etc.) use either combustion devices (gas, oil, or combined burners of different types) or different electrical heating systems (contact - conduction, flow - convection, or radiation - induction).
Vzhledem k soucasnému stavu na trhu ropy, zemniho plynu a uhli a soucasne s ohledem na pozadavky ochrany zivotniho prostredi je zrejmé, ze prùmyslovâ zarizeni s minimâlnimi tepelnÿmi ztrâtami a elektrickÿm systémem ohrevu budou mit na trhu stâle vyssi prioritu.Given the current state of the oil, natural gas and coal market, and at the same time with regard to environmental protection requirements, it is clear that industrial facilities with minimal heat losses and an electric heating system will still have a higher priority on the market.
U spalovacich ohrevnÿch systémù dochâzi ke ztrâtâm pri vlastnim spalovacim procesu, kdy podstatnâ câst tepla odchâzi se spalinami ze systému nevyuzitâ a dalsi ztrâty vznikaji pri prostupu tepla pres plâsf reaktoru a pri zahrivâni transportnich zarizeni uvnitr reaktoru (sneky, hndele, loziska a dalsi podle typu a konstrukce reaktorù).In combustion heating systems, losses occur during the combustion process itself, when a significant part of the heat leaves with the flue gases from the system unused, and other losses occur during the transmission of heat through the reactor surface and during the heating of the transport devices inside the reactor (snacks, spindles, bearings and others depending on the type and reactor design).
Cilem vynâlezu je odstranit nebo alespon minimalizovat nevÿhody dosavadniho stavu techniky, zejména snizit energetické ztrâty pri predâvâni energie do zpracovâvané vstupni suroviny pri zachovâni nebo i zlepseni ùcinnosti pyrolÿzy vstupni suroviny.The aim of the invention is to eliminate or at least minimize the disadvantages of the current state of the art, in particular to reduce energy losses during the transfer of energy to the processed input raw material while maintaining or even improving the efficiency of pyrolysis of the input raw material.
Podstata vynâlezuThe essence of the invention
Cile vynâlezu je dosazeno zarizenim pro stredneteplotni kapalinovou fluidni pyrolÿzu, jehoz podstata spocivâ v tom, ze reaktor je svÿm vstupem napojen na smesovaci trysku, kterâ je jednim svÿm vstupem napojena na zdroj vstupni suroviny a svÿm druhÿm vstupem je napojena na vÿstup ohrivace teplonosné kapaliny, kterâ tvori zdroj tepla, kde ohrivac teplonosné kapaliny je svÿm vstupem napojen na zâsobnik teplonosné kapaliny, pricemz reaktor je svÿm vÿstupem napojen na vstup hydrocyklonu, kterÿ je opatren vÿstupem plynné fâze, ve kterém jsou za sebou zapojeny dmychadlo, kondenzacni systém a recipient kapalné fâze, pricemz hydrocyklon je dâle opatren separâtorem uhlikového zbytku pro rozdeleni disperze uhlik-teplonosnâ kapalina na vÿstupu separâtoru, pricemz vÿstupu separâtoru je prirazeno oddelovaci zarizeni pro uklâdâni prâskového uhliku, a hydrocyklon je dâle opatren recirkulacnim vÿstupem teplonosné kapaliny, kterÿ je napojen na vstup zâsobniku teplonosné kapaliny, pricemz teplonosnâ kapalina je tvorena kapalnou smesi silanù a silikonù.The goal of the invention is achieved by a device for medium-temperature liquid fluid pyrolysis, the essence of which lies in the fact that the reactor is connected to a mixing nozzle through its inlet, which is connected through one of its inlets to the source of the input raw material and through its other inlet is connected to the outlet of the heating heat-carrying liquid, which forms a heat source, where the heat carrier liquid heater is connected to the heat carrier liquid reservoir through its inlet, through which the reactor is connected through its outlet to the hydrocyclone inlet, which is provided with a gas phase outlet, in which the blower, the condensation system and the liquid phase receiver are connected one after the other, through the hydrocyclone is further equipped with a carbon residue separator for dividing the carbon-heat-carrying fluid dispersion at the outlet of the separator, a separation device for storing pulverized carbon is assigned to the separator outlet, and the hydrocyclone is further equipped with a recirculation outlet of the heat-carrying liquid, which is connected to the inlet of the heat-carrying liquid storage tank, via the heat-carrying liquid consists of a liquid mixture of silanes and silicones.
Vÿhodou zarizeni podle vynâlezu je systém prùtocného reaktoru, pres kterÿ proudi teplonosné médium, vyuzivâ se maximâlne stycnâ plocha mezi vstupni surovinou a teplonosnÿm médiem, eliminuje se nebo se vÿrazne zjednodusuje michaci a prepravni systém v reaktoru, umoznuje se recirkulace teplonosného média a oddeleni pyrolyzniho zbytku tak, aby ze systému vynâsel jen nezbytne nutné minimum tepelné energie. Soucasne se vÿrazne zvysuje technologickâ bezpecnost zarizeni i bezpecnost obsluhujiciho personâlu, protoze zarizeni obsahuje minimum pohyblivÿch câsti a ostatni je mozné velmi ùcinne tepelne izolovat od okolniho prostredi.The advantage of the device according to the invention is the flow reactor system, through which the heat-carrying medium flows, the maximum contact surface between the input raw material and the heat-carrying medium is used, the mixing and transport system in the reactor is eliminated or significantly simplified, the recirculation of the heat-carrying medium and the separation of the pyrolysis residue are made possible. , so that only the necessary minimum heat energy is extracted from the system. At the same time, the technological safety of the equipment and the safety of the operating personnel are significantly increased, because the equipment contains a minimum of moving parts and the latter can be thermally insulated very effectively from the surrounding environment.
- 1 CZ 309994 B6- 1 CZ 309994 B6
Zarizeni je tak energeticky a emisne inaktivni vzhledem k okolnimu prostredi.The device is thus energy- and emission-inactive with respect to the surrounding environment.
Vynâlez je pouzitelnÿ zejména pro stredneteplotni kapalinovou fluidni pyrolÿzu makromolekulârnich a polymernich organickÿch sloucenin.The invention is particularly applicable for medium-temperature liquid fluid pyrolysis of macromolecular and polymeric organic compounds.
Objasneni vÿkresuClarification of the drawing
Vynalez je schematicky znâzornen na vÿkrese ve forme zapojeni technologickÿch prvkû zarizeni.The invention is shown schematically in the drawing in the form of connection of the technological elements of the device.
Priklad uskutecneni vynâlezuAn example of the implementation of the invention
Vynâlez bude popsân na prikladu uskutecneni zarizeni pro stredneteplotni kapalinovou fluidni pyrolÿzu s kapalnou teplonosnou fâzi, které obsahuje ohrivac 1 teplonosné kapaliny, dâle jen TNK. Prikladne je ohrivac 1 ve svém ohrivacim prostoru TNK opatren neznâzornenÿmi vnitrnimi ohrevnÿmi keramickÿmi telesy.The invention will be described on the example of a device for medium-temperature liquid fluid pyrolysis with a liquid heat-carrying phase, which contains a heater 1 of a heat-carrying liquid, hereinafter referred to as TNK. For example, the heater 1 in its heating space TNK is provided with internal ceramic heating elements, not shown.
Teplonosnou kapalinou je vÿhodne kapalnâ smes silanû a silikonû s tepelnou stâlosti do 700 °C, kterâ je v rozsahu teplot 0 az 700 °C v kapalném stavu, kterâ se nerozpousti v kapalnÿch uhlovodicich ani je neabsorbuje a mâ minimâlni schopnost absorpce plynnÿch uhlovodikû. Dâle mâ teplonosnâ kapalina velmi nizkou tepelnou roztaznost, nizkou zâvislost viskozity na teplote a vysokou tepelnou kapacitu, je acidobazicky neutrâlni a nereaguje ani za zvÿsenÿch teplot s materiâly, ze kterÿch jsou sestrojeny câsti zarizeni podle tohoto vynâlezu.The heat-carrying liquid is preferably a liquid mixture of silanes and silicones with a thermal stability of up to 700 °C, which is in the temperature range of 0 to 700 °C in a liquid state, which does not dissolve in liquid hydrocarbons or absorb them and has a minimal ability to absorb gaseous hydrocarbons. Furthermore, the heat-carrying liquid has a very low thermal expansion, a low dependence of viscosity on temperature and a high heat capacity, is acid-base neutral and does not react even at elevated temperatures with the materials from which the parts of the device according to this invention are made.
Ohrivac 1 je svÿm vstupem TNK, zde prikladne pres prvni procesni podâvaci cerpadlo 31, napojen na zâsobnik 2 TNK. Prikladne je zâsobnik 2 TNK opatren dilatacnimi vlozkami pro zlepseni parametrû pri nâbehu celého systému. Vÿstup TNK z ohrivace 1 je napojen na vstup druhého procesniho podâvaciho cerpadla 32, které je prikladne tvoreno vretenovÿm, zubovÿm nebo rootsovÿm cerpadlem. Vÿstup druhého procesniho podâvaciho cerpadla 32 je napojen na prvni vstup smesovaci trysky 5, na jejiz druhÿ vstup je napojen vÿstup dâvkovaciho cerpadla 4, které je prikladne tvoreno vretenovÿm, zubovÿm nebo rootsovÿm cerpadlem.Heater 1 is its TNK inlet, here it fits through the first process feed pump 31, connected to TNK reservoir 2. For example, the tank 2 TNK is equipped with dilatation inserts to improve the parameters during the start-up of the entire system. The output of the TNK from the heater 1 is connected to the input of the second process feed pump 32, which is suitably formed by a spindle, gear or roots pump. The output of the second process feed pump 32 is connected to the first input of the mixing nozzle 5, to whose second input is connected the output of the feed pump 4, which is suitably formed by a spindle, gear or roots pump.
Dâvkovaci cerpadlo 4 je svÿm vstupem napojeno na privod 40 vstupni suroviny pro provedeni stredneteplotni kapalinové fluidni pyrolÿzy, dâle jen vstupni surovina. V neznâzorneném prikladu uskutecneni je ve vedeni teplonosné kapaliny pred nebo za ohrivacem 1 TNK zapojeno pouze jedno procesni podâvaci cerpadlo 31 nebo 32.The metering pump 4 is connected by its input to the feed 40 of the input raw material for medium-temperature liquid fluid pyrolysis, hereinafter referred to as the input raw material. In the non-illustrated implementation example, only one process feed pump 31 or 32 is connected in the heat carrier fluid line before or after the heater 1 TNK.
Smesovaci tryska 5 je uzpûsobena pro michâni vstupni suroviny s TNK a je svÿm vÿstupem napojena na vstup reaktoru 6. Smesovaci tryska 5 je prikladne tvorena Pitotovou trubici pro nizkoviskôzni vstupni suroviny, nebo tlakovou rozprasovaci tryskou pro michâni disperze apod. Smesovaci tryska 5 je vÿhodne instalovâna co nejblize reaktoru 6 pro omezeni stepné reakce vstupni suroviny v TNK mimo prostor reaktoru 6.The mixing nozzle 5 is adapted for mixing the input raw material with TNK and its output is connected to the reactor input 6. The mixing nozzle 5 is conveniently formed by a Pitot tube for low-viscosity input raw materials, or a pressure spray nozzle for mixing dispersions, etc. The mixing nozzle 5 is preferably installed as closest to reactor 6 in order to limit the step reaction of the input raw material in TNK outside the area of reactor 6.
Reaktor 6 je ve znâzorneném prikladu uskutecneni vâlcového typu a je opatren s michaci vestavbou pro michâni smesi vstupni suroviny a TNK. Michaci vestavba reaktoru 6 slouzi k pasivnimu michâni smesi vstupni suroviny s TNK a k dosazeni Reynoldsova cisla odpovidajiciho turbulentnimu proudeni pro dosazeni maximâlniho kontaktu mezi câsticemi vstupni suroviny a TNK a tim k minimalizaci pûsobeni faktoru prostupu tepla. Michaci vestavba je s vÿhodou vytvorena jako vyjimatelnâ a obsahuje neznâzornenou michaci klec z tyci s trojùhelnikovÿm prûrezem ze stejného materiâlu jako teleso reaktoru 6. Reaktor 6 je svÿm vÿstupem smesi vstupni suroviny a TNK napojen na vstup hydrocyklonu 7 pro oddeleni dispergovaného uhlikového zbytku ze smesi vstupni suroviny a TNK.In the illustrated example, reactor 6 is of the cylindrical type and is equipped with a mixing unit for mixing the mixture of input raw material and TNK. The mixing unit of the reactor 6 serves to passively mix the mixture of input raw material with TNK and to set the Reynolds number corresponding to the turbulent flow in order to achieve maximum contact between the particles of the input raw material and TNK and thus to minimize the effect of the heat transfer factor. The mixing unit is advantageously designed as removable and contains an unillustrated mixing cage made of a rod with a triangular cross-section made of the same material as the body of the reactor 6. The reactor 6 is its outlet of a mixture of raw materials and TNK connected to the inlet of hydrocyclone 7 for separating the dispersed carbon residue from the mixture of raw materials and TNK.
Hydrocyklon 7 je jednim svÿm vÿstupem napojen na vstup dmychadla 11 pro udrzovâniThe hydrocyclone 7 is connected to the inlet of the blower 11 with one of its outputs for maintenance
- 2 CZ 309994 B6 pracovniho tlaku v systému, pro odsâvâni plynné slozky z hydrocyklonu 7 a pro ùpravu procentového slozeni smesného plynu vznikajiciho v reaktoru 6.- 2 CZ 309994 B6 of the working pressure in the system, for extracting the gaseous component from the hydrocyclone 7 and for adjusting the percentage composition of the mixed gas produced in the reactor 6.
Dmychadlo 11 je svÿm vÿstupem napojeno na vstup kondenzacniho systému 8 pro kondenzaci vzniklé plynné slozky na slozku kapalnou, ktera je nâsledne zachycovâna recipientem 9 kapalné faze, kterÿ je alespon jednim svÿm vstupem napojen na alespon jeden vÿstup kondenzacniho systému 8. Recipient 9 kapalné faze je opatren neznâzornenÿm systémem pro mereni vÿsky hladiny, napr. ultrazvukovÿm snimacem hladiny nebo optickÿm hladinoznakem, a dale je opatren snimacem vnitrniho tlaku, napr. elektronickÿm a/nebo optickÿm manometrem, je opatren vypoustecim potrubim 15 oleje.The blower 11 is connected with its outlet to the inlet of the condensation system 8 for the condensation of the resulting gaseous component into a liquid component, which is subsequently captured by the liquid phase receiver 9, which is connected with at least one of its inlets to at least one outlet of the condensation system 8. The liquid phase receiver 9 is provided a system for measuring the level, not shown, e.g. an ultrasonic level sensor or an optical level indicator, and further it is provided with an internal pressure sensor, e.g. an electronic and/or optical manometer, it is provided with an oil drain pipe 15.
Kondenzacni systém 8 je prikladné tvoren dvema trubkovÿmi kondenzâtory s vodnim chlazenim se sklonem 45°, pricemz procesni strany kondenzâtorù jsou usporâdâny v sériovém zapojeni a plâst’ové strany kondenzâtorù jsou napojeny na neznâzornenÿ vodni chladici okruh. Kondenzacni systém 8 je urcen pro kondenzaci kapalné fâze (pyroolej) a plynné fâze (smes uhlovodikù C1-C8 a vodiku) a umoznuje rozdeleni kapalné fâze na lehkÿ a tezkÿ olej.Condensing system 8 is conveniently formed by two tube condensers with water cooling with an inclination of 45°, whereby the process sides of the condenser are arranged in series connection and the plastic sides of the condenser are connected to a water cooling circuit not shown. Condensation system 8 is designed for the condensation of the liquid phase (pyro oil) and the gas phase (a mixture of C1-C8 hydrocarbons and hydrogen) and enables the liquid phase to be divided into light and heavy oil.
Hydrocyklon 7 je dâle opatren separâtorem 10 uhlikového zbytku pro rozdeleni disperze uhlikTNK. Separator 10 je svÿm vÿstupem napojen na vstup oddelovaciho zarizeni 13, zde prikladne pâsového lisu nebo dekantacnich odstredivek v plynotesném provedeni s chlazenÿm plâstem pro eliminaci samozâpalnosti prâskového uhliku. Vÿstup oddelovaciho zarizeni 13 je opatren neznâzornenÿm zarizenim pro uklâdâni prâskového uhliku do uzaviratelnÿch kontejnerù. Hydrocyklon 7 prikladne obsahuje vâlcovou nâdobu s kônickou spodni câsti a s tangenciâlne usporadanÿm vstupem reakcni smesi vstupni suroviny s TNK. Ve spodni câsti hydrocyklonu 7 je usporadân separator 10 ve forme vestavby ve vnitrnim prostoru cyklony 7. Hydrocyklon 7 je dâle pres cirkulacni cerpadlo 14 napojen na vstup zâsobniku 2 TNK.The hydrocyclone 7 is further equipped with a carbon residue separator 10 for separating the carbon TNK dispersion. Separator 10 is connected with its output to the input of the separation device 13, here suitable belt press or decanting centrifuges in a gas-tight design with cooling plastic to eliminate self-ignition of pulverized carbon. The outlet of the separation device 13 is equipped with a device (not shown) for storing pulverized carbon in closable containers. The hydrocyclone 7 conveniently contains a cylindrical container with a conical lower part and with a tangentially arranged inlet of the reaction mixture of the input raw material with TNK. In the lower part of the hydrocyclone 7, a separator 10 is arranged in the form of an installation in the inner space of the cyclone 7. The hydrocyclone 7 is further connected to the inlet of the tank 2 TNK via the circulation pump 14.
Systém pracuje tak, ze je vyhrivân teplonosnou kapalinou (TNK), kterâ se ze zâsobniku 2 dopravuje prvnim procesnim podâvacim cerpadlem 31 do ohrivace 1, ve kterém se TNK ohrivâ na provozni teplotou, kterâ je urcena fyzikâlnë-chemickÿmi vlastnostmi zpracovâvané suroviny, tj. vstupni suroviny. Vstupni surovina je bud v kapalné forme nebo je jemne mletâ a pridâvâ se ve smesovaci trysce 5 do TNK s urcenou provozni teplotou. Systém pro mleti a ostatni pripravu pripadné tuhé vstupni suroviny zde neni popsân, protoze neni predmetem této prihlâsky. Z ohrivace 1 se ohratâ TNK dopravuje druhÿm procesnim podâvacim cerpadlem 32 do smesovaci trysky 5, kde se misi se vstupni surovinou a dâle se smes dopravuje do reaktoru 6. Protoze vsechny prvky maji definovanÿ objem, je z dùvodu presného michâni kapalné vstupni suroviny nebo disperze vstupni suroviny do TNK vÿhodné pouzit objemové cerpadlo s definovanÿm objemem komory vztazenÿm na jednu otâcku akcniho prvku cerpadla, napr. na objem mezizubovÿch prostor, objem mezi dvema po sobe jdoucimi zâvity sneku nebo objem vymezenÿ rootsovÿmi rotory apod. Jelikoz pri tepelné stepné reakci vstupni suroviny dochâzi k vÿvoji plynné frakce, zde prikladne o objemu cca 60 % hmotn. pùvodni vstupni suroviny, dochâzi ke zvysovâni tlaku v reaktoru 6 a neni potreba vyuzit precerpâvaci zarizeni pro prenos reakcni smesi vstupni suroviny a TNK do hydrocyklonu 7. Z hydrocyklonu 7 se pres dmychadlo 11 odvâdi vytvorenâ plynnâ fâze reakce do kondenzacniho systému 8, kde kondenzuje a zachycuje se recipientem 9 kapalné fâze. Ve spodni câsti hydrocyklonu 7 se separuje tuhâ fâze, kterâ se vypousti na oddelovaci zarizeni 13 a uklâdâ se. Prikladne se separovanâ tuhâ fâze spolecne s câsti TNK vypousti vlastnim tlakem systému v periodickÿch intervalech na pâsovy lis nebo na dekantacni odstredivky v plynotesném provedeni s chlazenÿm plâstem a uklâdâ se do uzaviratelnÿch kontejnerù. Prebytecnâ TNK i s pripadnÿmi zbytky vstupni suroviny se cirkulacnim cerpadlem 14 odsâvâ ze spodni câsti hydrocyklonu 7 a dopravuje se na vstup zâsobniku 2 TNK.The system works in such a way that it is heated by the heat transfer liquid (TNK), which is transported from the reservoir 2 by the first process feed pump 31 to the heater 1, in which the TNK is heated to the operating temperature, which is determined by the physical-chemical properties of the processed raw material, i.e. the input raw materials. The input raw material is either in liquid form or is finely ground and added in the mixing nozzle 5 to the TNK with a specified operating temperature. The system for grinding and other preparation of any solid input raw material is not described here, because it is not the subject of this application. From the heater 1, the concentrated TNK is transported by the second process feed pump 32 to the mixing nozzle 5, where it is mixed with the input raw material and then the mixture is transported to the reactor 6. Since all the elements have a defined volume, due to the precise mixing of the liquid input raw material or the input dispersion raw materials to TNK, it is advisable to use a positive displacement pump with a defined chamber volume based on one revolution of the pump's action element, e.g. the volume of the spaces between the teeth, the volume between two consecutive threads of the worm or the volume defined by the Roots rotors, etc. development of the gas fraction, here a volume of approx. 60 wt.% original input raw materials, pressure increases in reactor 6, and there is no need to use a pumping device to transfer the reaction mixture of input raw materials and TNK to hydrocyclone 7. From hydrocyclone 7, the formed gas phase of the reaction is removed through the blower 11 to the condensation system 8, where it condenses and captures with receiver 9 liquid phase. In the lower part of the hydrocyclone 7, the solid phase is separated, which is discharged to the separation device 13 and stored. For example, the separated solid phase, together with parts of TNK, is discharged by the system's own pressure at periodic intervals to belt presses or decanting centrifuges in a gas-tight design with cooling plastic and stored in closable containers. Surplus TNK, including any remains of input raw material, is sucked from the lower part of the hydrocyclone 7 with the circulation pump 14 and transported to the input of tank 2 of TNK.
Vynâlez neni omezen pouze na zde vÿslovne popsanâ nebo na vÿkrese zobrazenâ uskutecneni, ale je v râmci odbornÿch schopnosti odbornika pouzitelnÿ i v jinÿch konfiguracich.The invention is not limited only to the implementation described here verbatim or shown in the drawings, but is also applicable in other configurations within the scope of the specialist's professional abilities.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2023-264A CZ309994B6 (en) | 2023-07-11 | 2023-07-11 | An equipment for medium-temperature liquid fluidized bed pyrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2023-264A CZ309994B6 (en) | 2023-07-11 | 2023-07-11 | An equipment for medium-temperature liquid fluidized bed pyrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ2023264A3 CZ2023264A3 (en) | 2024-04-17 |
CZ309994B6 true CZ309994B6 (en) | 2024-04-17 |
Family
ID=90668288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2023-264A CZ309994B6 (en) | 2023-07-11 | 2023-07-11 | An equipment for medium-temperature liquid fluidized bed pyrolysis |
Country Status (1)
Country | Link |
---|---|
CZ (1) | CZ309994B6 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SK500892013U1 (en) * | 2013-07-22 | 2014-04-02 | Az Eco Energy, Spol. S R. O. | Reactor for pyrolysis, thermal decomposition of solid bulk organic waste |
US20140275678A1 (en) * | 2013-03-15 | 2014-09-18 | Searete Llc | Method and System for Performing Gasification of Carbonaceous Feedstock |
EP3943576A1 (en) * | 2019-03-19 | 2022-01-26 | Feshenko, Yurij Vladimirovich | Method of hydrocarbon pyrolysis and device for implementing same |
-
2023
- 2023-07-11 CZ CZ2023-264A patent/CZ309994B6/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140275678A1 (en) * | 2013-03-15 | 2014-09-18 | Searete Llc | Method and System for Performing Gasification of Carbonaceous Feedstock |
SK500892013U1 (en) * | 2013-07-22 | 2014-04-02 | Az Eco Energy, Spol. S R. O. | Reactor for pyrolysis, thermal decomposition of solid bulk organic waste |
EP3943576A1 (en) * | 2019-03-19 | 2022-01-26 | Feshenko, Yurij Vladimirovich | Method of hydrocarbon pyrolysis and device for implementing same |
Also Published As
Publication number | Publication date |
---|---|
CZ2023264A3 (en) | 2024-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007146109A (en) | High-performance chamber mixer for catalyst oil suspension as reactor for producing intermediate distillate by depolymerization and polymerization of hydrocarbon-containing residue in circuit | |
CN108883551A (en) | Reactor for continuous processing polymer material | |
EP2997110A1 (en) | A method and a system for processing plastic waste | |
WO2016135979A1 (en) | Supercritical water gasification system and gasification method | |
WO2018083785A1 (en) | Supercritical water gasification system | |
CN101445737A (en) | Internal combustion type heating rotating cone type biomass pyrolysis liquefaction device | |
JP2018510773A (en) | Method and system for treating slurry containing organic components | |
CZ309994B6 (en) | An equipment for medium-temperature liquid fluidized bed pyrolysis | |
EP3347437B1 (en) | Method and apparatus to thermally decompose organic materials | |
CN110330198B (en) | Oil sludge treatment method and system | |
CA2612755A1 (en) | Systems and methods for organic material conversion and energy generation | |
CN105540696B (en) | A kind of high-concentration industrial organic liquid waste thermocatalytic carbonization prepares the method and its device of solid-state derivatived fuel | |
RU2632444C1 (en) | System and method of processing wastewater sludge | |
WO2019202546A1 (en) | Method for thermic depolymerization of plastic material and device for its realization | |
EP1668092A1 (en) | Process and installation for thermal cracking used in decomposing rubber and plastic waste | |
CN209010466U (en) | A kind of biomass fuel manufacturing system | |
KR101161421B1 (en) | Renewable apparatus of fuel oil using waste rolling oil and renewable method | |
RU2804427C1 (en) | Multi-stage thermal destruction method | |
US20250019592A1 (en) | System and method for converting waste carbon material into bio-crude and nutrients using hydrothermal liquefaction | |
KR102628903B1 (en) | Apparatus for producing recycled oil from waste resin | |
JP6671677B1 (en) | Supercritical water gasification system | |
KR101822772B1 (en) | Method for producing ashless coal | |
RU2760246C1 (en) | Waste disposal device | |
CA3010168C (en) | Production of diesel from cellulosic biomass | |
CN108531233A (en) | A kind of method that biomass fuel makes |