CZ304680B6 - Způsob zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska a spřádací jednotka rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru - Google Patents
Způsob zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska a spřádací jednotka rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru Download PDFInfo
- Publication number
- CZ304680B6 CZ304680B6 CZ2013-209A CZ2013209A CZ304680B6 CZ 304680 B6 CZ304680 B6 CZ 304680B6 CZ 2013209 A CZ2013209 A CZ 2013209A CZ 304680 B6 CZ304680 B6 CZ 304680B6
- Authority
- CZ
- Czechia
- Prior art keywords
- spinning rotor
- spinning
- rotor
- magnetic bearing
- active magnetic
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/14—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H4/00—Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
- D01H4/04—Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
- D01H4/08—Rotor spinning, i.e. the running surface being provided by a rotor
- D01H4/12—Rotor bearings; Arrangements for driving or stopping
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H4/00—Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
- D01H4/42—Control of driving or stopping
- D01H4/44—Control of driving or stopping in rotor spinning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0444—Details of devices to control the actuation of the electromagnets
- F16C32/0446—Determination of the actual position of the moving member, e.g. details of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0444—Details of devices to control the actuation of the electromagnets
- F16C32/0451—Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2340/00—Apparatus for treating textiles
- F16C2340/18—Apparatus for spinning or twisting
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Textile Engineering (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Při způsobu zjišťování změn se poloha spřádacího rotoru (1) sleduje soustavou snímačů (A, B) a na základě zjištěných změn polohy spřádacího rotoru (1) se upravuje řízení aktivního magnetického ložiska k eliminaci nežádoucích změn polohy spřádacího rotoru (1) v dutině aktivního magnetického ložiska. Průběžně se zjišťuje radiální posunutí spřádacího rotoru (1) a současně se průběžně zjišťuje naklonění spřádacího rotoru (1). Podle zjištěných změn polohy spřádacího rotoru (1) se určí posunutí a/nebo naklonění spřádacího rotoru (1) pro následnou úpravu řízení polohy spřádacího rotoru (1) v aktivním magnetickém ložisku. Spřádací jednotka s aktivním magnetickým ložiskem obsahuje prostředky pro tvorbu a řízení magnetického pole, ve kterém je uspořádán spřádací rotor (1). Ložisko dále obsahuje snímače (A, B) polohy spřádacího rotoru (1), které jsou spřaženy s detektory (D) jejich výstupních signálů a s vyhodnocovacími obvody. Vyhodnocovací obvody jsou napojeny na řídicí systém aktivního magnetického ložiska. Snímače polohy spřádacího rotoru (1) jsou seskupeny do dvojic, přičemž dvě dvojice snímačů (A, A1, A2) pro zjišťování radiálního posunutí spřádací rotoru (1) jsou uspořádány na protilehlých stranách spřádacího rotoru (1) proti válcové stěně (10) spřádacího rotoru (1) a současně jsou dvě dvojice snímačů (B, B1, B2) pro zjišťování naklonění spřádacího rotoru (1) uspořádány na protilehlých stranách spřádacího rotoru (1) proti stěně (11) spřádacího rotoru (1), která je kolmá na osu otáčení (OA) spřádacího rotoru (1).
Description
Způsob zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska a spřádací jednotka rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru
Oblast techniky
Vynález se týká způsobu zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska, při kterém se poloha spřádacího rotoru sleduje soustavou snímačů a na základě zjištěných změn polohy spřádacího rotoru se upravuje řízení aktivního magnetického ložiska k eliminaci nežádoucích změn polohy spřádacího rotoru v dutině aktivního magnetického ložiska.
Vynález se také týká spřádací jednotky rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru, která obsahuje prostředky pro tvorbu a řízení magnetického pole, ve kterém je uspořádán spřádací rotor, přičemž ložisko dále obsahuje snímače spřádacího rotoru, které jsou spřaženy s detektory jejich výstupních signálů a s vyhodnocovacími obvody, přičemž vyhodnocovací obvody jsou napojeny na řídicí systém aktivního magnetického ložiska.
Dosavadní stav techniky
Pro potřeby uložení velmi rychle se otáčejících bezhřídelových spřádacích rotorů rotorových dopřádacích strojů existují speciální zařízení, která pomocí řízených magnetických sil zajišťují polohu i pohon spřádacího rotoru. Taková zařízení se souhrnně označují jako aktivní magnetická ložiska.
K zajištění řádné funkce aktivního magnetického ložiska je přitom zcela nezbytná znalost okamžité polohy spřádacího rotoru v magnetickém poli v aktivním magnetickém ložisku a také znalost případných změn této polohy v čase v trojrozměrném pravoúhlém souřadném systému s osami x, y, z. Spřádací rotor musí být regulačním (řídicím) systémem na základě kontinuálně sledovaných a vyhodnocovaných údajů o jeho poloze udržován v požadované poloze také proto, aby nedošlo vlivem případného přílišného vychýlení spřádacího rotoru k havárii spřádacího rotoru se všemi negativními důsledky plynoucími zejména z vysoké rychlosti otáčení spřádacího rotoru, např. havárie kontaktem spřádacího rotoru s ostatními částmi aktivního magnetického ložiska.
U aktivních magnetických ložisek, u kterých se výška spřádacího rotoru blíží průměru spřádacího rotoru, vzniká problém správného rozpoznání zejména tzv. kývání spřádacího rotoru během jeho otáčení, tj. vychylování skutečné osy otáčení spřádacího rotoru vůči ideální ose otáčení spřádacího rotoru. Spřádací rotor je přitom ve směru své osy otáčení samovolně držen v potřebné poloze působením magnetických sil permanentních magnetů aktivního magnetického ložiska, takže případný posun spřádacího rotoru ve směru osy otáčení spřádacího rotoru je korigován zcela automaticky působením těchto permanentních magnetů. U takovéhoto jednoduchého uspořádání se doposud sleduje v podstatě pouze radiální posun osy rotace rotoru, které se provádí vhodně rozmístěnými snímači spřádacího rotoru, které v podstatě pracují na principu snímání změn vzdálenosti sledované plochy spřádacího rotoru od snímačů a následně se podle těchto změn provádí korekce levitace spřádacího rotoru.
Běžně používané snímače spřádacího rotoru proto obvykle pracují v párovém rozestavení, tj. ve dvojicích, přičemž všechny dvojice jsou rozmístěny v jedné rovině kolem odvodové plochy spřádacího rotoru, kde jsou schopny zachytit radiální posun spřádacího rotoru vůči ideální ose otáčení. V tomto rozestavení však již nejsou schopny spolehlivě identifikovat změny polohy spřádacího rotoru dané kýváním spřádacího rotoru, přičemž toto případné kývání ani není samovolně
- 1 CZ 304680 B6 korigováno působením magnetických sil od permanentních magnetů aktivního magnetického ložiska.
Pro detekci kývání rotoru se nabízí uspořádání snímačů spřádacího rotoru ve dvou paralelních snímacích rovinách proti vnějšímu obvodu spřádacího rotoru, tj. proti jeho válcové ploše. Toto řešení je však nákladné a vyžaduje dodatečný prostor pro druhou, paralelní, soustavu snímačů, detektorů a vyhodnocovacích obvodů. Tento potřebný dodatečný prostor však vzhledem k malé délce bezhřídelových spřádacích rotorů a vzhledem k celkově poměrně malým spřádacím jednotkám s aktivními magnetickými ložisky u rotorových dopřádacích strojů není k dispozici bez zásadnějšího nárůstu délky bezhřídelových spřádacích rotorů a nárůstu vnějších rozměrů spřádacích jednotek.
Cílem vynálezu je odstranit nebo alespoň zmírnit nedostatky současného stavu techniky, zejména pak zlepšit možnosti sledování polohy bezhřídelového spřádacího rotoru ve spřádací jednotce rotorového dopřádacího stroje.
Podstata vynálezu
Cíle vynálezu je dosaženo způsobem zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska, jehož podstata spočívá v tom, že se průběžně zjišťuje radiální posunutí spřádacího rotoru a současně se průběžně zjišťuje naklonění spřádacího rotoru a podle zjištěných změn polohy spřádacího rotoru se určí posunutí a/nebo naklonění spřádacího rotoru pro následnou úpravu řízení polohy spřádacího rotoru v aktivním magnetickém ložisku.
Cíle vynálezu je také dosaženo spřádací jednotkou rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru, jejíž podstata spočívá v tom, že snímače spřádacího rotoru jsou seskupeny do dvojic, přičemž dvě dvojice snímačů pro zjišťování radiálního posunutí spřádacího rotoru jsou uspořádány na protilehlých stranách spřádacího rotoru proti válcové stěně spřádacího rotoru a současně jsou dvě dvojice snímačů pro zjišťování naklonění spřádacího rotoru uspořádány na protilehlých stranách spřádacího rotoru proti stěně spřádacího rotoru, která je kolmá na osu otáčení spřádacího rotoru.
Výhodou tohoto řešení oproti známému stavu techniky je lepší zjištění polohy spřádacího rotoru při jeho otáčení v aktivním magnetickém ložisku spřádací jednotky rotorového dopřádacího stroje. To vše je zjišťováno dostatečně rychle a s potřebnou přesností a důvěryhodností výsledků měření.
Objasnění výkresů
Vynález je schematicky znázorněn na výkresech, kde ukazuje obr. 1 příkladné uspořádání snímačů spřádacího rotoru v aktivním magnetickém ložisku, obr. 2 příkladné provedení uspořádání snímačů spřádacího rotoru, obr. 3 uspořádání snímačů pro zjišťování radiálního posunu spřádacího rotoru a jimi měřených vzdáleností od válcové stěny spřádacího rotoru a obr. 4 uspořádání snímačů pro zjišťování naklonění spřádacího rotoru a jimi měřených vzdáleností od stěny spřádacího rotoru, která je kolmá na osu otáčení spřádacího rotoru, vše v pohledu ve směru S z obr. 2.
-2CZ 304680 B6
Příklady uskutečnění vynálezu
Vynález bude popsán na příkladu provedení aktivního magnetického ložiska s bezhřídelovým spřádacím rotorem pro spřádací jednotku rotorového dopřádacího stroje.
Rotorový dopřádací stroj obsahuje alespoň jednu řadu vedle sebe uspořádaných pracovních míst. Každé pracovní místo obsahuje kromě celé řady dalších uzlů také spřádací jednotku, ve které je uspořádáno aktivní magnetické ložisko, ve kterém je otočně uložen bezhřídelový spřádací rotor
i. Aktivní magnetické ložisko zajišťuje udržování polohy spřádacího rotoru I vůči ostatním částem spřádací jednotky pomocí řízeného magnetického stabilizačního systému 13. Pohon spřádacího rotoru i je zajišťován pomocí řízeného elektro-magnetického pohonového systému 12.
Polohou spřádacího rotoru 1 se rozumí umístění spřádacího rotoru I v trojrozměrném souřadném systému, tj. včetně polohy aktuální osy OA otáčení spřádacího rotoru 1, tj. skutečné osy otáčení spřádacího rotoru I, vůči ideální ose Ol otáčení spřádacího rotoru i. Ideální osa Ol otáčení spřádacího rotoru I je přitom určena geometrií aktivního magnetického ložiska, spřádací jednotky a spřádacího rotoru i.
Poloha aktuální osy OA otáčení se zjišťuje systémem zjišťování polohy spřádacího rotoru 1 v aktivním magnetickém ložisku. Systém zjišťování polohy spřádacího rotoru obsahuje snímače A pro zjišťování radiálního posunutí spřádacího rotoru i a snímače B pro zjišťování naklonění spřádacího rotoru 1. Snímače A polohy spřádacího rotoru I i snímače B polohy spřádacího rotoru i jsou spřažený s detektory D jejich výstupních signálů a dále s vyhodnocovacími obvody a řídicím zařízením aktivního magnetického ložiska, jak je znázorněno na obr. 2.
Pro zjišťování radiálního posunutí spřádacího rotoru I i pro zjišťování naklonění spřádacího rotoru i je teoreticky zapotřebí minimálně třech snímačů A pro zjišťování radiálního posunutí spřádacího rotoru I a třech snímačů B pro zjišťování naklonění spřádacího rotoru 1. Ve znázorněných příkladech provedení jsou snímače A, B polohy spřádacího rotoru I uspořádány vždy ve dvou dvojicích, tj. dvě dvojice snímačů Al, A2 pro zjišťování radiálního posunutí spřádacího rotoru i a dvě dvojice snímačů Bl, B2 pro zjišťování naklonění spřádacího rotoru I, jak je znázorněno na obr. 2 až 4 a jak bude blíže popsáno v dalším textu.
Dvojice snímačů Al, A2 pro zjišťování radiálního posunutí spřádacího rotoru I jsou uspořádány na protilehlých stranách spřádacího rotoru 1 proti válcové stěně 10 spřádacího rotoru 1. Dvojice snímačů Bl, B2 pro zjišťování naklonění spřádacího rotoru I jsou uspořádány na protilehlých stranách spřádacího rotoru i proti stěně 11 spřádacího rotoru I, která je kolmá na osu OA otáčení spřádacího rotoru L V předchozí větě je výraz na „na protilehlých stranách“ myšlen tak, že snímače B jsou umístěny vůči příslušné stěně 11 spřádacího rotoru I symetricky k ose OA otáčení spřádacího rotoru i, jak je také znázorněno na obrázcích. Stěnou 11 spřádacího rotoru i, která je kolmá na osu OA otáčení spřádacího rotoru I, je např. dno spřádacího rotoru I nebo jiná vhodně orientovaná stěna spřádacího rotoru I.
Dvojicemi snímačů Al, A2 pro zjišťování radiálního posunutí spřádacího rotoru i se sledují změny vzdáleností Xl, X2 válcové stěny 10 spřádacího rotoru I od snímačů Al, A2, jak je znázorněno na obr. 1 a 3. Dvojicemi snímačů Bl, B2 pro zjišťování naklonění spřádacího rotoru I se sleduje změna vzdáleností Yl, Y2 stěny 11 spřádacího rotoru I, která je kolmá na osu OA otáčení spřádacího rotoru I, od snímačů Bl, B2, jak je znázorněno na obr. 1 a 4.
Ve výhodném provedení jsou dvě dvojice snímačů Al, A2 rozmístěné po obvodu spřádacího rotoru I ve dvou na sebe kolmých směrech, jak je znázorněno na obr. 2.
-3CZ 304680 B6
Ve výhodném provedení jsou dvě dvojice snímačů Bl, B2 rozmístěné ve dvou na sebe kolmých směrech, které jsou případně pootočeny oproti umístění snímačů A o úhel 45°.
V provedení na obr. 1 jsou znázorněny jedna dvojice snímačů A pro zjišťování radiálního posunutí spřádacího rotoru 1, tj. snímače Al a A2, a současně je znázorněna jedna dvojice snímačů B pro zjišťování naklonění spřádacího rotoru i, tj. snímače Bl a B2.
Snímače Al, A2, Bl, B2 sledují vzdálenosti XI, X2, Yl, Y2 spřádacího rotoru i od příslušného snímače Al, A2, Bl, B2, resp. zjišťují změny těchto vzdáleností XI, X2, Yl, Y2. V tomto uspořádání se uplatněním níže popsané rozhodovací logiky relativně snadno určí o jaký typ změny polohy spřádacího rotoru i vůči ideální poloze, resp. a jaký typ změny polohy aktuální osy OA otáčení spřádacího rotoru I vůči ideální ose Ol otáčení spřádacího rotoru I, se jedná. Podle zjištěného typu změny polohy otáčejícího se spřádacího rotoru I se, v kombinací se zjištěnou velikostí změny polohy spřádacího rotoru 1_, provedou odpovídající opatření v řízení aktivního magnetického ložiska vedoucí k navrácení spřádacího rotoru 1 do jeho ideální polohy, tj. do shody mezi osami Ol a OA. Tímto se poloha spřádacího rotoru I otáčejícího se v magnetickém poli aktivního magnetického ložiska sleduje a udržuje v osách x, y, z pravoúhlého souřadného systému.
Rozhodovací logika pro určení typu změny polohy spřádacího rotoru I vůči jeho ideální poloze je pro provedení znázorněné na obr. 1 taková že, pokud platí:
a) xl = x2 AND yl = y2 - spřádací rotor 1 je v ideální poloze, ve které jeho aktuální osa OA otáčení je shodná s ideální osou Ol otáčení
b) xl > x2 AND yl = y2 - došlo k radiálnímu posunutí spřádacího rotoru 1 vpravo
c) xl < x2 AND yl = y2 - došlo k radiálnímu posunutí spřádacího rotoru 1 vlevo
d) xl < x2 AND yl > y2 - došlo k naklonění spřádacího rotoru I vpravo
e) xl > x2 AND yl < y2 - došlo k naklonění spřádacího rotoru I vlevo.
Výhodně jsou snímače A, B řešeny jako vysokofrekvenční transformátory tvořené dvojicí cívek uspořádaných na protilehlých plochách desky plošného (tištěného) spoje nebo na vnitřních plochách vícevrstvého plošného spoje. Snímače A jsou přitom s výhodou umístěny u okraje průchozího otvoru v desce plošných spojů a spřádací rotor I prochází tímto otvorem v desce plošných spojů, takže snímače A jsou situovány proti válcové stěně JO spřádacího rotoru i, přičemž průměr průchozího otvoru v desce plošných spojů je jen o něco málo větší, typicky např. o 2 mm, než je vnější průměr spřádacího rotoru 1, jak je vše znázorněno na obr. 1. Snímače B jsou výhodně umístěny na samostatné desce plošných spojů situované cca 1 mm pod nebo nad úrovní spodní nebo horní sledované stěny JT spřádacího rotoru 1, která je kolmá na osu OA otáčení spřádacího rotoru I, nebojsou snímače B umístěny v provedení podle obr. 1 u okraje průchozího otvoru v desce plošných spojů, přičemž tento průchozí otvor má menší průměr než je vnější průměr spřádacího rotoru 1, aby snímače B byly uspořádány přímo proti stěně JT spřádacího rotoru i, která je kolmá na osu OA otáčení spřádacího rotoru i.
Výše uvedené uspořádání všech potřebných prvků vždy na deskách, popř. na společné desce, plošného spoje eliminuje, nebo alespoň významně snižuje, vznik indukovaných rušivých signálů a zvyšuje tak citlivost snímačů A, B provedených jako vysokofrekvenční transformátory s dvojicí cívek. Současně toto řešení snímačů A, B také umožňuje jednoduchou montáž přímo do spřádací jednotky rotorového dopřádacího stroje i s možností vysoké integrace, protože na desky plošných spojů se snímači A, B je možno integrovat v podstatě kompletní elektroniku aktivního magnetického ložiska nebo je možno tyto desky jednoduše propojit s elektronikou aktivního magnetického ložiska. Tímto způsobem lze také významně snížit výrobní náklady.
-4CZ 304680 B6
Snímače A, B, provedené jako vysokofrekvenční transformátory s dvojicemi cívek na desce plošného (tištěného) spoje jsou na svém vstupu buzeny vysokofrekvenčním budícím signálem o frekvenci v řádech minimálně desítek MHz, typicky o frekvenci od desítek MHz do stovek MHz, zejména o frekvencích od 20 MHz a více. Výstupní signál těchto snímačů A, B se zpracovává připojenými detektory D, jak je znázorněno na obr. 3 a 4, přičemž výstupní signály detektorů D se dále použijí ve vyhodnocovacích obvodech a řídicím systému aktivního magnetického ložiska. Řídicí systém aktivního magnetického ložiska může být vytvořen buď přímo v aktivním magnetickém ložisku, nebo může být tvořen prostředky spřádací jednotky, nebo může být tvořen prostředky pracovního místa, nebo prostředky sekce stroje, nebo prostředky celého stroje atd. nebo se může jednat o více či méně distribuovaný řídicí systém.
Claims (4)
- PATENTOVÉ NÁROKY1. Způsob zjišťování změn polohy bezhřídelového spřádacího rotoru (1) rotorového dopřádacího stroje v dutině aktivního magnetického ložiska, při kterém se poloha spřádacího rotoru (1) sleduje soustavou snímačů (A, B) a na základě zjištěných změn polohy spřádacího rotoru (1) se upravuje řízení aktivního magnetického ložiska k eliminaci nežádoucích změn polohy spřádacího rotoru (1) v dutině aktivního magnetického ložiska, vyznačující se tím, že se průběžně zjišťuje radiální posunutí spřádacího rotoru (1) a současně se průběžně zjišťuje naklonění spřádacího rotoru (1) a podle zjištěných změn polohy spřádacího rotoru (1) se určí posunutí a/nebo naklonění spřádacího rotoru (1) pro následnou úpravu řízení polohy spřádacího rotoru (1) v aktivním magnetickém ložisku.
- 2. Způsob podle nároku 1, vyznačující se tím, že radiální posunutí i naklonění spřádacího rotoru (1) se každé zjišťuje alespoň dvěma dvojicemi snímačů (Al, A2, Bl, B2) vzdálenosti snímané plochy spřádacího rotoru (1).
- 3. Spřádací jednotka rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru (1), která obsahuje prostředky pro tvorbu a řízení magnetického pole, ve kterém je uspořádán spřádací rotor (1), přičemž ložisko dále obsahuje snímače (A, B) polohy spřádacího rotoru (1), které jsou spřaženy s detektory (D) jejich výstupních signálů a s vyhodnocovacími obvody, přičemž vyhodnocovací obvody jsou napojeny na řídicí systém aktivního magnetického ložiska, vyznačující se tím, že snímače polohy spřádacího rotoru (1) jsou seskupeny do dvojic, přičemž dvě dvojice snímačů (A, Al, A2) pro zjišťování radiálního posunutí spřádacího rotoru (1) jsou uspořádány na protilehlých stranách spřádacího rotoru (1) proti válcové stěně (10) spřádacího rotoru (1) a současně jsou dvě dvojice snímačů (B, Bl, B2) pro zjišťování naklonění spřádacího rotoru (1) uspořádány na protilehlých stranách spřádacího rotoru (1) proti stěně (11) spřádacího rotoru (1), která je kolmá na osu otáčení (OA) spřádacího rotoru (1).
- 4. Aktivní magnetické ložisko podle nároku 3, vyznačující se tím, že obě dvojice snímačů (A, Al, A2) pro zjišťování radiálního posunutí spřádacího rotoru (1) leží ve dvou na sobě kolmých směrech a obě dvojice snímačů (B, Bl, B2) pro zjišťování naklonění spřádacího rotoru (1) leží ve dvou na sobě kolmých směrech, které svírají úhel 45° se směry umístění snímačů (A) pro zjišťování radiálního posunutí spřádacího rotoru (1).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2013-209A CZ304680B6 (cs) | 2013-03-22 | 2013-03-22 | Způsob zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska a spřádací jednotka rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru |
US14/200,305 US9689658B2 (en) | 2013-03-22 | 2014-03-07 | Method for detecting changes of position of shaftless spinning rotor of open-end spinning machine in cavity of active magnetic bearing and spinning unit of open-end spinning machine with active magnetic bearing for bearing shaftless spinning rotor |
EP14158476.3A EP2781775B1 (en) | 2013-03-22 | 2014-03-10 | Method for detecting changes of position of shaftless spinning rotor of open-end spinning machine in cavity of active magnetic bearing and spinning unit of open-end spinning machine with active magnetic bearing for bearing shaftless spinning rotor |
CN201410107209.8A CN104060354B (zh) | 2013-03-22 | 2014-03-21 | 用于检测无轴纺纱转杯的位置变化的方法和纺纱单元 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2013-209A CZ304680B6 (cs) | 2013-03-22 | 2013-03-22 | Způsob zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska a spřádací jednotka rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ2013209A3 CZ2013209A3 (cs) | 2014-08-27 |
CZ304680B6 true CZ304680B6 (cs) | 2014-08-27 |
Family
ID=50272343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2013-209A CZ304680B6 (cs) | 2013-03-22 | 2013-03-22 | Způsob zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska a spřádací jednotka rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru |
Country Status (4)
Country | Link |
---|---|
US (1) | US9689658B2 (cs) |
EP (1) | EP2781775B1 (cs) |
CN (1) | CN104060354B (cs) |
CZ (1) | CZ304680B6 (cs) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104533946B (zh) * | 2015-01-05 | 2017-10-31 | 山东大学 | 一种由轴向磁轴承实现转子五自由度悬浮结构 |
EP3562001A1 (de) * | 2018-04-27 | 2019-10-30 | Siemens Aktiengesellschaft | Verfahren zur magnetischen lagerung eines rotors |
DE102018112081A1 (de) * | 2018-05-18 | 2019-11-21 | Rieter Ingolstadt Gmbh | Verfahren zum Einstellen einer axialen Position eines Rotorantriebs, Rotorspinnvorrichtung, Spinnmaschine sowie Einstelllehre und Sensor |
DE102019112735A1 (de) * | 2019-05-15 | 2020-11-19 | Maschinenfabrik Rieter Ag | Verfahren zur Identifikation eines Spinnrotors an einer Rotorspinnmaschine sowie Rotorspinnmaschine |
DE102019112737A1 (de) * | 2019-05-15 | 2020-11-19 | Maschinenfabrik Rieter Ag | Verfahren zum Betreiben einer Arbeitsstelle einer Rotorspinnmaschine sowie Rotorspinnmaschine |
CN111288945A (zh) * | 2020-04-01 | 2020-06-16 | 玉溪合创科技有限公司 | 一种检测固定旋转筒体设备位移变化的装置 |
CN113719539B (zh) * | 2021-08-25 | 2023-02-03 | 中国人民解放军海军工程大学 | 磁悬浮轴承位移传感器容错控制系统及控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004029020A1 (de) * | 2004-06-16 | 2005-12-29 | Saurer Gmbh & Co. Kg | Verfahren und Vorrichtung zum Betreiben einer Offenend-Rotorspinnvorrichtung |
CZ297426B6 (cs) * | 1997-12-18 | 2006-12-13 | Saurer Gmbh & Co. Kg | Rotorové doprádací zarízení |
CZ298507B6 (cs) * | 1998-06-20 | 2007-10-24 | W. Schlafhorst Ag & Co. | Uložení hrídele doprádacího rotoru doprádacího zarízení |
WO2008000335A1 (de) * | 2006-06-30 | 2008-01-03 | Oerlikon Textile Gmbh & Co. Kg | Lagereinrichtung für einen spinnrotor |
CZ300226B6 (cs) * | 2000-05-16 | 2009-03-25 | W. Schlafhorst Ag & Co. | Doprádací rotor |
CZ300225B6 (cs) * | 2000-05-10 | 2009-03-25 | W. Schlafhorst Ag & Co. | Zpusob chodu doprádacího zarízení a magnetické úložné usporádání pro jeho provádení |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58149899A (ja) * | 1982-02-26 | 1983-09-06 | 三菱電機株式会社 | 人口衛星姿勢制御用磁気軸受ホイ−ル |
JPS61175314A (ja) * | 1985-01-31 | 1986-08-07 | Natl Aerospace Lab | 磁気軸受 |
US4732353A (en) * | 1985-11-07 | 1988-03-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Three axis attitude control system |
JP3068834B2 (ja) * | 1988-06-06 | 2000-07-24 | テルデイクス ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 大きい半径を有する回転子をラジアル及びアキシヤル軸受する軸受 |
JP2957222B2 (ja) | 1990-03-02 | 1999-10-04 | 健蔵 野波 | 能動軸受のロータ支持制御装置 |
US5313399A (en) * | 1992-01-21 | 1994-05-17 | The Charles Stark Draper Laboratories, Inc. | Adaptive synchronous vibration suppression apparatus |
DE4207673C1 (cs) * | 1992-03-11 | 1993-03-11 | Skf Textilmaschinen-Komponenten Gmbh, 7000 Stuttgart, De | |
JP3135410B2 (ja) * | 1993-04-14 | 2001-02-13 | 光洋精工株式会社 | 磁気軸受装置 |
FR2715201B1 (fr) * | 1994-01-19 | 1996-02-09 | Inst Nat Polytech Grenoble | Palier magnétique et ensemble comportant une partie statorique et une partie rotorique suspendue par un tel palier. |
DE4409992A1 (de) * | 1994-03-23 | 1995-09-28 | Skf Textilmasch Komponenten | Einzelmotorischer Antrieb eines schaftlosen Spinnrotors einer Offenend-Spinnmaschine |
JP3616852B2 (ja) | 1994-10-05 | 2005-02-02 | 光洋精工株式会社 | 磁気軸受装置 |
JP3625904B2 (ja) | 1995-08-01 | 2005-03-02 | Bocエドワーズ株式会社 | 磁気軸受装置 |
FR2742497B1 (fr) * | 1995-12-18 | 1998-04-03 | Aerospatiale | Palier magnetique a actionneurs et capteurs alternes |
US6057681A (en) * | 1997-06-12 | 2000-05-02 | Kingsbury, Inc. | Magnetic bearing including a sensor for sensing flux in the magnetic flux path |
DE10032440A1 (de) | 2000-07-04 | 2002-01-17 | Schlafhorst & Co W | Rotorspinnvorrichtung mit einer berührungslosen passiven radialen Lagerung des Spinnrotors |
US6710489B1 (en) * | 2001-08-30 | 2004-03-23 | Indigo Energy, Inc. | Axially free flywheel system |
US6603230B1 (en) * | 2002-01-30 | 2003-08-05 | Honeywell International, Inc. | Active magnetic bearing assembly using permanent magnet biased homopolar and reluctance centering effects |
US6914361B2 (en) * | 2003-03-07 | 2005-07-05 | Leybold Vakuum Gmbh | Magnetic bearing |
US7197958B2 (en) * | 2003-08-27 | 2007-04-03 | Honeywell International, Inc. | Energy storage flywheel retention system and method |
FR2887980B1 (fr) * | 2005-07-01 | 2007-09-28 | Commissariat Energie Atomique | Dispositif de comptage des rotations d'un objet dans un referentiel et procede de commande d'un tel dispositif |
DE102006036051A1 (de) * | 2006-08-02 | 2008-02-07 | Schaeffler Kg | Rundtischlagerungs- und Antriebsvorrichtung |
EP1939473B1 (en) | 2006-12-29 | 2018-05-23 | Rieter CZ s.r.o. | The method of leviation, centering, stabilization and driving of electromagnetic functional part of radial electromagnetic bearing and electrical ratation drive, electromagnetic bearing and driving system and spinning mechnism of rotor spinning machine |
-
2013
- 2013-03-22 CZ CZ2013-209A patent/CZ304680B6/cs not_active IP Right Cessation
-
2014
- 2014-03-07 US US14/200,305 patent/US9689658B2/en not_active Expired - Fee Related
- 2014-03-10 EP EP14158476.3A patent/EP2781775B1/en not_active Not-in-force
- 2014-03-21 CN CN201410107209.8A patent/CN104060354B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ297426B6 (cs) * | 1997-12-18 | 2006-12-13 | Saurer Gmbh & Co. Kg | Rotorové doprádací zarízení |
CZ298507B6 (cs) * | 1998-06-20 | 2007-10-24 | W. Schlafhorst Ag & Co. | Uložení hrídele doprádacího rotoru doprádacího zarízení |
CZ300225B6 (cs) * | 2000-05-10 | 2009-03-25 | W. Schlafhorst Ag & Co. | Zpusob chodu doprádacího zarízení a magnetické úložné usporádání pro jeho provádení |
CZ300226B6 (cs) * | 2000-05-16 | 2009-03-25 | W. Schlafhorst Ag & Co. | Doprádací rotor |
DE102004029020A1 (de) * | 2004-06-16 | 2005-12-29 | Saurer Gmbh & Co. Kg | Verfahren und Vorrichtung zum Betreiben einer Offenend-Rotorspinnvorrichtung |
WO2008000335A1 (de) * | 2006-06-30 | 2008-01-03 | Oerlikon Textile Gmbh & Co. Kg | Lagereinrichtung für einen spinnrotor |
Also Published As
Publication number | Publication date |
---|---|
US9689658B2 (en) | 2017-06-27 |
US20140285185A1 (en) | 2014-09-25 |
CN104060354B (zh) | 2018-06-29 |
CZ2013209A3 (cs) | 2014-08-27 |
EP2781775B1 (en) | 2018-05-09 |
CN104060354A (zh) | 2014-09-24 |
EP2781775A1 (en) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CZ304680B6 (cs) | Způsob zjišťování změn polohy bezhřídelového spřádacího rotoru rotorového dopřádacího stroje v dutině aktivního magnetického ložiska a spřádací jednotka rotorového dopřádacího stroje s aktivním magnetickým ložiskem pro uložení bezhřídelového spřádacího rotoru | |
US9281729B2 (en) | Motor unit | |
US9853525B2 (en) | Magnetic bearing assembly and arrangement of position sensors for a magnetic bearing assembly | |
US11306777B2 (en) | Magnetic bearing control apparatus, control method and high speed rotating motor using the same | |
ES2667490T3 (es) | Alineación de rotor para la reducción de las vibraciones y los ruidos | |
US20140285046A1 (en) | Method for correcting variations of parameters of components and/or of assembly of active magnetic bearing and active magnetic bearing for bearing rotating working means | |
EP2781888B1 (en) | Device for detecting position of rotating working means in active magnetic bearing | |
WO2016136574A1 (ja) | 回転検出装置 | |
JP2018009818A (ja) | モータ装置 | |
CN104775274B (zh) | 洗衣机内筒限位平衡控制系统和方法 | |
JP2008272900A (ja) | ワーク及び又は工具の工作段階における振動状態測定方法 | |
KR102386283B1 (ko) | 회전 기계의 블레이드의 상태의 감시 센서, 센서의 위치 조절 방법 및 회전 기계 | |
CN107263215A (zh) | 一种用于机床电主轴的偏心补偿系统 | |
JP2014053194A (ja) | シンクロトロン | |
JP5421198B2 (ja) | 回転角度検出装置 | |
KR20130057331A (ko) | 등속운동용 자기 베어링 시스템 | |
JP5411084B2 (ja) | 回転角度検出装置 | |
CA2924936C (en) | Controlled assembly of permanent magnet machines | |
KR100837359B1 (ko) | 회전체 진동 측정용 인덕티브센서의 제어 장치 및 방법 | |
KR101773417B1 (ko) | 자동 평형 장치 | |
JP6452232B2 (ja) | 磁石解析装置 | |
CN102253675A (zh) | 控制超导磁悬浮转子平衡的装置 | |
KR20240139743A (ko) | 유도형 엔코더 | |
JP2017181068A (ja) | 磁気式位置検出器 | |
KR101920549B1 (ko) | Pm 형 스테핑 모터 시스템을 이용한 자동 평형 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Patent lapsed due to non-payment of fee |
Effective date: 20200322 |