CN2888736Y - Soft-switching power converter with energy-saving circuit for light-load operation - Google Patents
Soft-switching power converter with energy-saving circuit for light-load operation Download PDFInfo
- Publication number
- CN2888736Y CN2888736Y CNU2006200081404U CN200620008140U CN2888736Y CN 2888736 Y CN2888736 Y CN 2888736Y CN U2006200081404 U CNU2006200081404 U CN U2006200081404U CN 200620008140 U CN200620008140 U CN 200620008140U CN 2888736 Y CN2888736 Y CN 2888736Y
- Authority
- CN
- China
- Prior art keywords
- signal
- switch
- soft
- delay time
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及一种功率转换器,特别是涉及一种功率转换器的控制电路。The utility model relates to a power converter, in particular to a control circuit of the power converter.
背景技术Background technique
功率转换器是用于将一未调节的电源转换为一恒定电压源。功率转换器通常包括一变压器,其包含用以提供绝缘的一初级绕组(primarywinding)以及一次级绕组(secondary winding)。一切换装置连接到初级绕组,以控制从初级绕组至次级绕组的能量转换。虽然较高的操作频率允许功率转换器具有较小的尺寸和重量,然而,切换损耗、组件应力以及电磁干扰都是其固有的问题。在近期的发展中,一种常见的软切换式(soft switching)相移(phase shift)设计被提出,用以减少高频功率转换的切换损耗。在这些发展中,全桥准谐振(quasi-resonant)ZVS技术描述如后:即由Christopher、P.Henze、Ned Mohan以及John G.Hayes于1989年8月8日在美国专利第4,855,888号所提出的“以零电压切换的恒定频率谐振功率转换器(Constant Frequency Resonant Power Converterwith Zero Voltage Switching)”;由Guichao C.Hua和Fred C.Lee于1995年8月15日在美国专利第5,442,540号所提出的“软切换式脉宽调制转换(Soft-switching PWM Converters)”;还有Yungtaek Jang和Milan M.Jovanovic于2002年3月12日所提出的“软切换式全桥转换器(Soft-switchedFull-bridge Converters)”。用于正向式(forward)ZVS功率转换器的主动箝位(active clamp)技术揭示于下文的中,例如有F.Don Tan于1999年10月26日在美国专利第5,973,939号所提出的“具脉宽调制软切换的双正向式转换器(Double Forward Converter with Soft-PWM Switching)”;由Simon Fraidlin和Anatoliy Polikarpov于2001年2月20日在美国专利第6,191,960号所提出的“主动箝位绝缘的功率转换器以及其操作方法(ActiveClamp Isolated Power Converter and Method of Operating Thereof)”。对于半桥技术来说,开发了一种用于ZVS的非对称设计,即由Rui Liu于2000年5月30日在美国专利第6,069,798号所提出的“非对称的功率转换器及其操作方法(Assymmetrical Power Converter and Method of OperationThereof)”。在各种不同的ZVS转换器中,使用变压器的寄生漏电感(parasitic leakage inductance)以及额外的磁性组件作为谐振电感器(resonant inductor)或开关,用于生出环电流以达到零电压的切换。A power converter is used to convert an unregulated power source into a constant voltage source. A power converter generally includes a transformer including a primary winding and a secondary winding for providing isolation. A switching device is connected to the primary winding to control the transfer of energy from the primary winding to the secondary winding. While higher operating frequencies allow power converters to be smaller in size and weight, switching losses, component stress, and electromagnetic interference are inherently problematic. In recent developments, a common soft switching phase shift design has been proposed to reduce switching losses in high frequency power conversion. Among these developments, the full-bridge quasi-resonant ZVS technique is described as follows: Proposed by Christopher, P. Henze, Ned Mohan, and John G. Hayes in US Patent No. 4,855,888 on August 8, 1989 "Constant Frequency Resonant Power Converter with Zero Voltage Switching"; proposed by Guichao C.Hua and Fred C.Lee on August 15, 1995 in US Patent No. 5,442,540 "Soft-switching PWM Converters"; and "Soft-switched Full-bridge Converters" proposed by Yungtaek Jang and Milan M. Jovanovic on March 12, 2002 bridge Converters)". Active clamping (active clamp) techniques for forward ZVS power converters are disclosed below, for example by F. Don Tan in U.S. Pat. "Double Forward Converter with Soft-PWM Switching"; the "Active Clamp" proposed by Simon Fraidlin and Anatoliy Polikarpov in US Patent No. 6,191,960 on February 20, 2001 Bit-insulated power converter and its method of operation (Active Clamp Isolated Power Converter and Method of Operating Thereof)". For the half-bridge technology, an asymmetric design for ZVS was developed, namely "Asymmetrical Power Converter and Method of Operation Thereof," U.S. Patent No. 6,069,798, May 30, 2000 by Rui Liu (Assymmetrical Power Converter and Method of Operation Thereof)". In various ZVS converters, the parasitic leakage inductance of the transformer and additional magnetic components are used as resonant inductors or switches to generate ring currents to achieve zero-voltage switching.
图1说明一现有的主动箝位功率转换器。图1A~图1D说明上述功率转换器的四个操作阶段。图1A说明当一第一信号S1接通晶体管Q1,其用以将能量从功率转换器的一输入通过一变压器T1传递到功率转换器的一输出上。如图1B所示,当晶体管Q1断开时,变压器T1的能量将经由一寄生二极管D2流入一电容器C1中。同时,一第二信号S2将接通一晶体管Q2,因而达到晶体管Q2的软切换。如图1C所示,当变压器T1的能量完全释放后,电容器C1将透过接通的晶体管Q2开始对变压器T1进行充电。图1D说明第四个操作阶段,其中第二信号S2停用以断开晶体管Q2,因此切断流经变压器T1和电容器C1的间的电流。其间,存储于变压器T1中的能量会生出一环电流,因而将晶体管Q1的寄生电容器Cj放电。为接通寄生二极管D1而达到晶体管Q1的软切换,寄生电容器Cj的电荷必须事先完全释放完毕。Figure 1 illustrates a conventional active clamp power converter. 1A-1D illustrate the four operational phases of the power converter described above. FIG. 1A illustrates when a first signal S 1 turns on transistor Q 1 for transferring energy from an input of the power converter to an output of the power converter through a transformer T 1 . As shown in FIG. 1B, when the transistor Q1 is turned off, the energy of the transformer T1 will flow into a capacitor C1 through a parasitic diode D2 . At the same time, a second signal S 2 will turn on a transistor Q 2 , thereby achieving soft switching of the transistor Q 2 . As shown in FIG. 1C , when the energy of the transformer T1 is fully discharged, the capacitor C1 starts to charge the transformer T1 through the turned-on transistor Q2 . FIG. 1D illustrates a fourth phase of operation in which the second signal S 2 is deactivated to turn off transistor Q 2 , thereby cutting off the current flowing between transformer T 1 and capacitor C 1 . Meanwhile, the energy stored in the transformer T1 generates a loop current, thereby discharging the parasitic capacitor Cj of the transistor Q1 . In order to turn on the parasitic diode D1 to achieve soft switching of the transistor Q1 , the charge of the parasitic capacitor Cj must be completely discharged beforehand.
为达到转换的标准须符合下列条件:In order to qualify for conversion the following conditions must be met:
其中LP是变压器T1的初级绕组的电感,IP是变压器初级绕组的电流,而VIN是功率转换器的输入电压。where L is the inductance of the primary winding of transformer T1 , I is the current of the transformer primary winding, and V is the input voltage of the power converter.
谐振频率fr是由下式给出:The resonant frequency f r is given by:
fr=1/(2π×LP×Cj)f r =1/(2π×L P ×C j )
用于完成软切换的相移(phase shift)的一延迟时间TD1,如下列等式给出:A delay time T D1 for completing the phase shift (phase shift) of the soft handover is given by the following equation:
TD1=1/(4×fr)T D1 =1/(4×f r )
=π×LP×Cj/2=π×L P ×C j /2
图2说明一传统的非对称半桥正向式功率转换器,其中信号S1和S2的操作与图1所示的功率转换器相同。虽然上述的功率转换器能够完成软切换,以减低在重负载条件下的切换损耗,但是,其缺点在于在轻负载条件下功率消耗仍然偏高。FIG. 2 illustrates a conventional asymmetrical half-bridge forward power converter, where the operation of signals S 1 and S 2 is the same as that of the power converter shown in FIG. 1 . Although the aforementioned power converter can perform soft switching to reduce the switching loss under heavy load conditions, its disadvantage is that the power consumption is still relatively high under light load conditions.
实用新型内容Utility model content
本实用新型的目的是提供一软切换式功率转换器,由此而减少在轻负载状况下的功率消耗。The purpose of this utility model is to provide a soft switching power converter, thereby reducing power consumption under light load conditions.
此软切换式功率转换器包括一电容器和一变压器。为进行软切换操作,电容器连接到变压器。一第一开关用来切换变压器,由此将功率从功率转换器的一输入,传递到功率转换器的一输出。一第二开关用来将电容器的能量切换到变压器,由此生出一环电流,以完成第一开关的软切换操作。一控制电路连接到功率转换器的输出,以接收一反馈信号。控制电路响应反馈信号生出一第一信号和一第二信号,用以调节功率转换器的输出。第一信号和一第二信号,分别耦接到第一开关和第二开关,以进行切换操作。反馈信号的一第一范围代表一重负载状况,随着第一信号的启用时间(on-time)的减少,第二信号的启用时间将增加。启用时间(on-time)定义为一个信号处于启用状态的时间区间。在第一开关断开后与第二信号启用前,将生出一第一延迟时间。而在第二开关断开后与第一信号启用前,将生出一第二延迟时间。第二延迟时间于反馈信号的第一范围内为恒定。而第二延迟时间于反馈信号的一第二范围内为可变的,其中第二延迟时间响应反馈信号而比例地增加。反馈信号的第二范围,代表一轻负载状况。控制电路包含一临界,用以定义反馈信号的第一范围及第二范围。此外,控制电路还包括一输入端子和一编程端子。输入端子用于编程反馈信号第一范围的第二延迟时间。编程端子是为编程临界而开发。The soft switching power converter includes a capacitor and a transformer. For soft switching operation, the capacitor is connected to the transformer. A first switch is used to switch the transformer, thereby transferring power from an input of the power converter to an output of the power converter. A second switch is used to switch the energy of the capacitor to the transformer, thereby generating a loop current to complete the soft switching operation of the first switch. A control circuit is connected to the output of the power converter to receive a feedback signal. The control circuit responds to the feedback signal to generate a first signal and a second signal for adjusting the output of the power converter. A first signal and a second signal are respectively coupled to the first switch and the second switch for switching operation. A first range of the feedback signal represents a heavy load condition, and as the on-time of the first signal decreases, the on-time of the second signal increases. On-time is defined as the time interval during which a signal is active. A first delay time is generated after the first switch is turned off and before the second signal is enabled. After the second switch is turned off and before the first signal is enabled, a second delay time will be generated. The second delay time is constant within the first range of the feedback signal. The second delay time is variable within a second range of the feedback signal, wherein the second delay time increases proportionally in response to the feedback signal. The second range of the feedback signal represents a light load condition. The control circuit includes a threshold for defining a first range and a second range of the feedback signal. In addition, the control circuit also includes an input terminal and a programming terminal. The input terminal is used to program the second delay time of the first range of the feedback signal. The programming terminal is developed for programming criticality.
本实用新型的优点是减少在轻负载状况下的功率消耗。The utility model has the advantage of reducing power consumption under light load conditions.
上述说明仅是本实用新型技术方案的概述,为了能够更清楚了解本实用新型的技术手段,并可依照说明书的内容予以实施,以下以本实用新型的较佳实施例并配合附图详细说明如后。The above description is only an overview of the technical solution of the utility model. In order to understand the technical means of the utility model more clearly and implement it according to the contents of the specification, the following is a detailed description of the preferred embodiment of the utility model with accompanying drawings. back.
附图说明Description of drawings
所附的图示提供对本实用新型的进一步的理解,并整合而作为本说明书的一部分。这些图示图解本实用新型的实施例,并配合相关的描述阐明本实用新型的原理。The accompanying diagrams provide further understanding of the utility model and are integrated as a part of this specification. These diagrams illustrate the embodiments of the present invention and explain the principle of the present invention together with the relevant description.
图1是一传统主动箝位功率转换器的电路图;FIG. 1 is a circuit diagram of a conventional active clamp power converter;
图1A至图1D,是说明图1所示的功率转换器的四个操作阶段的示意图;1A to 1D are schematic diagrams illustrating four operating stages of the power converter shown in FIG. 1;
图2是一传统的非对称半桥正向式功率转换器的电路图;Fig. 2 is a circuit diagram of a conventional asymmetrical half-bridge forward power converter;
图3是根据本实用新型一实施例所绘示的软切换式功率转换器的电路图;3 is a circuit diagram of a soft-switching power converter according to an embodiment of the present invention;
图4A和图4B是图3所示的功率转换器的信号波形图;4A and 4B are signal waveform diagrams of the power converter shown in FIG. 3;
图5是根据本实用新型一实施例所绘示的控制电路的电路图;FIG. 5 is a circuit diagram of a control circuit according to an embodiment of the present invention;
图6是根据本实用新型一实施例所绘示的振荡电路的电路图;FIG. 6 is a circuit diagram of an oscillation circuit according to an embodiment of the present invention;
图7是根据本实用新型一实施例所绘示的延迟电路的电路图。FIG. 7 is a circuit diagram of a delay circuit according to an embodiment of the present invention.
具体实施方式Detailed ways
图3是根据本实用新型一实施例所绘示的软切换式功率转换器的电路图。其包括一磁性装置(如变压器30)。变压器30和一电容器35串联连接。电容器35用于软切换。一第一开关10用以切换变压器30,以将能量从功率转换器的一输入传递到功率转换器的一输出。一第二开关20与电容器35相连接以切换电容器35,用以将电容器35的能量传递到这变压器30中。一控制电路100耦接到功率转换器的输出,以响应一反馈信号VFB,从而生出一第一信号S1和一第二信号S2,用以调节功率转换器的输出。第一信号S1和第二信号S2分别耦接并切换第一开关10和第二开关20。具有一参考信号VR的误差放大器(error amplifier)60,经由电阻器51和52连接到功率转换器的输出。一电阻器53和一电容器54建立起误差放大器60的一频率补偿网络。误差放大器60的输出连接到一耦合器65(如一光耦合器)。耦合器65的输出生出反馈信号VFB到控制电路100的一反馈端子FB。控制电路100还包括一临界,其用以定义反馈信号VFB是处于一第一范围还是处于一第二范围。反馈信号VFB的第一范围代表一重负载状况。而反馈信号VFB的第二范围代表一轻负载状况。第一信号S1和第二信号S2,是相应于反馈信号VFB而生出。在反馈信号VFB的第一范围中,第二信号S2的启用时间响应第一信号S1的启用时间的减少而增加。FIG. 3 is a circuit diagram of a soft-switching power converter according to an embodiment of the present invention. It includes a magnetic device (such as a transformer 30). The transformer 30 and a capacitor 35 are connected in series. Capacitor 35 is used for soft switching. A first switch 10 is used to switch the transformer 30 to transfer energy from an input of the power converter to an output of the power converter. A second switch 20 is connected to the capacitor 35 to switch the capacitor 35 for transferring the energy of the capacitor 35 to the transformer 30 . A control circuit 100 is coupled to the output of the power converter in response to a feedback signal V FB to generate a first signal S 1 and a second signal S 2 for regulating the output of the power converter. The first signal S 1 and the second signal S 2 are coupled to and switch the first switch 10 and the second switch 20 respectively. An error amplifier 60 with a reference signal VR is connected to the output of the power converter via resistors 51 and 52 . A resistor 53 and a capacitor 54 establish a frequency compensation network for the error amplifier 60 . The output of error amplifier 60 is connected to a coupler 65 (eg, an optocoupler). The output of the coupler 65 generates the feedback signal V FB to a feedback terminal FB of the control circuit 100 . The control circuit 100 further includes a threshold, which is used to define whether the feedback signal V FB is in a first range or in a second range. The first range of the feedback signal V FB represents a heavy load condition. And the second range of the feedback signal V FB represents a light load condition. The first signal S 1 and the second signal S 2 are generated corresponding to the feedback signal V FB . In the first range of the feedback signal V FB the enable time of the second signal S 2 increases in response to a decrease in the enable time of the first signal S 1 .
图4A和图4B是图3所示的功率转换器的信号波形图。图4A说明在重负载状况下,第一信号和第二信号的波形。图4B说明在轻负载状况下,第一信号和第二信号的波形。在第一开关10断开后与第二信号S2启用前,生出一第一延迟时间TD1。而在此第二开关20断开后与第一信号S1启用前,生出一第二延迟时间TD2。第二延迟时间TD2于反馈信号VFB的第一范围内为恒定的。而第二延迟时间TD2于反馈信号VFB的第二范围内为可变的,其中,第二延迟时间TD2随着反馈信号VFB的减少而比例地延展。4A and 4B are signal waveform diagrams of the power converter shown in FIG. 3 . FIG. 4A illustrates the waveforms of the first signal and the second signal under heavy load conditions. FIG. 4B illustrates the waveforms of the first signal and the second signal under a light load condition. After the first switch 10 is turned off and before the second signal S 2 is turned on, a first delay time T D1 is generated. After the second switch 20 is turned off and before the first signal S 1 is turned on, a second delay time T D2 is generated. The second delay time T D2 is constant within the first range of the feedback signal V FB . The second delay time T D2 is variable within the second range of the feedback signal V FB , wherein the second delay time T D2 extends proportionally with the decrease of the feedback signal V FB .
图3所示的控制电路100还包括一输入端子RD,其用以在反馈信号VFB的第一范围编程第二延迟时间TD2。一电阻器56从控制电路100的输入端子RD连接到一接地参考,由此来编程第二延迟时间TD2。另外,一电阻器57从一编程端子RP连接到接地参考,由此来编程临界。控制电路100的一电流感应端子VS连接到一电阻器50,用以检测变压器30的一切换电流信号VS,以此来完成控制电路100的脉宽调制(Pulse WidthModulation,PWM)控制。The control circuit 100 shown in FIG. 3 further includes an input terminal RD for programming the second delay time T D2 in the first range of the feedback signal V FB . A resistor 56 is connected from the input terminal RD of the control circuit 100 to a ground reference, thereby programming the second delay time T D2 . Additionally, a resistor 57 is connected from a programming terminal RP to the ground reference, thereby programming the threshold. A current sensing terminal VS of the control circuit 100 is connected to a resistor 50 for detecting a switching current signal V S of the transformer 30 , so as to implement Pulse Width Modulation (PWM) control of the control circuit 100 .
图5是根据本实用新型一实施例所绘示的控制电路100的电路图。控制电路100包括一振荡电路200,其用以生出一脉冲信号PLS、一锯齿信号RMP,以及一最大工作周期信号MD。脉冲信号PLS经由一非门71供给到一触发器85中的时钟输入。一比较器80用以将触发器85复位。比较器80的两个输入分别连接到反馈端子FB以及一电路350的一输出。此电路350经由将锯齿信号RMP和切换电流信号VS相加后生成一斜坡信号(slope signal)。一旦斜坡信号高于反馈信号VFB,触发器85即被复位。触发器85的一输出连接到一与门91的一第三输入,由此生出此第一信号S1。与门91的一第二输入和一第四输入分别连接到非门71的一输出以及最大工作周期信号MD。一具有一时钟输入的触发器86,经由一延迟电路300和一非门72而耦接到第一信号S1。图7绘示延迟电路300的电路图。延迟电路300决定第一延迟时间TD1。因此,触发器86在第一信号S1的下降缘后经过第一延迟时间TD1后启用。非门71的输出用于复位触发器86。当脉冲信号PLS被启用时,触发器86被复位。触发器86的一输出连接到一与门92的一第一输入,由此而生出此第二信号S2。与门92的一第二输入连接到非门71的输出。此外,与门92的一输出经由一非门76而连接到与门91的一第一输入。与门91的一输出经由一非门75而连接到与门92的一第三输入,由此形成一互斥电路(exclusive circuit),以此防止第一开关10和第二开关20的交叉传导。由于当脉冲信号PLS启用的时候,第一信号S1和第二信号S2是停用的,因此,随着脉冲信号PLS的脉宽(pulse width)的延展,将造成第一信号S1和第二信号S2的停用时间(off-time)的延展。停用时间的定义为一信号处于停用的时间区段。对于反馈信号VFB的第一范围来讲,电阻器56经由输入端子RD而决定脉冲信号PLS的脉宽。对于反馈信号VFB的第二范围来讲,脉冲信号PLS的脉宽响应反馈信号VFB的减少而延展。因此,使得第一信号S1和第二信号S2的切换频率随着输出负载的减少而降低,由此减少了切换损耗。FIG. 5 is a circuit diagram of the control circuit 100 according to an embodiment of the present invention. The control circuit 100 includes an oscillator circuit 200 for generating a pulse signal PLS, a sawtooth signal RMP, and a maximum duty cycle signal MD. The pulse signal PLS is supplied to a clock input in a flip-flop 85 via an inverter 71 . A comparator 80 is used to reset the flip-flop 85 . Two inputs of the comparator 80 are respectively connected to the feedback terminal FB and an output of a circuit 350 . The circuit 350 generates a slope signal by adding the sawtooth signal RMP and the switching current signal V S . Once the ramp signal is higher than the feedback signal V FB , the flip-flop 85 is reset. An output of flip-flop 85 is connected to a third input of an AND gate 91, whereby the first signal S1 is generated. A second input and a fourth input of the AND gate 91 are respectively connected to an output of the NOT gate 71 and the maximum duty cycle signal MD. A flip-flop 86 with a clock input is coupled to the first signal S 1 via a delay circuit 300 and a NOT gate 72 . FIG. 7 is a circuit diagram of the delay circuit 300 . The delay circuit 300 determines the first delay time T D1 . Therefore, the flip-flop 86 is enabled after the first delay time T D1 has elapsed after the falling edge of the first signal S 1 . The output of NOT gate 71 is used to reset flip-flop 86 . When the pulse signal PLS is enabled, the flip-flop 86 is reset. An output of flip-flop 86 is connected to a first input of an AND gate 92, whereby the second signal S2 is generated. A second input of AND gate 92 is connected to the output of NOT gate 71 . Furthermore, an output of the AND gate 92 is connected to a first input of the AND gate 91 via a NOT gate 76 . An output of the AND gate 91 is connected to a third input of the AND gate 92 via a NOT gate 75, thus forming an exclusive circuit to prevent cross conduction between the first switch 10 and the second switch 20 . Since the first signal S1 and the second signal S2 are disabled when the pulse signal PLS is enabled, the extension of the pulse width of the pulse signal PLS will cause the first signal S1 and the second signal S2 to Extension of the off-time of the second signal S2 . Inactive time is defined as the time period during which a signal is inactive. For the first range of the feedback signal V FB , the resistor 56 determines the pulse width of the pulse signal PLS via the input terminal RD. For the second range of the feedback signal V FB , the pulse width of the pulse signal PLS is extended in response to the decrease of the feedback signal V FB . Therefore, the switching frequency of the first signal S 1 and the second signal S 2 is reduced as the output load decreases, thereby reducing the switching loss.
图6是根据本实用新型一实施例所绘示的振荡电路200的电路图。其中,比较器201和202分别有一折点电压(trip-point voltage)VH和一折点电压VL。比较器201的一负输入与比较器202的一正输入共接到一电容器210。一电流源220经由一开关215对电容器210进行充电。开关216用以对电容器210进行放电。与非门205和206形成一锁闩电路(latchcircuit),其用以生出脉冲信号PLS。脉冲信号PLS分别被比较器201和202的输出启用和停用。一旦电容器210的电压高于折点电压VH,脉冲信号PLS将接通开关216令电容器210进行放电。当电容器210的电压低于折点电压VL时,脉冲信号PLS经由一非门211接通开关215,令电容器210进行充电。因而使电容器210上生成锯齿信号RMP。一比较器203包括一参考电压VM。比较器203的一负输入连接到电容器210。比较器203的一输出生出最大工作周期信号MD,用以决定第一信号S1的一最大工作周期(duty cycle)。一运算放大器230具有一供应一参考电压VR1的正输入,还有一连接到输入端子RD的一负输入。运算放大器230和一晶体管250并会同电阻器56,生出一电流I250。晶体管251和252形成一第一电流反射镜(current mirror)。晶体管254和255形成一第二电流反射镜。一流经晶体管255的电流I255,是由电流I250经由第一电流反射镜以及第二电流反射镜镜像而得。此电流I255进一步耦接到电容器210,并经由开关216的接通而令电容器210进行放电。FIG. 6 is a circuit diagram of an oscillation circuit 200 according to an embodiment of the present invention. Wherein, the comparators 201 and 202 respectively have a trip-point voltage V H and a trip-point voltage V L . A negative input of the comparator 201 and a positive input of the comparator 202 are both connected to a capacitor 210 . A current source 220 charges the capacitor 210 via a switch 215 . The switch 216 is used to discharge the capacitor 210 . The NAND gates 205 and 206 form a latch circuit for generating the pulse signal PLS. The pulse signal PLS is enabled and disabled by the outputs of the comparators 201 and 202, respectively. Once the voltage of the capacitor 210 is higher than the breakpoint voltage V H , the pulse signal PLS turns on the switch 216 to discharge the capacitor 210 . When the voltage of the capacitor 210 is lower than the breakpoint voltage V L , the pulse signal PLS turns on the switch 215 through a NOT gate 211 to charge the capacitor 210 . Thus, the sawtooth signal RMP is generated on the capacitor 210 . A comparator 203 includes a reference voltage V M . A negative input of comparator 203 is connected to capacitor 210 . An output of the comparator 203 generates a maximum duty cycle signal MD for determining a maximum duty cycle of the first signal S1 . An operational amplifier 230 has a positive input supplying a reference voltage V R1 and a negative input connected to the input terminal RD. The operational amplifier 230 and a transistor 250 together with the resistor 56 generate a current I 250 . Transistors 251 and 252 form a first current mirror. Transistors 254 and 255 form a second current mirror. A current I 255 passing through the transistor 255 is obtained by mirroring the current I 250 through the first current mirror and the second current mirror. The current I 255 is further coupled to the capacitor 210 , and the capacitor 210 is discharged by turning on the switch 216 .
连接到编程端子RP的一电流源235与电阻器57,一同生成一用以决定临界的电压。编程端子RP连接到一运算放大器231。而反馈端子FB连接到一运算放大器232。运算放大器231、232,一电阻器270以及一晶体管260构成一电压-电流转换器,由而生成一电流I260。电流I260可以下列等式来表示:A current source 235 connected to the programming terminal RP together with the resistor 57 generates a threshold voltage. The programming terminal RP is connected to an operational amplifier 231 . And the feedback terminal FB is connected to an operational amplifier 232 . The operational amplifiers 231 , 232 , a resistor 270 and a transistor 260 constitute a voltage-current converter to generate a current I 260 . Current I 260 can be represented by the following equation:
I260=(VTH-VFB)/R270 I 260 =(V TH -V FB )/R 270
其中VTH代表临界的电压值;VTH=I235×R57 Where V TH represents the critical voltage value; V TH =I 235 ×R 57
电流I260是在反馈信号VFB低于临界电压VTH时而生成。晶体管261和262形成一第三电流反射镜,电流I260经由第三电流反射镜镜像生成一电流I262。电流I262进一步耦接到晶体管255,因而决定电容器210的一放电电流ID。放电电流ID可由下列等式给出:The current I 260 is generated when the feedback signal V FB is lower than the threshold voltage V TH . The transistors 261 and 262 form a third current mirror, and the current I 260 is mirrored by the third current mirror to generate a current I 262 . The current I 262 is further coupled to the transistor 255 , thereby determining a discharge current ID of the capacitor 210 . The discharge current ID can be given by the following equation:
ID=I255-I262 I D =I 255 -I 262
ID=[k1×(VR1/R56)]-{k3×[(I235×R57)-VFB]/R270}I D =[k 1 ×(V R1 /R 56 )]-{k 3 ×[(I 235 ×R 57 )-V FB ]/R 270 }
其中,k1和k3分别是第一电流反射镜和第三电流反射镜的镜射比率;R56、R57、R270是电阻器56、57和270的电阻值。Wherein, k 1 and k 3 are mirroring ratios of the first current mirror and the third current mirror respectively; R 56 , R 57 , R 270 are resistance values of resistors 56 , 57 and 270 .
因此,对于反馈信号VFB的第一范围来讲,电阻器56决定电流I255以及电容器210的放电电流ID。而电阻器57决定临界,由此决定了反馈信号VFB的第一范围和第二范围。反馈信号VFB响应输出负载的减少而降低。因此,对于反馈信号VFB的第二范围来讲,依据输出负载的减少,电容器210的放电电流ID将比例地降低,令第二延迟时间TD2比例地延展。Therefore, for the first range of the feedback signal V FB , the resistor 56 determines the current I 255 and the discharge current ID of the capacitor 210 . The resistor 57 determines the threshold, thereby determining the first range and the second range of the feedback signal V FB . The feedback signal V FB decreases in response to the decrease in output load. Therefore, for the second range of the feedback signal V FB , according to the reduction of the output load, the discharge current ID of the capacitor 210 will be reduced proportionally, so that the second delay time T D2 will be extended proportionally.
由于第一开关10和第二开关20的切换频率随着输出负载的减少而降低,因此,在轻负载状况的下功率转换器的功率消耗便得以降低。此外,只有第二延迟时间TD2是可变的。第一信号S1和第二信号S2的时序,在轻负载和重负载状况下都保持一样,因此确保了软切换式功率转换器的正常操作。Since the switching frequency of the first switch 10 and the second switch 20 decreases as the output load decreases, the power consumption of the power converter can be reduced under light load conditions. Furthermore, only the second delay time T D2 is variable. The timing of the first signal S 1 and the second signal S 2 remains the same under light load and heavy load conditions, thus ensuring the normal operation of the soft-switching power converter.
以上所述,仅是本实用新型的较佳实施例而已,并非对本实用新型作任何形式上的限制,虽然本实用新型已以较佳实施例揭露如上,然而并非用以限定本实用新型,任何熟悉本专业的技术人员,在不脱离本实用新型技术方案范围内,当可利用上述揭示的结构及技术内容作出些许的更动或修饰为等同变化的等效实施例,但是凡是未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本实用新型技术方案的范围内。The above are only preferred embodiments of the present utility model, and do not limit the utility model in any form. Although the utility model has been disclosed as above with preferred embodiments, it is not intended to limit the utility model. Any Those skilled in the art, without departing from the scope of the technical solution of the present utility model, can use the structure and technical content disclosed above to make some changes or modify equivalent embodiments with equivalent changes, but all without departing from the utility model The content of the new technical solution, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present utility model still belong to the scope of the technical solution of the utility model.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2006200081404U CN2888736Y (en) | 2006-03-17 | 2006-03-17 | Soft-switching power converter with energy-saving circuit for light-load operation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2006200081404U CN2888736Y (en) | 2006-03-17 | 2006-03-17 | Soft-switching power converter with energy-saving circuit for light-load operation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2888736Y true CN2888736Y (en) | 2007-04-11 |
Family
ID=38047307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2006200081404U Expired - Lifetime CN2888736Y (en) | 2006-03-17 | 2006-03-17 | Soft-switching power converter with energy-saving circuit for light-load operation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2888736Y (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100511946C (en) * | 2006-03-16 | 2009-07-08 | 崇贸科技股份有限公司 | Soft switching power converter with power saving circuit for light load operation |
CN103401431A (en) * | 2013-08-22 | 2013-11-20 | 武汉大学 | High-stability flyback direct current-direct current (DC-DC) converter |
CN103825468A (en) * | 2013-02-18 | 2014-05-28 | 崇贸科技股份有限公司 | Control circuit of flyback power converter |
CN109075715A (en) * | 2017-10-27 | 2018-12-21 | 深圳欣锐科技股份有限公司 | Two-way isolated form digital DC/DC power supply and control method |
-
2006
- 2006-03-17 CN CNU2006200081404U patent/CN2888736Y/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100511946C (en) * | 2006-03-16 | 2009-07-08 | 崇贸科技股份有限公司 | Soft switching power converter with power saving circuit for light load operation |
CN103825468A (en) * | 2013-02-18 | 2014-05-28 | 崇贸科技股份有限公司 | Control circuit of flyback power converter |
CN103401431A (en) * | 2013-08-22 | 2013-11-20 | 武汉大学 | High-stability flyback direct current-direct current (DC-DC) converter |
CN103401431B (en) * | 2013-08-22 | 2016-01-27 | 武汉大学 | A kind of high stability inverse-excitation type DC-DC converter |
CN109075715A (en) * | 2017-10-27 | 2018-12-21 | 深圳欣锐科技股份有限公司 | Two-way isolated form digital DC/DC power supply and control method |
WO2019080080A1 (en) * | 2017-10-27 | 2019-05-02 | 深圳欣锐科技股份有限公司 | Bidirectional isolated digital dcdc power supply and control method |
CN109075715B (en) * | 2017-10-27 | 2021-09-28 | 深圳欣锐科技股份有限公司 | Bidirectional isolation type digital DCDC power supply and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7286376B2 (en) | Soft-switching power converter having power saving circuit for light load operations | |
US10447148B2 (en) | DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods | |
US8520420B2 (en) | Controller for modifying dead time between switches in a power converter | |
JP5463759B2 (en) | Switching power supply device and switching power supply control circuit | |
US6744649B1 (en) | Zero switching power converter operable as asymmetrical full-bridge converter | |
EP3414824B1 (en) | Dc/dc resonant converters and power factor correction using resonant converters, and corresponding control methods | |
US20040125619A1 (en) | Soft-switching power converter | |
US10418913B2 (en) | DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods | |
CN100511946C (en) | Soft switching power converter with power saving circuit for light load operation | |
CN109004840B (en) | A control method for improving output precision of switching power supply | |
WO2012163248A1 (en) | Switching power supply control device and flyback switching power supply comprising same | |
US11757367B2 (en) | Flyback switch circuit and control method thereof | |
CN103280963B (en) | A kind of PFC control circuit reducing power tube conducting power consumption | |
CN111585440B (en) | Control system and method for active clamp flyback converter | |
WO2022166566A1 (en) | Switching tube control method and device, and direct-current converter | |
CN1938931A (en) | Soft switching power converter with power saving components | |
US10734889B2 (en) | DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods | |
US20100202167A1 (en) | Soft switching power converter with a variable switching frequency for improving operation and efficiency | |
CN111585441B (en) | Control system and method for primary side regulation active clamping flyback converter | |
US10447147B2 (en) | DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods | |
CN116317593A (en) | Control method of switching converter | |
CN2888736Y (en) | Soft-switching power converter with energy-saving circuit for light-load operation | |
US12081109B2 (en) | Switching converter and control circuit thereof | |
CN104022672B (en) | Self adaptation adjustable delay circuit for Sofe Switch ZVT changer | |
TWI768888B (en) | Two-stage power converter and method of operating a two-stage converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Effective date of abandoning: 20090708 |
|
AV01 | Patent right actively abandoned |
Effective date of abandoning: 20090708 |
|
C25 | Abandonment of patent right or utility model to avoid double patenting |