CN2826698Y - Germanium-silicon Schottky diode - Google Patents
Germanium-silicon Schottky diode Download PDFInfo
- Publication number
- CN2826698Y CN2826698Y CN 200520013604 CN200520013604U CN2826698Y CN 2826698 Y CN2826698 Y CN 2826698Y CN 200520013604 CN200520013604 CN 200520013604 CN 200520013604 U CN200520013604 U CN 200520013604U CN 2826698 Y CN2826698 Y CN 2826698Y
- Authority
- CN
- China
- Prior art keywords
- silicon
- layer
- germanium
- window
- silicon nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 38
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 15
- 239000010703 silicon Substances 0.000 claims abstract description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000004411 aluminium Substances 0.000 claims abstract 3
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- PEUPIGGLJVUNEU-UHFFFAOYSA-N nickel silicon Chemical compound [Si].[Ni] PEUPIGGLJVUNEU-UHFFFAOYSA-N 0.000 abstract description 14
- 238000002955 isolation Methods 0.000 abstract description 3
- 238000001259 photo etching Methods 0.000 abstract 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 235000012239 silicon dioxide Nutrition 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及半导体器件,具体说是关于锗硅肖特基二极管。The utility model relates to a semiconductor device, in particular to a germanium-silicon schottky diode.
背景技术Background technique
肖特基二极管因其具有多数载流子工作、响应速度快和无少子积累等特征而被广泛的用于高频、高速、探测等方面。在本实用新型做出前,传统的锗硅肖特基二极管自下而上依次有欧姆接触电极,硅衬底层,锗硅外延层,开有窗口的氮化硅层,在氮化硅窗口中置有镍硅化合物层,氮化硅窗口上复盖铝电极,这种结构的锗硅肖特基二极管的锗硅与氮化硅接触面积大,界面缺陷多,导致器件漏电流大。制作过程中,采用先在硅衬底上生长锗硅层,再在锗硅层上面生长一层氮化硅。由于锗硅材料在高温下会发生应变弛豫,因而只有采用低温沉积氮化硅,这给随后的器件隔离及集成工艺带来较大限制。Schottky diodes are widely used in high-frequency, high-speed, and detection due to their characteristics of majority carrier operation, fast response speed, and no minority carrier accumulation. Before the utility model was made, the traditional SiGe Schottky diodes had ohmic contact electrodes from bottom to top, silicon substrate layer, SiGe epitaxial layer, silicon nitride layer with window, and in the silicon nitride window A nickel-silicon compound layer is placed, and the silicon nitride window is covered with an aluminum electrode. The silicon germanium Schottky diode with this structure has a large contact area between the silicon germanium and the silicon nitride, and there are many interface defects, resulting in a large leakage current of the device. During the manufacturing process, a silicon germanium layer is grown on a silicon substrate first, and then a layer of silicon nitride is grown on the silicon germanium layer. Since silicon germanium materials will undergo strain relaxation at high temperatures, only low-temperature deposition of silicon nitride is used, which brings great limitations to subsequent device isolation and integration processes.
发明内容Contents of the invention
本实用新型的目的是提供一种结构新颖的锗硅肖特基二极管,以提高锗硅肖特基二极管原型器件的质量。The purpose of the utility model is to provide a germanium-silicon schottky diode with a novel structure, so as to improve the quality of the germanium-silicon schottky diode prototype device.
本实用新型的锗硅肖特基二极管包括硅衬底、锗硅层、开有窗口的氮化硅层、镍硅化合物层、铝电极以及欧姆接触电极,欧姆接触电极、硅衬底和开有窗口的氮化硅层自下而上依次迭置,锗硅层和镍硅化合物层在氮化硅层的窗口内,其中镍硅化合物层在锗硅层的上面,在氮化硅层的窗口上覆盖与镍硅化合物层接触的铝电极。The silicon germanium Schottky diode of the utility model comprises a silicon substrate, a silicon germanium layer, a silicon nitride layer with a window, a nickel silicon compound layer, an aluminum electrode and an ohmic contact electrode, an ohmic contact electrode, a silicon substrate and a window with The silicon nitride layer of the window is stacked successively from bottom to top, the silicon germanium layer and the nickel silicon compound layer are in the window of the silicon nitride layer, wherein the nickel silicon compound layer is on the silicon germanium layer, and the silicon nitride layer is in the window An overlying aluminum electrode in contact with the nickel silicon compound layer.
本实用新型的锗硅肖特基二极管的制作方法,包括以下步骤:The manufacture method of the silicon germanium schottky diode of the present utility model comprises the following steps:
1)将清洗好的硅衬底放入低压化学气相沉积装置中,在700~800℃下以SiH2Cl2和NH3为气源生长一层氮化硅层,氮化硅的厚度为0.5~0.6μm;1) Put the cleaned silicon substrate into a low-pressure chemical vapor deposition device, and grow a silicon nitride layer at 700-800°C with SiH 2 Cl 2 and NH 3 as gas sources. The thickness of silicon nitride is 0.5 ~0.6μm;
2)在600℃下以硅烷为气源在氮化硅表面生长一层二氧化硅层,二氧化硅的厚度为0.2~0.3μm;2) At 600°C, a layer of silicon dioxide is grown on the surface of silicon nitride with silane as the gas source, and the thickness of the silicon dioxide is 0.2-0.3 μm;
3)在二氧化硅层表面光刻出窗口,用180℃的热磷酸去掉窗口处裸露的氮化硅层;3) Photoetch a window on the surface of the silicon dioxide layer, and remove the exposed silicon nitride layer at the window with hot phosphoric acid at 180°C;
4)放入超高真空化学气相沉积装置中生长锗硅层,生长温度为550~650℃,使锗硅层的厚度小于氮化硅的厚度;4) Putting it into an ultra-high vacuum chemical vapor deposition device to grow a germanium-silicon layer at a growth temperature of 550-650° C., so that the thickness of the germanium-silicon layer is smaller than that of silicon nitride;
5)用浓度为5%的氢氟酸去除二氧化硅层,沉积在二氧化硅层上的锗硅层也同时被除去;5) removing the silicon dioxide layer with hydrofluoric acid with a concentration of 5%, and the silicon germanium layer deposited on the silicon dioxide layer is also removed simultaneously;
6)将样品放入蒸发设备中,采用电子束蒸发方法在氮化硅及锗硅层表面蒸镀一层厚为10~30nm的金属镍;6) Put the sample into the evaporation equipment, and use the electron beam evaporation method to evaporate a layer of metallic nickel with a thickness of 10-30nm on the surface of the silicon nitride and silicon germanium layer;
7)放入快速热处理炉中,400~700℃下退火30~90秒,在窗口处的锗硅层上形成镍硅化合物层,冷却后采用1∶1的浓硫酸和双氧水清洗;7) Put it in a rapid heat treatment furnace, anneal at 400-700°C for 30-90 seconds, form a nickel-silicon compound layer on the germanium-silicon layer at the window, and clean it with 1:1 concentrated sulfuric acid and hydrogen peroxide after cooling;
8)将步骤7)所得制品放入蒸发设备中,在制品两面分别蒸镀厚为200nm的铝电极和欧姆接触电极;8) Put the product obtained in step 7) into the evaporation equipment, and vapor-deposit aluminum electrodes and ohmic contact electrodes with a thickness of 200 nm on both sides of the product;
9)反刻电极,去除氮化硅上沉积的铝,然后在450℃下进行铝合金化至少10分钟。9) Etch the electrode back, remove the aluminum deposited on the silicon nitride, and then carry out aluminum alloying at 450° C. for at least 10 minutes.
上述的硅衬底可以是电阻率为10-3Ω·cm的重掺杂N型或P型硅衬底。The aforementioned silicon substrate may be a heavily doped N-type or P-type silicon substrate with a resistivity of 10 -3 Ω·cm.
本实用新型的锗硅肖特基二极管由于锗硅层仅仅局限在由氮化硅层包围的光刻窗口内,大大减少了锗硅与介质层的接触面积,界面密度降低,减少了器件的漏电流,提高了器件的性能,这与传统的肖特基二极管结构完全不同。由于器件的锗硅层只存在于光刻窗口处,因而器件制造无须任何隔离技术,简化了工艺,提高了集成度。Since the silicon germanium Schottky diode of the utility model is only limited in the photolithography window surrounded by the silicon nitride layer, the contact area between the silicon germanium and the dielectric layer is greatly reduced, the interface density is reduced, and the leakage of the device is reduced. current, improving the performance of the device, which is completely different from the traditional Schottky diode structure. Since the silicon germanium layer of the device only exists at the photolithographic window, the device manufacturing does not require any isolation technology, which simplifies the process and improves the integration level.
附图说明Description of drawings
图1是本实用新型的锗硅肖特基二极管原型器件的结构示意图。Fig. 1 is a structural schematic diagram of a silicon germanium Schottky diode prototype device of the present invention.
具体实施方式Detailed ways
以下结合具体实例进一步说明本实用新型。The utility model is further described below in conjunction with specific examples.
参照图1,本实用新型的锗硅肖特基二极管包括硅衬底1、锗硅层2、开有窗口的氮化硅层3、镍硅化合物层4、铝电极5以及欧姆接触电极6,欧姆接触电极6、硅衬底1和开有窗口的氮化硅层3自下而上依次迭置,锗硅层2和镍硅化合物层4在氮化硅层3的窗口内,其中镍硅化合物层4在锗硅层2的上面,在氮化硅层的窗口上覆盖与镍硅化合物层接触的铝电极。With reference to Fig. 1, the germanium-silicon Schottky diode of the present utility model comprises silicon substrate 1, germanium-silicon layer 2,
制作本实用新型锗硅肖特基二极管的方法,步骤如下:The method for making the utility model germanium-silicon Schottky diode, the steps are as follows:
1)将N型(100)电阻率为0.008Ω·cm的硅衬底清洗干净后放入低压化学气相沉积装置中,在750℃下以SiH2Cl2和NH3为气源生长一层氮化硅层,氮化硅的厚度为0.5μm;1) After cleaning the N-type (100) silicon substrate with a resistivity of 0.008Ω·cm, put it into a low-pressure chemical vapor deposition device, and grow a layer of nitrogen at 750°C with SiH 2 Cl 2 and NH 3 as gas sources silicon nitride layer, the thickness of silicon nitride is 0.5 μm;
2)然后在600℃下以硅烷为气源在氮化硅表面生长一层二氧化硅层,二氧化硅的厚度为0.2μm;2) Then grow a silicon dioxide layer on the surface of the silicon nitride at 600° C. with silane as the gas source, and the thickness of the silicon dioxide is 0.2 μm;
3)利用标准光刻工艺先在二氧化硅层表面光刻出窗口,窗口大小依光刻板尺寸决定,然后用180℃的热磷酸去掉窗口处裸露的氮化硅层;3) Use the standard photolithography process to first photoetch a window on the surface of the silicon dioxide layer, the size of the window is determined by the size of the photolithography plate, and then use 180°C hot phosphoric acid to remove the exposed silicon nitride layer at the window;
4)将光刻好的样品放入超高真空化学气相沉积装置中生长锗硅层,生长温度为550℃,使锗硅层的厚度小于氮化硅的厚度;4) Put the photoetched sample into an ultra-high vacuum chemical vapor deposition device to grow a germanium-silicon layer at a growth temperature of 550° C., so that the thickness of the germanium-silicon layer is smaller than that of silicon nitride;
5)用浓度为5%的氢氟酸去除二氧化硅层,沉积在二氧化硅层上的锗硅层也同时被除去;5) removing the silicon dioxide layer with hydrofluoric acid with a concentration of 5%, and the silicon germanium layer deposited on the silicon dioxide layer is also removed simultaneously;
6)将样品放入蒸发设备中,采用电子束蒸发方法在氮化硅及锗硅层表面蒸镀一层厚度为20nm的金属镍;6) Put the sample into the evaporation equipment, and use the electron beam evaporation method to evaporate a layer of metallic nickel with a thickness of 20nm on the surface of the silicon nitride and silicon germanium layer;
7)放入快速热处理炉中,500℃下退火60秒,在窗口处的锗硅层上形成镍硅化合物层,冷却后采用1∶1的浓硫酸和双氧水清洗;7) Put it in a rapid heat treatment furnace, anneal at 500°C for 60 seconds, and form a nickel-silicon compound layer on the germanium-silicon layer at the window, and clean it with 1:1 concentrated sulfuric acid and hydrogen peroxide after cooling;
8)将步骤7)所得制品放入蒸发设备中,按常规方法在制品两面分别蒸镀厚度为200nm的铝电极和欧姆接触电极;8) Put the product obtained in step 7) into an evaporation device, and vapor-deposit an aluminum electrode and an ohmic contact electrode with a thickness of 200 nm on both sides of the product according to a conventional method;
9)反刻电极,去除氮化硅上沉积的铝,然后在450℃下进行铝合金化10分钟,制得本实用新型的锗硅肖特基二极管。9) Etch the electrode back, remove the aluminum deposited on the silicon nitride, and then carry out aluminum alloying at 450° C. for 10 minutes to obtain the silicon germanium Schottky diode of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200520013604 CN2826698Y (en) | 2005-07-28 | 2005-07-28 | Germanium-silicon Schottky diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200520013604 CN2826698Y (en) | 2005-07-28 | 2005-07-28 | Germanium-silicon Schottky diode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2826698Y true CN2826698Y (en) | 2006-10-11 |
Family
ID=37066880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200520013604 Expired - Lifetime CN2826698Y (en) | 2005-07-28 | 2005-07-28 | Germanium-silicon Schottky diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2826698Y (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100372128C (en) * | 2005-07-28 | 2008-02-27 | 浙江大学 | A silicon germanium schottky diode and its manufacturing method |
-
2005
- 2005-07-28 CN CN 200520013604 patent/CN2826698Y/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100372128C (en) * | 2005-07-28 | 2008-02-27 | 浙江大学 | A silicon germanium schottky diode and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1230914C (en) | Schottky diode prototyping element and preparation thereof | |
CN1473355A (en) | Electrodes for P-type SiC | |
CN106887470A (en) | Ga2O3Schottky diode device structure and preparation method thereof | |
CN103117298A (en) | Ohmic electrode structure of silicon carbide and manufacturing method thereof | |
CN112038398B (en) | Preparation method of silicon carbide power diode device | |
CN108461543A (en) | A kind of GaN HEMT devices and preparation method thereof | |
CN110660643A (en) | Method for optimizing passivation of gallium nitride high electron mobility transistor | |
CN106684157A (en) | Three-stage field plate terminal-based 4H-SiC schottky diode and manufacturing method | |
CN109686667A (en) | A kind of SiC base MOS device and its preparation method and application | |
CN103928524B (en) | Carborundum UMOSFET devices and preparation method with N-type drift layer table top | |
CN111540788A (en) | Schottky diode and preparation method thereof | |
CN103928345A (en) | Method for preparing silicon carbide UMOSFET device with N-type heavy doping drift layer table board formed by ion implantation | |
CN100372128C (en) | A silicon germanium schottky diode and its manufacturing method | |
CN2826698Y (en) | Germanium-silicon Schottky diode | |
CN112018177B (en) | Full-vertical Si-based GaN UMOSFET power device and preparation method thereof | |
CN102263166B (en) | Method for improving performances of AlGaN-based detector by using nano particles | |
CN116581159B (en) | Vertical power device and preparation method thereof | |
CN117936384A (en) | SiC DTMOSFET integrated with TJBS and preparation method thereof | |
CN117712167A (en) | Transistor with three passivation layers and preparation method thereof | |
CN103928346B (en) | It is epitaxially-formed the UMOSFET device preparation method of N-type heavy doping drift layer table top | |
CN114497186A (en) | Preparation method of diamond/gallium oxide heterogeneous pn junction diode | |
JP4036075B2 (en) | Method for manufacturing electrode for p-type SiC | |
CN2826699Y (en) | Germanium-silicon Schottky diode | |
CN100372129C (en) | Manufacturing method of silicon germanium schottky diode | |
JP3959203B2 (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Effective date of abandoning: 20080227 |
|
C25 | Abandonment of patent right or utility model to avoid double patenting |