CN2628239Y - Bionic robot fish - Google Patents
Bionic robot fish Download PDFInfo
- Publication number
- CN2628239Y CN2628239Y CN 03259442 CN03259442U CN2628239Y CN 2628239 Y CN2628239 Y CN 2628239Y CN 03259442 CN03259442 CN 03259442 CN 03259442 U CN03259442 U CN 03259442U CN 2628239 Y CN2628239 Y CN 2628239Y
- Authority
- CN
- China
- Prior art keywords
- fish
- motor
- swing
- sensor
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241000251468 Actinopterygii Species 0.000 title claims abstract description 131
- 239000011664 nicotinic acid Substances 0.000 title claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 9
- 210000004690 animal fin Anatomy 0.000 claims description 8
- 230000000007 visual effect Effects 0.000 claims description 8
- 238000007667 floating Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 2
- 230000009182 swimming Effects 0.000 abstract description 9
- 230000008447 perception Effects 0.000 abstract description 3
- 230000033001 locomotion Effects 0.000 description 12
- 238000007789 sealing Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000010985 leather Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000036544 posture Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Landscapes
- Toys (AREA)
Abstract
Description
一、技术领域1. Technical field
本实用新型涉及仿生机器人,尤其是一种可以在水中游弋的鱼形机器人。The utility model relates to a bionic robot, in particular to a fish-shaped robot capable of swimming in water.
二、背景技术2. Background technology
现有的各类所谓“机器鱼”(例如CN2476316Y中所述的新型遥控多关节仿生机器鱼),虽然在外观造型上同实际鱼类比较接近,但它们在水中运动时,其运动特征由于机构、运动协调性等因素的影响同实际鱼类存在很大差距,也不能自主的实现游动中的障碍规避、实时沉浮等机能。Existing all kinds of so-called "robot fish" (such as the novel remote control multi-joint bionic robot fish described in CN2476316Y), although they are relatively close to actual fish in appearance, when they move in water, their motion characteristics are due to mechanism There is a big gap between the influence of factors such as , movement coordination, and actual fish, and they cannot autonomously realize functions such as obstacle avoidance and real-time ups and downs during swimming.
三、发明内容3. Contents of the invention
1、技术问题1. Technical issues
本实用新型的目的在于提供一种可以在水中完全模仿鱼类游动的仿生机器鱼。The purpose of the utility model is to provide a bionic robot fish that can completely imitate fish swimming in water.
2、技术方案2. Technical solution
本实用新型的仿生机器鱼,由外壳和控制部分及驱动部分所组成,其特征在于该仿生机器鱼由鱼形外壳及框架、沉浮机构、摇摆机构、摆动机构、信息感知机构、控制器及电源构成;鱼身与鱼尾之间为活动连接;框架密封在鱼形外壳内,沉浮机构、摇摆机构、信息感知机构、控制器及电源均安装在框架内;沉浮机构置于鱼头内,由鱼头沉浮电机连接驱动丝杠,压块的上部套在驱动丝杠上,压块的下部压在水袋(34)旁,水袋内腔与外界通过导管连通;摇摆机构由摇摆电机连接驱动四连杆的曲柄摇杆机构,曲柄摇杆机构连接驱动伸出杆,伸出杆的外端连接鱼鳍,该部分为左右各一个对称设置;摆动机构由摆动电机连接驱动导出杆组成,导出杆的外端连接驱动固定在鱼尾上的摆动连接件;信息感知机构中的距离传感器设在鱼头的最前部,视觉传感器设在鱼头前部的鱼眼位置,姿态传感器、压力传感器设在鱼身内;控制器及电源设在鱼身内。The bionic robot fish of the present utility model is composed of a shell, a control part and a driving part, and is characterized in that the bionic robot fish is composed of a fish-shaped shell and a frame, a sinking mechanism, a swing mechanism, a swing mechanism, an information sensing mechanism, a controller and a power supply. Composition; the fish body and fish tail are movable connections; the frame is sealed in the fish-shaped shell, and the sinking and floating mechanism, swinging mechanism, information sensing mechanism, controller and power supply are all installed in the frame; the sinking and floating mechanism is placed in the fish head, and the The fish head ups and downs motor is connected to the driving screw, the upper part of the briquetting block is sleeved on the driving screw, and the lower part of the briquetting block is pressed beside the water bag (34), and the inner chamber of the water bag is communicated with the outside world through a conduit; the swing mechanism is connected and driven by the swing motor The four-link crank rocker mechanism, the crank rocker mechanism is connected to drive the extension rod, and the outer end of the extension rod is connected to the fish fin, and this part is symmetrically arranged on the left and right; the swing mechanism is composed of a swing motor connected to drive the output rod, and the output The outer end of the rod is connected to drive the swing connector fixed on the fish tail; the distance sensor in the information sensing mechanism is set at the front of the fish head, the visual sensor is set at the fish eye position at the front of the fish head, and the attitude sensor and pressure sensor are set at the front of the fish head. Inside the fish body; the controller and power supply are located inside the fish body.
所述鱼尾部分可以是一节、两节或更多节,关节之间通过双摇杆传动机构与鱼身的后部连接。所述沉浮机构中的鱼头沉浮电机通过反馈电位计再与控制器中的电机驱动电路相连;摆动机构中的摆动电机通过反馈电位计再与控制器中的电机驱动电路相连。所述视觉传感器安装在鱼头两侧,为双目微型CCD摄像头。所述安装在鱼头最前部位的距离传感器为超声传感器。所述姿态传感器为高精度陀螺仪,安装在鱼身部位的检测仓内。所述压力传感器为流体压力传感器,同样安装在鱼身部位的检测仓内。鱼体密封结构可由头身密封腔和尾密封腔组成。尾密封腔可以是一节、两节或更多节。The fish tail part can be one joint, two joints or more joints, and the joints are connected with the rear part of the fish body through a double rocker transmission mechanism. The fish head sinking motor in the sinking mechanism is connected with the motor drive circuit in the controller through the feedback potentiometer; the swing motor in the swing mechanism is connected with the motor drive circuit in the controller through the feedback potentiometer. Described visual sensor is installed on fish head both sides, is binocular miniature CCD camera. The distance sensor installed at the foremost part of the fish head is an ultrasonic sensor. The attitude sensor is a high-precision gyroscope installed in the detection chamber of the fish body. The pressure sensor is a fluid pressure sensor, which is also installed in the detection chamber of the fish body. The sealing structure of the fish body can be composed of a head-body sealing cavity and a tail sealing cavity. The tail sealing cavity can be one section, two sections or more sections.
所述控制器包括微处理器、信号采集器、信号转换器和电机驱动电路,相应的传感器分别与信号采集器相连,信号采集器与微处理器相连,微处理器再通过信号转换器与电机驱动电路相连,电机驱动电路与相应的电机相连;电源为自带电池,分别与相应的传感器、电机和控制器相连。The controller includes a microprocessor, a signal collector, a signal converter and a motor drive circuit, the corresponding sensors are respectively connected to the signal collector, the signal collector is connected to the microprocessor, and the microprocessor is connected to the motor through the signal converter. The drive circuit is connected, and the motor drive circuit is connected with the corresponding motor; the power supply is a self-contained battery, which is respectively connected with the corresponding sensor, motor and controller.
本实用新型的鱼体通过鱼尾以及尾鳍的摆动作为动力进行游动,这一运动是由摆动电机转动带动双摇杆传动机构运动从而最终实现鱼尾与尾鳍的摆动,使得鱼体自如游动。鱼体的平衡主要通过摇摆电机转动带动四连杆的曲柄摇杆机构运动从而最终实现鱼鳍的来回转动(即摇摆),鱼鳍利用其自身的摇摆和前进时水流对鳍的作用力,控制鱼身的摇摆。鱼体的沉浮则通过沉浮电机驱动丝杠带动压块改变水袋的体积、从而改变鱼头的重量而实现。在鱼体上安置的视觉、距离、姿态、压力等一系列传感器可以实时感知环境情况、获取环境信息;通过安装于鱼体的以微处理器为核心的控制器以及相应的控制软件使上述各个部分协调工作,模拟鱼在水下三维游动,自主的实现游动中的障碍规避、实时沉浮等机能。The fish body of the utility model swims through the swing of the fish tail and tail fin as power. This movement is driven by the rotation of the swing motor to drive the movement of the double rocker transmission mechanism to finally realize the swing of the fish tail and tail fin, so that the fish body can swim freely. . The balance of the fish body is mainly through the rotation of the swing motor to drive the movement of the four-link crank rocker mechanism to finally realize the back and forth rotation of the fish fins (that is, swing). The swaying of the fish body. The ups and downs of the fish body are realized by driving the lead screw driven by the ups and downs motor to drive the pressing block to change the volume of the water bag, thereby changing the weight of the fish head. A series of sensors such as vision, distance, attitude, and pressure placed on the fish body can sense the environment and obtain environmental information in real time; through the microprocessor-based controller installed on the fish body and the corresponding control software, the above Partial coordination works, simulating the three-dimensional swimming of fish underwater, and autonomously realizing functions such as obstacle avoidance and real-time ups and downs during swimming.
3、有益效果3. Beneficial effects
本实用新型的仿生机器鱼可以在水中完全模仿鱼类游动,能够全自主的模仿所设定的特定鱼类的巡游、机动运动以及规避障碍、实时自动沉浮等机能,从而实现了仿生机器鱼的智能化游动,并且在运动特征上具备该鱼种所特有的减阻特性和尾迹特性、推进效率。The bionic robot fish of the utility model can completely imitate the swimming of fish in water, and can fully autonomously imitate the parade, maneuvering movement, obstacle avoidance, real-time automatic ups and downs and other functions of the set specific fish, thus realizing the bionic robot fish Intelligent swimming, and has the unique drag reduction characteristics, wake characteristics and propulsion efficiency of this fish species in terms of movement characteristics.
四、附图说明4. Description of drawings
图1为本实用新型仿生机器鱼的总体结构示意图。Figure 1 is a schematic diagram of the overall structure of the utility model bionic robot fish.
图2为本实用新型仿生机器鱼的总体结构俯视图。Fig. 2 is a top view of the overall structure of the bionic robotic fish of the present invention.
图3为本实用新型仿生机器鱼的沉浮机构3的结构示意图。Fig. 3 is a structural schematic diagram of the ups and
图4为本实用新型仿生机器鱼的鱼身11部分的结构示意图。Fig. 4 is a structural schematic diagram of the
图5为图4中本实用新型仿生机器鱼的摇摆机构4的前视结构示意图。Fig. 5 is a front view structural diagram of the
图6为本实用新型仿生机器鱼的控制器7的结构示意图。Fig. 6 is a structural schematic diagram of the
图7为本实用新型仿生机器鱼的电机驱动电路示意图(图中只给出了其中一个电机的驱动电路,其余的都相同)。Fig. 7 is a schematic diagram of the motor drive circuit of the utility model bionic robotic fish (only the drive circuit of one of the motors is shown in the figure, and the rest are all the same).
图8为本实用新型仿生机器鱼的控制软件流程图。Fig. 8 is a flow chart of the control software of the utility model bionic robotic fish.
以上图中有鱼形外壳1、鱼身11、检测仓10、鱼尾12;框架2;沉浮机构3、鱼头沉浮电机31、驱动丝杠32、压块33、水袋34、导管35、电位计36;摇摆机构4、摇摆电机41、曲柄摇杆机构42、伸出杆43、鱼鳍44;摆动机构5、摆动电机51、导出杆52、摆动连接件53、电位计54;信息感知机构6、距离传感器61、视觉传感器62、姿态传感器63、压力传感器64;控制器7;电源8。In the above figure, there are fish-shaped shell 1,
五、具体实施方式5. Specific implementation
以下结合实例对本实用新型作详细描述:The utility model is described in detail below in conjunction with example:
从图中可以看出,本实用新型的仿生机器鱼总体结构主要由四个部分组成:As can be seen from the figure, the overall structure of the bionic robotic fish of the present invention is mainly composed of four parts:
鱼头主要安置了沉浮机构3中的压块33、驱动丝杠32、水袋34和一些头部传感器,具体为距离传感器61、视觉传感器62;The fish head is mainly equipped with the
鱼身装有控制器7及电源,鱼鳍摇摆电机41和四连杆的曲柄摇杆机构42,鱼头沉浮电机31,鱼尾摆动电机51和导出杆52双摇杆传动机构,以及一些鱼身传感器,具体为压力传感器64、姿态传感器63,都安装在这个部分,传感器安装在检测仓中。The fish body is equipped with
主体部分以长方体外型为主,用轻质材料的外壳1套在主体部分外,使用防水胶与长方形外形的主体部分相连接,实现鱼的流线外形,也可自行设计所需的外形。尾鳍则可直接用轻质材料做成合适的形状。The main part is mainly in the shape of a rectangular parallelepiped, and the shell 1 of light material is used to cover the main part, and the waterproof glue is used to connect with the main part of the rectangular shape to realize the streamlined shape of the fish, and the required shape can also be designed by oneself. The tail fin can be directly made into a suitable shape with lightweight materials.
在图3中,安置在鱼头部位的沉浮机构3由鱼头沉浮电机31、丝杠32、压块33、水袋34、电位计36组成。水袋34由可改变体积的构件,例如皮囊构成,工作时电机(本实施例的电机均采用佳能EN22-H12G58型12伏直流伺服电机,下同)获得转动指令,由丝杠32带动压块33挤压或放松皮囊,皮囊内腔通过内径大于1.5mm的硬质导管35与外界连通(本实施例采用内径2mm的不锈钢导管),水可以自由进出,这样就使整个仿生机器鱼的重量(尤其是头部的重量)发生了改变。同时,丝杠32转动的圈数通过电机输出轴与计数器机构相连,计数器机构为齿轮或齿形带传动(本实施例为齿形带传动)的电位计36,通过其信号线再与控制器7中的电机驱动电路相连。由电位计36将丝杠32的转动圈数反馈给电机驱动电路,记录压块33的实时位置,实现精确控制。为较好的实现沉浮功能,沉浮机构的水袋最大体积应为整个鱼体排水体积的十分之一到八分之一之间,本实施例为十分之一。In Fig. 3, the ups and
沉浮机构安置在头部的主要原因是可使鱼身的重心前后移动。对于鱼身来说,浮力的合力作用点是固定的,经过配重,可使鱼体保持在平衡位置,当水箱变大,则头部变重,不仅整个鱼身会变重,鱼身重心也会前移,鱼尾摆动可加速鱼的下沉。相反,鱼则上浮。The main reason why the sinking and floating mechanism is placed on the head is to make the center of gravity of the fish body move back and forth. For the fish body, the resultant point of buoyancy force is fixed. After the counterweight, the fish body can be kept in a balanced position. When the water tank becomes larger, the head will become heavier, not only the whole fish body will become heavier, but the center of gravity of the fish body will It will also move forward, and the swing of the fish tail can accelerate the sinking of the fish. Instead, fish float up.
鱼身是鱼的主体,大多数结构都被安置在鱼身部分,如图4所示,除了沉浮电机31、鱼尾摆动电机51及对应的反馈器件(例如同上所述的计数器机构)外,还包括了鱼鳍驱动结构、电源8、控制器7和鱼体状态检测仓10等,下面分别介绍各个主要部分的结构和功用。The fish body is the main body of the fish, and most of the structures are placed on the fish body part, as shown in Figure 4, except for the ups and downs motor 31, the fish
1.鱼鳍结构、密封及其作用1. Fin structure, sealing and its function
如图5所示,鱼鳍16的具体形状可根据使用者需要制作。两个鱼鳍44分别由左、右摇摆电机41控制,通过四连杆组成的曲柄摇杆机构42中的曲柄来回摇摆,带动与曲柄固定连接的鱼鳍伸出杆43来回转动,摇摆电机41的转动就变成了鱼鳍44在一定角度范围内(本实施例为37度)来回转动。因为鱼鳍44不提供鱼体前进的动力,所以负载较小,对伸出杆采用O型圈、密封圈压片所构成的结构进行密封。鱼鳍44的主要作用是控制鱼体的平衡。利用其自身的摆动和前进时水流对鳍的作用力,控制鱼身的摇摆,使鱼形仿真机器人在水中游动的平衡性更好并有更多的姿态。As shown in FIG. 5 , the specific shape of the fish fin 16 can be made according to user's needs. Two
2.鱼尾、尾鳍结构及其密封2. Fish tail, caudal fin structure and its sealing
鱼尾的摆动是由鱼尾摆动电机51通过双摇杆传动机构实现的(电机51由电位计54反馈控制)。鱼尾的摆动和尾鳍的摆动一样,是为鱼提供动力的重要运动部件。因为是在水下运动,密封是设计的重要问题。传统方法是将鱼整体用蒙皮包住,中间用多节骨架将蒙皮撑起,但通常由于蒙皮的弹性、韧性、密封性以及抗压变形能力很难同时达到要求,因此材料选择上存在较多问题,很难实现。本实用新型通过双摇杆机构将密封在箱体内的摆动电机51的转动通过导出杆52的平动传递到非密封区域鱼尾的转动,而平动的导出杆则运用可伸缩的橡皮分别在杆和箱体上作固定连结和密封就可以了,由于不需要保证外形,连接处也没有相对运动,所以容易实现。所述密封结构安装时还可在接合面处垫上软质垫片,并涂密封胶,以达到良好的密封效果。The swing of the fishtail is realized by the
根据所设定的鱼体外形或实际需要,鱼尾部分可以是一节、两节或更多节,关节之间通过双摇杆传动机构与鱼体的下一单元连接。亦即所述双摇杆传动机构与固定在鱼体下一单元上的摆动连接件相连。According to the set fish shape or actual needs, the tail part of the fish can be one section, two sections or more sections, and the joints are connected with the next unit of the fish body through a double rocker transmission mechanism. That is to say, the double rocker transmission mechanism is connected with the swing connector fixed on the next unit of the fish body.
尾鳍的摆动是由尾鳍摆动电机51通过双摇杆传动机构中的导出杆52实现对尾鳍的驱动(摆动电机51由电位计54反馈控制),其它结构和前一节的结构完全相同,这里不再详述。尾鳍通常是一节,其摆动连接件53直接固定在尾鳍上。The swing of the tail fin is driven by the tail
3.电源及配重3. Power supply and counterweight
本实施例电池采用大容量的Li电池,多节串联,达到24v,给各电路供电。电池不仅是机器人能量的来源,也是相对较重的部分,因此,可以采用改变电池摆放位置的方式来调节鱼体的重心,使平衡时整个鱼体重心居于鱼体中部。The battery of this embodiment adopts a large-capacity Li battery, and multiple cells are connected in series to reach 24v to supply power to each circuit. The battery is not only the source of energy for the robot, but also a relatively heavy part. Therefore, the center of gravity of the fish can be adjusted by changing the position of the battery so that the center of gravity of the whole fish is in the middle of the fish when it is balanced.
4.传感器4. Sensors
本实施例在鱼头部位安装了距离传感器61、视觉传感器62,以感知鱼体所处的周围环境、及时规避障碍;压力传感器64及姿态传感器63安装在鱼身部位的检测仓10内以便于密封(检测仓可设置在鱼身的任意位置,只要便于安装和接线),以感知鱼体所处水深和自身姿态。(本实施例距离传感器采用Echomax XRS-5 Transducer超声波传感器,视觉传感器采用双目微型CCD摄像头、具体型号为KAI-0330D图像传感器,压力传感器采用YX-PS-500压力传感器,姿态传感器采用IMU 400CA精密陀螺仪)In this embodiment, a
5.控制器系统5. Controller system
整个控制系统以控制器为核心。所述控制器包括微处理器、电信号采集器、电信号转换器、图象信号采集器和电机驱动电路(本实施例采用的微处理器为PC104工控机;PC104自身含有图象信号采集模块,因此不需要再单独设置图象信号采集器;电信号采集器与电信号转换器则采用DMM-16-AT型A/D-D/A卡,这一板卡将两者整合在了一起)。相应的传感器信号线分别与信号采集器相连,信号采集器再与微处理器相连(其中视觉传感器直接与PC104工控机的图象采集端口相连,压力、姿态、距离传感器均通过信号线与DMM-16-AT型A/D-D/A卡的输入口相连,A/D-D/A卡则直接插在微处理器的PCI插槽中),微处理器再通过A/D-D/A卡的输出口与电机驱动电路相连,电机驱动电路与相应的电机相连;控制器的微处理器中装有相应的处理软件(其实施例中软件流程图如图8所示),通过采集、分析、处理各个传感器所获取的信息,进行多传感器的信息融合,完成对环境、自身位置、姿态的认识,以确定运动模式,最终实现对各个功能电机的驱动。在本实施例中结合机械系统驱动的实际情况,对电机采用电压驱动。首先,控制器向各个电机驱动电路给出代表电机所需转动位置的电压量,电机驱动电路将这一位置电压量与反馈器件反馈回来的电压量进行比较,如果两者不一致就驱动电机转动,直到达到控制要求位置为止。电源为自带电池,分别与相应的传感器、电机和控制器相连。传感器、微处理器、电机驱动电路的电源线均通过柔性管道与电池相连,电机电源线通过柔性管道与电机驱动电路相连。The whole control system takes the controller as the core. Described controller comprises microprocessor, electrical signal collector, electrical signal converter, image signal collector and motor drive circuit (the microprocessor that present embodiment adopts is PC104 industrial computer; PC104 self contains image signal acquisition module , so there is no need to set up a separate image signal collector; the electrical signal collector and electrical signal converter use the DMM-16-AT type A/D-D/A card, which integrates the two together). The corresponding sensor signal lines are respectively connected to the signal collector, and the signal collector is connected to the microprocessor (the visual sensor is directly connected to the image acquisition port of the PC104 industrial computer, and the pressure, attitude and distance sensors are connected to the DMM- The input port of the 16-AT type A/D-D/A card is connected, and the A/D-D/A card is directly inserted into the PCI slot of the microprocessor), and the microprocessor is connected with the output port of the A/D-D/A card. The motor drive circuit is connected, and the motor drive circuit is connected with the corresponding motor; corresponding processing software (software flow chart in its embodiment as shown in Figure 8) is housed in the microprocessor of the controller, by collecting, analyzing, processing each sensor The acquired information is fused with multi-sensor information to complete the understanding of the environment, its own position, and attitude, so as to determine the movement mode, and finally realize the drive of various functional motors. In this embodiment, the motor is driven by voltage in combination with the actual situation of mechanical system drive. First, the controller gives each motor drive circuit a voltage representing the required rotation position of the motor. The motor drive circuit compares the position voltage with the voltage fed back by the feedback device. If the two are inconsistent, the motor is driven to rotate. until it reaches the position required by the control. The power supply is a self-contained battery, which is connected to the corresponding sensors, motors and controllers. The power lines of the sensor, the microprocessor and the motor drive circuit are all connected with the battery through the flexible pipe, and the motor power line is connected with the motor drive circuit through the flexible pipe.
本实用新型通过以上各个部分的协调工作,能够全自主的模仿所设定的特定鱼类的巡游、机动运动以及规避障碍、实时自动沉浮等机能,从而实现了仿生机器鱼的智能化游动,并且在运动特征上具备该鱼种所特有的减阻特性和尾迹特性、推进效率。Through the coordinated work of the above various parts, the utility model can fully autonomously imitate the parade, maneuvering movement, obstacle avoidance, real-time automatic ups and downs and other functions of the set specific fish, thereby realizing the intelligent swimming of the bionic robot fish. And in terms of movement characteristics, it has the unique drag reduction characteristics, wake characteristics and propulsion efficiency of this fish species.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03259442 CN2628239Y (en) | 2003-07-09 | 2003-07-09 | Bionic robot fish |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03259442 CN2628239Y (en) | 2003-07-09 | 2003-07-09 | Bionic robot fish |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2628239Y true CN2628239Y (en) | 2004-07-28 |
Family
ID=34254853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 03259442 Expired - Fee Related CN2628239Y (en) | 2003-07-09 | 2003-07-09 | Bionic robot fish |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2628239Y (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100423987C (en) * | 2005-09-26 | 2008-10-08 | 中国科学院自动化研究所 | A bionic robot fish |
CN100442185C (en) * | 2006-09-01 | 2008-12-10 | 北京大学 | A multi-modal biomimetic robotic fish |
CN100458625C (en) * | 2007-03-23 | 2009-02-04 | 北京大学 | Underwater bionic robot cooperated transportation method |
CN101301926B (en) * | 2008-04-18 | 2010-10-06 | 哈尔滨工业大学 | Bionic robot fish having up-down movement module and tail module |
CN101486377B (en) * | 2009-02-27 | 2010-11-03 | 北京航空航天大学 | Flexible pectoral fin swing type underwater bionic robot |
CN101870109B (en) * | 2009-04-22 | 2011-10-19 | 中国科学院自动化研究所 | Fish swimming imitating robot movement control device and method |
CN105292409A (en) * | 2015-10-09 | 2016-02-03 | 山东科技大学 | Multifunctional underwater moving device |
CN106005336A (en) * | 2016-07-11 | 2016-10-12 | 大连海事大学 | Bionic robot fish |
CN106005317A (en) * | 2016-05-16 | 2016-10-12 | 浙江大学 | Automatic fish school chasing robot fish for fish school breeding industry and control method thereof |
CN106143844A (en) * | 2016-07-12 | 2016-11-23 | 上海理工大学 | Chargeable machine fish |
WO2016200092A1 (en) * | 2015-06-09 | 2016-12-15 | (주)아이로 | Fish robot |
CN107310705A (en) * | 2017-06-21 | 2017-11-03 | 桂林电子科技大学 | A kind of underwater robot of imitative coelacanth |
CN109383725A (en) * | 2018-11-30 | 2019-02-26 | 长安大学 | A kind of Magnetic driving machine fish |
CN113277049A (en) * | 2021-06-25 | 2021-08-20 | 贵州大学明德学院 | Multifunctional bionic robot fish for water quality monitoring |
US20230067723A1 (en) * | 2021-09-01 | 2023-03-02 | X Development Llc | Calibration target for ultrasonic removal of ectoparasites from fish |
-
2003
- 2003-07-09 CN CN 03259442 patent/CN2628239Y/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100423987C (en) * | 2005-09-26 | 2008-10-08 | 中国科学院自动化研究所 | A bionic robot fish |
CN100442185C (en) * | 2006-09-01 | 2008-12-10 | 北京大学 | A multi-modal biomimetic robotic fish |
CN100458625C (en) * | 2007-03-23 | 2009-02-04 | 北京大学 | Underwater bionic robot cooperated transportation method |
CN101301926B (en) * | 2008-04-18 | 2010-10-06 | 哈尔滨工业大学 | Bionic robot fish having up-down movement module and tail module |
CN101486377B (en) * | 2009-02-27 | 2010-11-03 | 北京航空航天大学 | Flexible pectoral fin swing type underwater bionic robot |
CN101870109B (en) * | 2009-04-22 | 2011-10-19 | 中国科学院自动化研究所 | Fish swimming imitating robot movement control device and method |
WO2016200092A1 (en) * | 2015-06-09 | 2016-12-15 | (주)아이로 | Fish robot |
CN105292409A (en) * | 2015-10-09 | 2016-02-03 | 山东科技大学 | Multifunctional underwater moving device |
CN106005317A (en) * | 2016-05-16 | 2016-10-12 | 浙江大学 | Automatic fish school chasing robot fish for fish school breeding industry and control method thereof |
CN106005317B (en) * | 2016-05-16 | 2017-11-17 | 浙江大学 | Autonomous pursuit shoal of fish machine fish and its control method for shoal of fish aquaculture |
CN106005336B (en) * | 2016-07-11 | 2018-06-05 | 大连海事大学 | bionic robot fish |
CN106005336A (en) * | 2016-07-11 | 2016-10-12 | 大连海事大学 | Bionic robot fish |
CN106143844A (en) * | 2016-07-12 | 2016-11-23 | 上海理工大学 | Chargeable machine fish |
CN107310705A (en) * | 2017-06-21 | 2017-11-03 | 桂林电子科技大学 | A kind of underwater robot of imitative coelacanth |
CN109383725A (en) * | 2018-11-30 | 2019-02-26 | 长安大学 | A kind of Magnetic driving machine fish |
CN109383725B (en) * | 2018-11-30 | 2024-04-05 | 长安大学 | Magnetically driven robot fish |
CN113277049A (en) * | 2021-06-25 | 2021-08-20 | 贵州大学明德学院 | Multifunctional bionic robot fish for water quality monitoring |
CN113277049B (en) * | 2021-06-25 | 2022-09-23 | 贵州大学明德学院 | Multifunctional bionic robot fish for water quality monitoring |
US20230067723A1 (en) * | 2021-09-01 | 2023-03-02 | X Development Llc | Calibration target for ultrasonic removal of ectoparasites from fish |
US11700839B2 (en) * | 2021-09-01 | 2023-07-18 | X. Development | Calibration target for ultrasonic removal of ectoparasites from fish |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN2628239Y (en) | Bionic robot fish | |
US11161578B2 (en) | Biomimetic robotic manta ray | |
CN209956198U (en) | Synchronous lifting and submerging series-connection steering engine bionic robotic fish | |
CN101456341B (en) | Multi-modal bionic amphibious robot | |
CN105775082B (en) | A kind of biomimetic robotic dolphin towards water quality monitoring | |
CN206633010U (en) | A kind of snake robot with computer vision function | |
CN101767642A (en) | Underwater biomimetic robotic fish | |
CN207607626U (en) | A kind of imitative case Molidae autonomous machine fish | |
CN107310705A (en) | A kind of underwater robot of imitative coelacanth | |
CN1480300A (en) | Fish-shaped bionic robot | |
CN206231595U (en) | Bionical sea snake device | |
CN114537629B (en) | Self-swimming biomimetic robotic fish propelled by caudal fin based on compound linkage mechanism | |
CN106005333A (en) | Carangid bionic robot fish | |
CN106143843B (en) | A kind of bionical tortoise | |
CN108656884A (en) | A kind of Amphibious bionics robot | |
CN219904704U (en) | A multifunctional intelligent bionic robotic fish | |
CN109115979A (en) | Portable multi-function solid water quality detection device | |
CN2868840Y (en) | A bionic robot fish | |
CN204775952U (en) | Machine fish based on diclinic face deflection joint | |
CN107161304A (en) | A kind of imitative case Molidae autonomous machine fish | |
CN110316341A (en) | A kind of bionic machine sailfish | |
CN210455158U (en) | Bionic bat ray based on joint type mechanical arm | |
CN115535195A (en) | An underwater robot based on bionic swing and propeller hybrid drive and its working method | |
CN218431681U (en) | Bionic turtle robot for water purification and underwater detection | |
CN205801466U (en) | A kind of bionical Testudinis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |