CN2458641Y - Electric site selection liquid crystal light valve with medium mirror and nm-class composite film light barrier - Google Patents
Electric site selection liquid crystal light valve with medium mirror and nm-class composite film light barrier Download PDFInfo
- Publication number
- CN2458641Y CN2458641Y CN 00264590 CN00264590U CN2458641Y CN 2458641 Y CN2458641 Y CN 2458641Y CN 00264590 CN00264590 CN 00264590 CN 00264590 U CN00264590 U CN 00264590U CN 2458641 Y CN2458641 Y CN 2458641Y
- Authority
- CN
- China
- Prior art keywords
- light
- liquid crystal
- blocking layer
- film
- dielectric mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 40
- 239000002131 composite material Substances 0.000 title claims description 15
- 230000004888 barrier function Effects 0.000 title 1
- 239000010408 film Substances 0.000 claims abstract description 46
- 230000000903 blocking effect Effects 0.000 claims abstract description 19
- 239000002114 nanocomposite Substances 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000010409 thin film Substances 0.000 claims abstract description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 7
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 7
- 239000005304 optical glass Substances 0.000 claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910021423 nanocrystalline silicon Inorganic materials 0.000 claims description 8
- 229910004613 CdTe Inorganic materials 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 230000031700 light absorption Effects 0.000 claims description 5
- 229910004012 SiCx Inorganic materials 0.000 claims description 2
- 229910004205 SiNX Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 claims 2
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
Abstract
本实用新型公开了一种具有介质反射镜和纳米复合薄膜阻光层的电选址液晶光阀,它依次包括光学玻璃,透明导电膜,定向层,液晶层,定向层,介质反射镜,阻光层,控制基板。介质反射镜为SiO2/TiO2多层高反射膜或ZnS/MgF2多层高反射膜。本实用新型解决了强光下工作对控制元件的影响,膜层结合牢固,使用寿命长,利用纳米复合薄膜制成的阻光层,有利于克服象素边缘的弥散问题,部分提高了分辨率。
The utility model discloses an electrically addressable liquid crystal light valve with a dielectric reflector and a nanocomposite thin film light blocking layer, which sequentially comprises optical glass, a transparent conductive film, an orientation layer, a liquid crystal layer, an orientation layer, a dielectric reflector, Optical layer, control substrate. The dielectric mirror is SiO 2 /TiO 2 multilayer high reflection film or ZnS/MgF 2 multilayer high reflection film. The utility model solves the influence of working under strong light on the control element, the film layer is firmly combined, and has a long service life. The light-blocking layer made of nano-composite film is beneficial to overcome the problem of dispersion at the edge of the pixel and partially improves the resolution. .
Description
本实用新型涉及一种空间光调制器,尤其涉及一种具有介质反射镜和纳米复合薄膜阻光层的电选址反射型液晶光阀。The utility model relates to a spatial light modulator, in particular to an electric site-selection reflective liquid crystal light valve with a medium reflection mirror and a nanocomposite film light-blocking layer.
与本实用新型有关的空间光调制器,主要包括用光导层作光敏材料并在反射模式下工作的光选址空间光调制器;以TFT作为基本控制单元的有源矩阵选址反射模式空间光调制器。对第一类光阀,Boswell等,首先于1977年4月16日申请专利(US.Pat.4019807),这种光阀以硫化镉作光导层,碲化镉为阻光层及MgF2/ZnS为介质反射层。随后于1989年1月24日由Sterling申请了专利(U.S.Pat.4799773)提出了新一代以a-Si∶H为光敏层CdTe作阻光层,SiO2/TiO2为多层介质镜的反射式液晶光阀,至1992年1月22日,由Slobdin申请专利(U.S.Pat.5084777),提出了用a-SiGe∶H作光阀的阻光层,解决了阻光层与a-Si∶H光导层的结合问题。1993年由我们直接申请了采用过渡改性结构非晶硅作光敏层的反射式液晶光阀专利(China Pat:ZL93108193.9)口以晶态薄膜作为阻光层的反射式液晶光阀专利(China Pat:ZL93116734.5),更进一步改善了光选址反射式液晶光阀的性能。总的来看这类光阀至今已发展得比较成熟。对于第二类光阀,其反射模式多数用于弱光条件,报道有直接在背电极上镀高反射的铝等材料进行反射。The spatial light modulator related to the utility model mainly includes an optical addressing spatial light modulator using a photoconductive layer as a photosensitive material and working in a reflection mode; an active matrix addressing reflection mode spatial light modulator with TFT as a basic control unit Modulator. For the first type of light valve, Boswell et al. first applied for a patent (US. Pat. 4019807) on April 16, 1977. This light valve uses cadmium sulfide as the light guide layer, cadmium telluride as the light blocking layer and MgF 2 / ZnS is a dielectric reflective layer. Then on January 24, 1989, Sterling applied for a patent (USPat.4799773) and proposed a new generation of reflective mirrors with a-Si:H as the photosensitive layer CdTe as the light-blocking layer and SiO 2 /TiO 2 as the multilayer dielectric mirror. Liquid crystal light valve, until January 22, 1992, Slobdin applied for a patent (USPat.5084777), and proposed to use a-SiGe: H as the light blocking layer of the light valve, which solved the problem of light blocking layer and a-Si: H light guide layer combination problem. In 1993, we directly applied for the patent of reflective liquid crystal light valve using transition-modified amorphous silicon as the photosensitive layer (China Pat: ZL93108193.9) and the patent of reflective liquid crystal light valve with crystalline film as light blocking layer ( China Pat: ZL93116734.5), which further improves the performance of the optical address reflective liquid crystal light valve. Generally speaking, this type of light valve has been developed relatively maturely. For the second type of light valve, its reflection mode is mostly used in weak light conditions, and it is reported that materials such as aluminum with high reflection are directly plated on the back electrode for reflection.
考虑到在大屏幕投影器件中,第一类光选址光阀,虽然制备方便,但由于它的成象调制靠其它光信号写入,系统体积大,又消耗能源且最终的信号取自光导层传递来的信号,受光阀结构及现行传递模式的限制,很难进一步提高对比度;面对第二类直接可由电路选址的光阀,虽然做成的系统体积小,又易于写入信号的直接控制,且由于近年来TFT制备技术的完善,性能也进一步提高,但由于这类光阀,特别象对由有源矩阵驱动的(如TFT-LCD)光阀,其TFT本身对光照比较敏感、性能受光影响较严重,尤其是在大屏幕投影时的强光照射下,这种影响就更大,因而有必要对这类光阀进行更多的研究。Considering that in large-screen projection devices, the first type of optical addressing light valve is easy to prepare, but because its imaging modulation is written by other optical signals, the system is bulky and consumes energy, and the final signal is taken from the light guide The signal transmitted from the first layer is limited by the structure of the light valve and the current transmission mode, so it is difficult to further improve the contrast; in the face of the second type of light valve that can be directly addressed by the circuit, although the system is small in size, it is easy to write signals. Direct control, and due to the improvement of TFT preparation technology in recent years, the performance has been further improved, but because of this type of light valve, especially for light valves driven by active matrix (such as TFT-LCD), the TFT itself is more sensitive to light , The performance is seriously affected by light, especially under the strong light irradiation when projecting on a large screen, this effect is even greater, so it is necessary to conduct more research on this type of light valve.
本实用新型的目的是提供一种大屏幕投影用电选址反射型液晶光阀。The purpose of the utility model is to provide a reflective liquid crystal light valve for large-screen projection with electric address selection.
为了达到上述目的,本实用新型采取下列措施:In order to achieve the above object, the utility model takes the following measures:
大屏幕投影用电选址反射型液晶光阀,它依次包括光学玻璃,透明导电膜,定向层,液晶层,定向层,控制基板,所说的定向层与控制基板之间设有介质反射镜和阻光层。Electric site-selection reflective liquid crystal light valve for large-screen projection, which sequentially includes optical glass, transparent conductive film, alignment layer, liquid crystal layer, alignment layer, control substrate, and a dielectric mirror is arranged between the alignment layer and the control substrate and light blocking layer.
另一种具有介质反射镜和纳米复合薄膜阻光层的电选址液晶光阀,它依次包括光学玻璃,透明带状电极,定向层,液晶层,定向层,透明带状电极,基板,所说的定向层与透明带状电极之间设有介质反射镜。Another electrically addressable liquid crystal light valve with a dielectric mirror and a light-blocking layer of a nanocomposite film, which sequentially includes optical glass, a transparent strip electrode, an alignment layer, a liquid crystal layer, an alignment layer, a transparent strip electrode, a substrate, and A dielectric mirror is arranged between the alignment layer and the transparent strip electrode.
本实用新型与已有技术相比较具有显著效果:Compared with the prior art, the utility model has remarkable effects:
1)复合纳米晶粒薄膜阻光层光吸收效率高,完全吸收了透过介质镜的部分光(尽管透过部分甚至小于0.1%,但若用于大屏幕投影时,光强高达数十万Lx时,这部分光将无法忽略),很好地解决了强光下工作对控制元件的影响。1) The light-blocking layer of the composite nano-grain film has high light absorption efficiency and completely absorbs part of the light passing through the dielectric mirror (although the transmitted part is even less than 0.1%, if it is used for large-screen projection, the light intensity is as high as hundreds of thousands Lx, this part of the light will not be ignored), which solves the influence of working under strong light on the control components.
2)由于这种薄膜中大量的与膜厚尺度相当的晶粒的存在,可控制高的吸收率和电导率,而横向则更趋于绝缘体,这既克服了由于驱动信号在薄膜厚度方向过多地产生压降而降低效率,又防止了在某些结构中引起横向电荷扩散而使分辨率下降。2) Due to the existence of a large number of crystal grains comparable to the film thickness scale in this film, the high absorption rate and conductivity can be controlled, while the lateral direction is more insulator, which overcomes the problem caused by the excessive driving signal in the film thickness direction. The efficiency is reduced by generating more voltage drops, and it prevents the resolution from being reduced due to lateral charge diffusion in some structures.
3)考虑了液晶光阀在TFT表面若整个覆盖有钝化层(如氮化硅),而阻光层本身则是由Si、N、C等复合成的薄膜,因而,本光阀设计使阻光层的晶格结构与氮化硅等匹配较好,膜层结合牢固,使用耐久性好。3) Considering that if the liquid crystal light valve is covered with a passivation layer (such as silicon nitride) on the TFT surface, and the light blocking layer itself is a thin film composed of Si, N, C, etc., the light valve design uses The lattice structure of the light-blocking layer matches well with silicon nitride, etc., the film layer is firmly bonded, and the durability is good.
4)考虑到利用Si、N、C等复合薄膜制成的阻光层材料的晶格结构,这时可选用SiO2/TiO2硬膜多层介质镜反射层,两者匹配好,结合力强,使用寿命长。4) Considering the lattice structure of the light-blocking layer material made of Si, N, C and other composite films, SiO 2 /TiO 2 hard film multi-layer dielectric mirror reflection layer can be used at this time. The two are well matched and the bonding force is good. Strong and long service life.
下面结合附图作详细说明。Describe in detail below in conjunction with accompanying drawing.
图1是有源矩阵大屏幕投影用具有介质反射镜和纳米复合薄膜阻光层的电选址液晶光阀结构示意图。Fig. 1 is a schematic diagram of the structure of an electrically addressable liquid crystal light valve with a dielectric mirror and a nanocomposite thin film light blocking layer for active matrix large-screen projection.
图2是无源矩阵大屏幕投影用具有介质反射镜和纳米复合薄膜阻光层的电选址液晶光阀结构示意图。Fig. 2 is a schematic structural diagram of an electrically addressable liquid crystal light valve with a dielectric mirror and a nanocomposite film light-blocking layer for passive matrix large-screen projection.
一种具有介质反射镜和纳米复合薄膜阻光层的电选址液晶光阀,它依次包括光学玻璃9,透明导电膜8,定向层7,液晶层6,定向层5,控制基板1、2,所说的定向层5与控制基板1、2之间设有介质反射镜4。An electrically addressable liquid crystal light valve with a dielectric mirror and a nanocomposite film light-blocking layer, which sequentially includes an
另一种具有介质反射镜和纳米复合薄膜阻光层的电选址液晶光阀,它依次包括光学玻璃20,透明带状电极19,定向层18,液晶层17,定向层16,透明带状电极13,基板12,所说的定向层16与透明带状电极13之间设有介质反射镜15。Another electric addressing liquid crystal light valve with a dielectric mirror and a nanocomposite film light-blocking layer, which sequentially includes an optical glass 20, a transparent strip-shaped electrode 19, an alignment layer 18, a liquid crystal layer 17, an alignment layer 16, a transparent strip-shaped A dielectric mirror 15 is arranged between the electrode 13 , the substrate 12 , the alignment layer 16 and the transparent strip electrode 13 .
上述的介质反射镜与控制基板1、2之间设有复合纳米晶体硅阻光层或CdTe阻光层3。介质反射镜15与透明带状电极13之间设有复合纳米晶体硅阻光层或CdTe阻光层14。介质反射镜为SiO2/TiO2多层高反射膜,或ZnS/MgF2多层高反射膜。介质反射镜为SiO2/TiO2多层高反射膜,或ZnS/MgF2多层高反射膜。复合纳米晶体硅阻光层是一种以非晶硅或SiCx或SiNx为基质材料,以对光敏感的硅或锗作为纳米晶粒材料复合制成。复合晶体硅阻光层薄膜的光学能隙小于1.6eV,晶体含量在10~40%,晶粒尺寸在40~500nm,可见光吸收系数在10-4~10-5cm-1。复合晶体硅阻光层薄膜厚度与薄膜内的晶粒尺度相当。A composite nanocrystalline silicon light-blocking layer or a CdTe light-blocking layer 3 is provided between the above-mentioned dielectric mirror and the control substrates 1 and 2 . A composite nanocrystalline silicon light-blocking layer or a CdTe light-blocking layer 14 is provided between the dielectric mirror 15 and the transparent strip electrode 13 . The dielectric mirror is SiO 2 /TiO 2 multilayer high reflection film, or ZnS/MgF 2 multilayer high reflection film. The dielectric mirror is SiO 2 /TiO 2 multilayer high reflection film, or ZnS/MgF 2 multilayer high reflection film. The composite nanocrystalline silicon light-blocking layer is made of amorphous silicon or SiCx or SiNx as a matrix material, and light-sensitive silicon or germanium as a nanocrystalline grain material. The optical energy gap of the compound crystal silicon light-blocking film is less than 1.6eV, the crystal content is 10-40%, the grain size is 40-500nm, and the visible light absorption coefficient is 10-4-10-5 cm -1 . The film thickness of the compound crystal silicon light-blocking layer is equivalent to the crystal grain size in the film.
本实用新型的工作原理为:The working principle of the utility model is:
光阀的图象信号由矩阵控制提供(控制电路与已有技术同),由矩阵提供一图象信号后在液晶层两侧相当于施加了一与图象信号对应的电压,即每一象素点上的电压大小在一定条件下与图象信号的强弱相对应,相当于在液晶层两侧施加了一个以电压表示的潜象,在某一定向条件下(定向层为5和7或16和18),液晶层可以有这样一种性能,即液晶层上所加电压不同,透过该液晶层的偏振光的偏振方向也随之改变。这时,入射光透过保留有电压潜象的液晶层,并经介质反射层4或15反射后,得到的反射光各点的偏振角度也将由于液晶层6或17上各点电压不同而不同,也即这时反射光中实际上保留了一幅以各点反射光的偏振角不同所表示的与矩阵控制信号提供的信号相对应的潜象,让这一反射光通过适当检偏系统,就可得到一幅以各点光强不同所表示的对应图象。The image signal of light valve is provided by matrix control (the control circuit is the same as prior art), and after an image signal is provided by the matrix, it is equivalent to applying a voltage corresponding to the image signal on both sides of the liquid crystal layer, that is, each image The voltage on the pixel point corresponds to the strength of the image signal under certain conditions, which is equivalent to applying a latent image represented by a voltage on both sides of the liquid crystal layer. Under a certain orientation condition (the orientation layer is 5 and 7 Or 16 and 18), the liquid crystal layer can have such a property that the voltage applied to the liquid crystal layer is different, and the polarization direction of the polarized light passing through the liquid crystal layer changes accordingly. At this time, the incident light passes through the liquid crystal layer that retains the voltage latent image, and after being reflected by the medium reflection layer 4 or 15, the polarization angle of each point of the reflected light obtained will also be different due to the different voltages of each point on the liquid crystal layer 6 or 17. Different, that is, at this time, the reflected light actually retains a latent image corresponding to the signal provided by the matrix control signal represented by the different polarization angles of the reflected light at each point, and let this reflected light pass through an appropriate polarization analysis system , a corresponding image represented by different light intensities at each point can be obtained.
在这种液晶光阀中,入射强光与控制矩阵之间的光隔离主要靠反射层4,一般可达99.9%以上,但当大屏幕投影用光阀的光强高达几十万Lx时,若考虑透过0.1%,则透过光强也可达几百Lx,这就足以对受光照比较敏感的TFT器件产生影响,使图象质量下降,所以,为了保证光阀正常工作,这时可采用一种复合纳米晶体硅薄膜阻光层或CdTe阻光层,吸收漏过光。In this liquid crystal light valve, the optical isolation between the incident strong light and the control matrix mainly depends on the reflective layer 4, which can generally reach more than 99.9%. If 0.1% transmission is considered, the transmitted light intensity can reach hundreds of Lx, which is enough to affect the TFT device that is sensitive to light and reduce the image quality. Therefore, in order to ensure the normal operation of the light valve, at this time A composite nanocrystalline silicon thin film light blocking layer or CdTe light blocking layer can be used to absorb the leaked light.
在这种液晶光阀的复合纳米晶体硅薄膜阻光层中,由于控制了大量的复相晶粒存在,且通过控制在晶粒中适当的掺杂,并控制晶粒尺度与膜厚相当,因而在薄膜的法向表现出吸光效率很高的晶体特性;而在薄膜的横向,由于大量晶界及不导电的介质相存在,使其表现出高阻特性。所以这种阻光层具有高吸光效率,且甚至在与TFT接触时也不易造成分辨率及TFT控制特性的下降。同时考虑到阻光层与相邻膜层的结合牢度,控制选用以Si、N、C等为基板材料形成的复合纳米晶体硅薄膜,解决了与相邻膜层的结构匹配问题。In the composite nanocrystalline silicon film light-blocking layer of this liquid crystal light valve, due to controlling the existence of a large number of complex phase grains, and by controlling the appropriate doping in the grains, and controlling the grain size to be equivalent to the film thickness, Therefore, in the normal direction of the film, it shows crystal characteristics with high light absorption efficiency; while in the lateral direction of the film, due to the existence of a large number of grain boundaries and non-conductive dielectric phases, it shows high resistance characteristics. Therefore, this light-blocking layer has high light absorption efficiency, and is less likely to cause a decrease in resolution and TFT control characteristics even when in contact with TFTs. At the same time, considering the bonding fastness between the light-blocking layer and the adjacent film layer, the composite nanocrystalline silicon thin film formed with Si, N, C, etc. as the substrate material is controlled and selected, which solves the problem of structural matching with the adjacent film layer.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 00264590 CN2458641Y (en) | 2000-12-15 | 2000-12-15 | Electric site selection liquid crystal light valve with medium mirror and nm-class composite film light barrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 00264590 CN2458641Y (en) | 2000-12-15 | 2000-12-15 | Electric site selection liquid crystal light valve with medium mirror and nm-class composite film light barrier |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2458641Y true CN2458641Y (en) | 2001-11-07 |
Family
ID=33619230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 00264590 Expired - Fee Related CN2458641Y (en) | 2000-12-15 | 2000-12-15 | Electric site selection liquid crystal light valve with medium mirror and nm-class composite film light barrier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2458641Y (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102537763A (en) * | 2010-12-27 | 2012-07-04 | 康佳集团股份有限公司 | Backlight module and liquid crystal display |
WO2018161657A1 (en) * | 2017-03-10 | 2018-09-13 | 京东方科技集团股份有限公司 | Display substrate, preparation method therefor and display apparatus |
-
2000
- 2000-12-15 CN CN 00264590 patent/CN2458641Y/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102537763A (en) * | 2010-12-27 | 2012-07-04 | 康佳集团股份有限公司 | Backlight module and liquid crystal display |
WO2018161657A1 (en) * | 2017-03-10 | 2018-09-13 | 京东方科技集团股份有限公司 | Display substrate, preparation method therefor and display apparatus |
CN108573981A (en) * | 2017-03-10 | 2018-09-25 | 京东方科技集团股份有限公司 | Display substrate, manufacturing method thereof, and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5160662B2 (en) | Display device integrating display and photoelectric element, and manufacturing method thereof | |
TWI354160B (en) | ||
JP2762808B2 (en) | Spatial light modulator and projection display device | |
EP0584543B1 (en) | A spatial light modulator and a method for fabricating the same | |
EP0117957B1 (en) | Solid-state device having a plurality of optical functions | |
CN107678201B (en) | A liquid crystal spatial light modulator with controllable output light direction | |
US5536933A (en) | Light information device and method for producing the same | |
CN2458641Y (en) | Electric site selection liquid crystal light valve with medium mirror and nm-class composite film light barrier | |
JPH1091099A (en) | Liquid crystal display device | |
TW546513B (en) | Display element | |
US5071230A (en) | Liquid crystal display device with selective transmitting means and an impedance changing layer | |
US20110109607A1 (en) | Display module and applications of the same | |
US7110069B2 (en) | Liquid crystal display with two surface display function | |
CN201319100Y (en) | Image control light valve for achieving pixel-free image display with ultra-high resolution | |
JPH1096889A (en) | Liquid crystal display device | |
CN1158429A (en) | Electrical site testing reflecting liquid crystal light valve for large screen projection | |
CN107741667B (en) | Liquid crystal spatial light modulator | |
US4622654A (en) | Liquid crystal light valve with memory | |
CN109597257A (en) | Array substrate and display device | |
TWI225174B (en) | Methods of reducing unbalanced DC voltage between two electrodes of reflective liquid crystal display by thin film passivation | |
JPS5834435A (en) | Electro-optical device | |
CN116165818A (en) | Display panel, control method thereof, and display device | |
JPH07134310A (en) | Optical writing type electro-optic device | |
JP4011408B2 (en) | Optical recording driving method and driving apparatus thereof | |
CN107783339B (en) | A Wide Viewing Angle Liquid Crystal Spatial Light Modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |