CN221926952U - Signal simulation device and system for atmospheric data - Google Patents
Signal simulation device and system for atmospheric data Download PDFInfo
- Publication number
- CN221926952U CN221926952U CN202420021930.4U CN202420021930U CN221926952U CN 221926952 U CN221926952 U CN 221926952U CN 202420021930 U CN202420021930 U CN 202420021930U CN 221926952 U CN221926952 U CN 221926952U
- Authority
- CN
- China
- Prior art keywords
- simulation
- module
- signal
- adm
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 183
- 238000012360 testing method Methods 0.000 claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims abstract description 3
- 238000012545 processing Methods 0.000 claims description 21
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 10
- 230000008054 signal transmission Effects 0.000 claims description 9
- 238000011990 functional testing Methods 0.000 claims description 4
- 238000007726 management method Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 5
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本实用新型涉及飞机信号处理技术领域,尤其涉及一种大气数据的信号仿真模拟装置及系统。The utility model relates to the technical field of aircraft signal processing, in particular to a signal simulation device and system for atmospheric data.
背景技术Background Art
在飞机的显示系统、飞控系统、飞管系统以及客舱增压系统等飞机系统功能试验中均需要大气数据系统输入以进行功能测试。Air data system input is required for functional testing of aircraft systems such as the aircraft's display system, flight control system, flight management system, and cabin pressurization system.
现有技术中,通常通过大气数据测试仪与全压探头、静压孔以及全静压探头传感器等连接生成大气压力模拟信号,再将大气压力模拟信号传输至飞机各系统以进行功能测试。In the prior art, an atmospheric pressure simulation signal is usually generated by connecting an atmospheric data tester with a total pressure probe, a static pressure hole, and a total static pressure probe sensor, and then the atmospheric pressure simulation signal is transmitted to various aircraft systems for functional testing.
但是,这种测试方式受大气数据测试仪设备打压速率影响,效率较低,需要逐渐达到气压目标值,等待时间长。例如,对于30000英尺,需要等待15分钟。并且,任一探头适配器连接的可靠性也直接影响功能测试的周期。However, this test method is affected by the pressure rate of the atmospheric data tester equipment, and is inefficient. It requires gradual reaching of the target pressure value, and the waiting time is long. For example, for 30,000 feet, it takes 15 minutes to wait. In addition, the reliability of any probe adapter connection also directly affects the functional test cycle.
实用新型内容Utility Model Content
本实用新型提供了一种大气数据的信号仿真模拟装置及系统,以替代现有技术中的大气数据测试仪,提高飞机功能测试的效率以及可靠性。The utility model provides a signal simulation device and system for atmospheric data, which are used to replace the atmospheric data tester in the prior art and improve the efficiency and reliability of aircraft function testing.
根据本实用新型的一方面,提供了一种大气数据的信号仿真模拟装置,该信号仿真模拟装置应用于飞机,所述信号仿真模拟装置,包括:仿真管理设备、仿真服务器、ARINC429设备、以及接口电缆;其中:According to one aspect of the utility model, a signal simulation device for atmospheric data is provided, and the signal simulation device is applied to an aircraft. The signal simulation device comprises: a simulation management device, a simulation server, an ARINC429 device, and an interface cable; wherein:
所述仿真管理设备,用于提供大气数据的数字仿真信号;The simulation management device is used to provide a digital simulation signal of atmospheric data;
所述仿真服务器与所述仿真管理设备连接,用于为所述仿真管理设备提供仿真环境;The simulation server is connected to the simulation management device and is used to provide a simulation environment for the simulation management device;
所述仿真服务器与所述ARINC429设备通过数据网络连接,所述接口电缆设置于所述ARINC429设备;The simulation server is connected to the ARINC429 device via a data network, and the interface cable is arranged on the ARINC429 device;
所述仿真服务器,还用于根据预设发送信息,将所述大气数据的数字仿真信号发送至所述ARINC429设备;The simulation server is further used to send the digital simulation signal of the atmospheric data to the ARINC429 device according to the preset sending information;
所述ARINC429设备,用于将大气数据的数字仿真信号传输至各所述接口电缆;The ARINC429 device is used to transmit the digital simulation signal of the atmospheric data to each of the interface cables;
所述接口电缆与飞机中的大气数据模块ADM对应连接,所述接口电缆,用于将数字仿真信号传输至对应的ADM模块,以使所述ADM模块获取大气数据进行飞机功能测试。The interface cable is correspondingly connected to an atmospheric data module ADM in the aircraft, and the interface cable is used to transmit a digital simulation signal to the corresponding ADM module so that the ADM module acquires atmospheric data to perform aircraft function testing.
可选的,所述仿真管理设备,包括:参数配置模块、数据处理模块、以及数据仿真模块;其中:Optionally, the simulation management device includes: a parameter configuration module, a data processing module, and a data simulation module; wherein:
所述参数配置模块,用于获取用户输入的大气数据的参数配置信息,并将所述参数配置信息传输至所述数据处理模块;The parameter configuration module is used to obtain parameter configuration information of atmospheric data input by a user, and transmit the parameter configuration information to the data processing module;
所述数据处理模块,用于接收所述参数配置信息,并基于所述仿真服务器提供的仿真环境,根据预设航空电子接口控制文件ICD数据处理规则,将所述参数配置信息转换为ICD信号信息;The data processing module is used to receive the parameter configuration information and convert the parameter configuration information into ICD signal information based on the simulation environment provided by the simulation server and according to the preset avionics interface control file ICD data processing rules;
所述数据仿真模块,用于接收所述数据处理模块传输的ICD信号信息,并生成对应的数字仿真信号。The data simulation module is used to receive the ICD signal information transmitted by the data processing module and generate a corresponding digital simulation signal.
可选的,仿真服务器,包括:ADM输出仿真器;Optionally, a simulation server includes: an ADM output simulator;
所述ADM输出仿真器,用于获取用户输入的ADM模块逻辑模型,并根据所述ADM模块逻辑模型配置所述接口电缆对应的预设发送信息。The ADM output simulator is used to obtain the ADM module logic model input by the user, and configure the preset sending information corresponding to the interface cable according to the ADM module logic model.
可选的,所述ARINC429设备启用8个接口电缆。Optionally, the ARINC429 device enables 8 interface cables.
可选的,所述接口电缆分别与机头左侧观察窗区域的ADM模块、2个机头前设备架区域的ADM模块、机头右侧观察窗区域的ADM模块、机头仪表盘区域的ADM模块、机头地板上的ADM模块、2个机头后设备架区域的ADM模块连接。Optionally, the interface cable is respectively connected to the ADM module in the observation window area on the left side of the nose, the ADM module in the two equipment rack areas in front of the nose, the ADM module in the observation window area on the right side of the nose, the ADM module in the instrument panel area of the nose, the ADM module on the nose floor, and the ADM module in the two equipment rack areas behind the nose.
可选的,所述ADM模块与飞机上ADM连接器的连接状态为断开。Optionally, the connection status between the ADM module and the ADM connector on the aircraft is disconnected.
可选的,所述参数配置模块,包括参数配置信息输入界面;Optionally, the parameter configuration module includes a parameter configuration information input interface;
所述参数配置信息输入界面,用户获取用户输入的大气数据的参数配置信息,并将所述参数配置信息进行展示。The parameter configuration information input interface allows the user to obtain the parameter configuration information of the atmospheric data input by the user, and displays the parameter configuration information.
可选的,所述接口电缆分为三组;其中:Optionally, the interface cables are divided into three groups; wherein:
第一组接口电缆分别与机头左侧观察窗区域的ADM模块、机头第一前设备架区域的ADM模块、以及机头右侧观察窗区域的ADM模块连接;The first group of interface cables are respectively connected to the ADM module in the observation window area on the left side of the machine head, the ADM module in the first front equipment rack area on the machine head, and the ADM module in the observation window area on the right side of the machine head;
第二组接口电缆分别与机头仪表盘区域的ADM模块、以及机头地板上的ADM模块连接;The second set of interface cables are connected to the ADM module in the instrument panel area of the nose and the ADM module on the nose floor respectively;
第三组接口电缆分别与机头第二前设备架区域的ADM模块、以及2个机头后设备架区域的ADM模块连接。The third group of interface cables are respectively connected to the ADM module in the second front equipment rack area of the machine head and the ADM modules in the two rear equipment rack areas of the machine head.
可选的,所述预设发送信息,包括:各组接口电缆的信号发送时间、信号发送频率、信号发送种类以及信号发送阈值范围。Optionally, the preset sending information includes: signal sending time, signal sending frequency, signal sending type and signal sending threshold range of each group of interface cables.
根据本实用新型的另一方面,提供了一种大气数据的信号仿真模拟系统,该信号仿真模拟系统,包括:According to another aspect of the utility model, a signal simulation system for atmospheric data is provided, the signal simulation system comprising:
如本实用新型任一实施例所提供的大气数据的信号仿真模拟装置、大气数据模块ADM、以及飞控系统;其中:As provided in any embodiment of the present utility model, the signal simulation device for atmospheric data, the atmospheric data module ADM, and the flight control system; wherein:
所述大气数据的信号仿真模拟装置中的接口电缆与ADM模块连接,用于将大气数据的数字仿真信号传输至ADM模块;The interface cable in the signal simulation device for atmospheric data is connected to the ADM module, and is used to transmit the digital simulation signal of atmospheric data to the ADM module;
所述ADM模块与所述飞控系统连接,用于将大气数据的数字仿真信号传输至所述飞控系统,进行飞机各系统的功能测试。The ADM module is connected to the flight control system and is used to transmit digital simulation signals of atmospheric data to the flight control system to perform functional tests on various aircraft systems.
本实用新型实施例的技术方案,通过设置包括仿真管理设备、仿真服务器、ARINC429设备、以及接口电缆的信号仿真模拟装置,其中,所述仿真管理设备,用于提供大气数据的数字仿真信号;所述仿真服务器与所述仿真管理设备连接,用于为所述仿真管理设备提供仿真环境;所述仿真服务器与所述ARINC429设备通过数据网络连接,所述接口电缆设置于所述ARINC429设备;所述仿真服务器,还用于根据预设发送信息,将所述大气数据的数字仿真信号发送至所述ARINC429设备;所述ARINC429设备,用于将大气数据的数字仿真信号传输至各所述接口电缆;所述接口电缆与飞机中的大气数据模块ADM对应连接,所述接口电缆,用于将数字仿真信号传输至对应的ADM模块,以使所述ADM模块获取大气数据进行飞机功能测试。解决了飞机控制系统的大气数据仿真问题,可以替代现有技术中的大气数据测试仪,提高飞机功能测试的效率以及可靠性。The technical solution of the embodiment of the utility model is provided by setting a signal simulation device including a simulation management device, a simulation server, an ARINC429 device, and an interface cable, wherein the simulation management device is used to provide a digital simulation signal of atmospheric data; the simulation server is connected to the simulation management device to provide a simulation environment for the simulation management device; the simulation server is connected to the ARINC429 device through a data network, and the interface cable is arranged on the ARINC429 device; the simulation server is also used to send the digital simulation signal of atmospheric data to the ARINC429 device according to the preset sending information; the ARINC429 device is used to transmit the digital simulation signal of atmospheric data to each of the interface cables; the interface cable is correspondingly connected to the atmospheric data module ADM in the aircraft, and the interface cable is used to transmit the digital simulation signal to the corresponding ADM module, so that the ADM module obtains atmospheric data to perform aircraft function testing. The problem of atmospheric data simulation of the aircraft control system is solved, and the atmospheric data tester in the prior art can be replaced to improve the efficiency and reliability of aircraft function testing.
应当理解,本部分所描述的内容并非旨在标识本实用新型的实施例的关键或重要特征,也不用于限制本实用新型的范围。本实用新型的其它特征将通过以下的说明书而变得容易理解。It should be understood that the contents described in this section are not intended to identify the key or important features of the embodiments of the present utility model, nor are they intended to limit the scope of the present utility model. Other features of the present utility model will become easily understood through the following description.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1是根据本实用新型实施例提供的一种大气数据的信号仿真模拟装置的结构示意图;FIG1 is a schematic diagram of the structure of a signal simulation device for atmospheric data according to an embodiment of the present utility model;
图2是根据本实用新型实施例提供的又一种大气数据的信号仿真模拟装置的结构示意图;FIG2 is a schematic diagram of the structure of another signal simulation device for atmospheric data provided according to an embodiment of the present utility model;
图3是根据本实用新型实施例提供的一种ADM模块在机头的分布示意图;FIG3 is a schematic diagram of the distribution of an ADM module in a machine head according to an embodiment of the utility model;
图4是根据本实用新型实施例提供的一种信号仿真模拟装置连接示意图;FIG4 is a schematic diagram of a signal simulation device connection according to an embodiment of the present utility model;
图5是根据本实用新型实施例提供的一种大气数据的信号仿真模拟系统的结构示意图。FIG5 is a schematic diagram of the structure of a signal simulation system for atmospheric data provided according to an embodiment of the present utility model.
具体实施方式DETAILED DESCRIPTION
为了使本技术领域的人员更好地理解本实用新型方案,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分的实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本实用新型保护的范围。In order to enable those skilled in the art to better understand the solution of the utility model, the technical solution in the embodiment of the utility model will be clearly and completely described below in conjunction with the drawings in the embodiment of the utility model. Obviously, the described embodiment is only a part of the embodiment of the utility model, not all of the embodiments. Based on the embodiment of the utility model, all other embodiments obtained by ordinary technicians in this field without creative work should fall within the scope of protection of the utility model.
需要说明的是,本实用新型的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本实用新型的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second", etc. in the specification and claims of the utility model and the above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It should be understood that the data used in this way can be interchanged where appropriate, so that the embodiments of the utility model described here can be implemented in an order other than those illustrated or described here. In addition, the terms "including" and "having" and any of their variations are intended to cover non-exclusive inclusions, for example, a process, method, system, product or device that includes a series of steps or units is not necessarily limited to those steps or units clearly listed, but may include other steps or units that are not clearly listed or inherent to these processes, methods, products or devices.
图1是根据本实用新型实施例提供的一种大气数据的信号仿真模拟装置的结构示意图,本实施例可适用于飞机通过利用大气数据进行飞机各系统功能测试的情况。该大气数据的信号仿真模拟装置应用于飞机。Fig. 1 is a schematic diagram of the structure of a signal simulation device for atmospheric data according to an embodiment of the utility model, and this embodiment can be applied to the case where an aircraft performs a function test of each system of the aircraft by using atmospheric data. The signal simulation device for atmospheric data is applied to an aircraft.
如图1所示,该大气数据的信号仿真模拟装置100包括:仿真管理设备110、仿真服务器120、ARINC429设备130、以及接口电缆140。As shown in FIG. 1 , the signal simulation apparatus 100 for atmospheric data includes: a simulation management device 110 , a simulation server 120 , an ARINC429 device 130 , and an interface cable 140 .
其中,仿真管理设备,用于提供大气数据的数字仿真信号。大气数据包括但不限于空速、高度等。在本实用新型实施例中,大气数据是一种数字仿真信号。可选的,仿真管理设备,包括:参数配置模块、数据处理模块、以及数据仿真模块。The simulation management device is used to provide a digital simulation signal of atmospheric data. The atmospheric data includes but is not limited to airspeed, altitude, etc. In an embodiment of the utility model, the atmospheric data is a digital simulation signal. Optionally, the simulation management device includes: a parameter configuration module, a data processing module, and a data simulation module.
参数配置模块,用于获取用户输入的大气数据的参数配置信息,并将参数配置信息传输至数据处理模块;数据处理模块,用于接收参数配置信息,并基于仿真服务器提供的仿真环境,根据预设航空电子接口控制文件ICD数据处理规则,将参数配置信息转换为ICD信号信息;数据仿真模块,用于接收数据处理模块传输的ICD信号信息,并生成对应的数字仿真信号。The parameter configuration module is used to obtain the parameter configuration information of the atmospheric data input by the user and transmit the parameter configuration information to the data processing module; the data processing module is used to receive the parameter configuration information and, based on the simulation environment provided by the simulation server and according to the preset avionics interface control file ICD data processing rules, convert the parameter configuration information into ICD signal information; the data simulation module is used to receive the ICD signal information transmitted by the data processing module and generate a corresponding digital simulation signal.
可选的,参数配置模块,包括参数配置信息输入界面;参数配置信息输入界面,用户获取用户输入的大气数据的参数配置信息,并将参数配置信息进行展示。用户可以根据飞机在实际测试应用中所需的大气数据设置参数配置信息。例如,用户可以在参数配置信息输入界面输入飞机功能测试时的空速以及高度等数据。Optionally, the parameter configuration module includes a parameter configuration information input interface; the parameter configuration information input interface allows the user to obtain the parameter configuration information of the atmospheric data input by the user and display the parameter configuration information. The user can set the parameter configuration information according to the atmospheric data required by the aircraft in the actual test application. For example, the user can enter the data such as airspeed and altitude during the aircraft function test in the parameter configuration information input interface.
数据处理模块可以接收参数配置模块传输的参数配置信息,并基于预设航空电子接口控制文件(Interface Control Document,ICD)数据处理规则进行数据格式解析处理和数据管理,得到ICD信号信息。其中,ICD数据处理规则是一种系统规范,定义了电器电子接口详细说明,定义了机载电子系统所属部分彼此之间及与非系统所属部分之间的接口,是机载电子系统规范的重要组成部分,能够作为直接评价机载电子系统优劣的依据,用于确保飞机各系统之间的兼容性与一致性,能够有效规避飞行风险。The data processing module can receive the parameter configuration information transmitted by the parameter configuration module, and perform data format parsing and data management based on the preset avionics interface control document (ICD) data processing rules to obtain ICD signal information. Among them, the ICD data processing rules are a system specification that defines the detailed description of the electrical and electronic interface, and defines the interface between the parts of the airborne electronic system and the parts that do not belong to the system. It is an important part of the airborne electronic system specification and can be used as a basis for directly evaluating the advantages and disadvantages of the airborne electronic system. It is used to ensure the compatibility and consistency between the various systems of the aircraft and can effectively avoid flight risks.
数据仿真模块可以接收数据处理模块传输的ICD信号信息,具体对ICD信号信息进行信号仿真,生成数字仿真信号。The data simulation module can receive the ICD signal information transmitted by the data processing module, and specifically perform signal simulation on the ICD signal information to generate a digital simulation signal.
仿真服务器与仿真管理设备连接,用于为仿真管理设备提供仿真环境;仿真服务器与ARINC429设备通过数据网络连接。具体的,图2是根据本实用新型实施例提供的又一种大气数据的信号仿真模拟装置的结构示意图。如图2所示,仿真服务器可以与ARINC429设备连接,为仿真管理设备中的参数配置模块、数据处理模块、以及数据仿真模块提供仿真环境。其中,仿真环境可以是操作系统、板卡驱动等。仿真服务器可以提供实时仿真环境,用于部署仿真管理和实时仿真调度。仿真服务器可以与ARINC429设备之间的连接可以通过以太网口实现,以进行数据交互。The simulation server is connected to the simulation management device to provide a simulation environment for the simulation management device; the simulation server is connected to the ARINC429 device via a data network. Specifically, FIG2 is a structural schematic diagram of another signal simulation device for atmospheric data provided according to an embodiment of the utility model. As shown in FIG2, the simulation server can be connected to the ARINC429 device to provide a simulation environment for the parameter configuration module, the data processing module, and the data simulation module in the simulation management device. Among them, the simulation environment can be an operating system, a board driver, etc. The simulation server can provide a real-time simulation environment for deploying simulation management and real-time simulation scheduling. The connection between the simulation server and the ARINC429 device can be achieved through an Ethernet port for data interaction.
接口电缆设置于ARINC429设备。ARINC429设备可以具有128路ARINC429总线通道。在本实用新型实施例中,可以通过仿真服务器对每路通道的收发状态以及传输速率进行单独配置。The interface cable is arranged on the ARINC429 device. The ARINC429 device may have 128 ARINC429 bus channels. In the embodiment of the utility model, the receiving and sending state and the transmission rate of each channel may be configured separately through the simulation server.
具体的,仿真服务器,还用于根据预设发送信息,将大气数据的数字仿真信号发送至ARINC429设备;ARINC429设备,用于将大气数据的数字仿真信号传输至各接口电缆。Specifically, the simulation server is also used to send the digital simulation signal of the atmospheric data to the ARINC429 device according to the preset sending information; the ARINC429 device is used to transmit the digital simulation signal of the atmospheric data to each interface cable.
其中,预设发送信息,包括但不限于信号发送时间、信号发送频率、信号发送种类以及信号发送阈值范围。The preset sending information includes, but is not limited to, signal sending time, signal sending frequency, signal sending type, and signal sending threshold range.
接口电缆与飞机中的大气数据模块(Air Data Module,ADM)对应连接,接口电缆,用于将数字仿真信号传输至对应的ADM模块,以使ADM模块获取大气数据进行飞机功能测试。The interface cable is connected to the Air Data Module (ADM) in the aircraft. The interface cable is used to transmit the digital simulation signal to the corresponding ADM module so that the ADM module can obtain the atmospheric data for aircraft function testing.
可选的,ARINC429设备启用8个接口电缆。图3是根据本实用新型实施例提供的一种ADM模块在机头的分布示意图。如图3所示,ADM模块分别分布在机头左侧观察窗区域(编号D-341)、机头前设备架区域(编号D-342和D-347)、机头右侧观察窗区域(编号D-343)、机头仪表盘区域(编号D-344)、机头地板上(编号D-345)、机头后设备架区域(编号D-346和D-348)。图3中FR表示机头的框,例如,FR4位机头4框,FR5为机头5框,FR6为机头6框,FR7位机头7框,FR23为机头23框,FR24为机头24框。ADM模块布置在FR4至FR24之间。Optionally, the ARINC429 device enables 8 interface cables. FIG3 is a schematic diagram of the distribution of an ADM module in a head according to an embodiment of the utility model. As shown in FIG3 , the ADM modules are respectively distributed in the observation window area on the left side of the head (numbered D-341), the equipment rack area in front of the head (numbered D-342 and D-347), the observation window area on the right side of the head (numbered D-343), the instrument panel area of the head (numbered D-344), the floor of the head (numbered D-345), and the equipment rack area behind the head (numbered D-346 and D-348). In FIG3 , FR represents the frame of the head, for example, FR4 is the head 4 frame, FR5 is the head 5 frame, FR6 is the head 6 frame, FR7 is the head 7 frame, FR23 is the head 23 frame, and FR24 is the head 24 frame. The ADM module is arranged between FR4 and FR24.
在本实用新型实施例中,接口电缆分别与机头左侧观察窗区域的ADM模块、2个机头前设备架区域的ADM模块、机头右侧观察窗区域的ADM模块、机头仪表盘区域的ADM模块、机头地板上的ADM模块、2个机头后设备架区域的ADM模块连接。In an embodiment of the utility model, the interface cable is respectively connected to the ADM module in the observation window area on the left side of the nose, the ADM module in the two equipment rack areas in front of the nose, the ADM module in the observation window area on the right side of the nose, the ADM module in the instrument panel area of the nose, the ADM module on the nose floor, and the ADM module in the two equipment rack areas behind the nose.
为了更具体说明接口电缆与ADM模块的连接关系,图4是根据本实用新型实施例提供的一种信号仿真模拟装置连接示意图。如图4所示,信号仿真模拟装置,包括:仿真管理设备、仿真服务器、ARINC429设备、以及接口电缆。其中,ARINC429设备启用8个接口电缆,分别为D-341-R1、D-342-R1、D-343-R1、D-344-R1、D-345-R1、D-346-R1、D-347-R1、以及D-348-R1。接口电缆分别与ADM模块连接。具体的,D-341-R1与ADM模块D-341-P1连接,D-342-R1与ADM模块D-342-P1连接,D-343-R1与ADM模块D-343-P1连接,D-344-R1与ADM模块D-344-P1连接,D-345-R1与ADM模块D-345-P1连接,D-346-R1与ADM模块D-346-P1连接,D-347-R1与ADM模块D-347-P1连接,D-348-R1与ADM模块D-348-P1连接。In order to more specifically illustrate the connection relationship between the interface cable and the ADM module, FIG4 is a connection diagram of a signal simulation device provided according to an embodiment of the utility model. As shown in FIG4, the signal simulation device includes: a simulation management device, a simulation server, an ARINC429 device, and an interface cable. Among them, the ARINC429 device enables 8 interface cables, namely D-341-R1, D-342-R1, D-343-R1, D-344-R1, D-345-R1, D-346-R1, D-347-R1, and D-348-R1. The interface cables are connected to the ADM modules respectively. Specifically, D-341-R1 is connected to ADM module D-341-P1, D-342-R1 is connected to ADM module D-342-P1, D-343-R1 is connected to ADM module D-343-P1, D-344-R1 is connected to ADM module D-344-P1, D-345-R1 is connected to ADM module D-345-P1, D-346-R1 is connected to ADM module D-346-P1, D-347-R1 is connected to ADM module D-347-P1, and D-348-R1 is connected to ADM module D-348-P1.
在使用时,ADM模块与飞机上ADM连接器的连接状态为断开。ADM模块与接口电缆连接,从而可以实现由信号仿真模拟装置替代大气数据测试仪,提高大气数据生成效率,进而提高功能测试效率。When in use, the connection state between the ADM module and the ADM connector on the aircraft is disconnected. The ADM module is connected to the interface cable, so that the signal simulation device can replace the atmospheric data tester, improve the efficiency of atmospheric data generation, and further improve the efficiency of functional testing.
为了更便捷地对大气数据的数字仿真信号进行输出,可选的,接口电缆分为三组;其中:第一组接口电缆分别与机头左侧观察窗区域的ADM模块、机头第一前设备架区域的ADM模块、以及机头右侧观察窗区域的ADM模块连接;第二组接口电缆分别与机头仪表盘区域的ADM模块、以及机头地板上的ADM模块连接;第三组接口电缆分别与机头第二前设备架区域的ADM模块、以及2个机头后设备架区域的ADM模块连接。In order to more conveniently output the digital simulation signals of atmospheric data, the interface cables are optionally divided into three groups; wherein: the first group of interface cables are respectively connected to the ADM module in the observation window area on the left side of the nose, the ADM module in the first front equipment rack area of the nose, and the ADM module in the observation window area on the right side of the nose; the second group of interface cables are respectively connected to the ADM module in the instrument panel area of the nose, and the ADM module on the nose floor; the third group of interface cables are respectively connected to the ADM module in the second front equipment rack area of the nose, and the ADM modules in the two rear equipment rack areas of the nose.
如图4所示,D-341-R1与ADM模块D-341-P1连接,D-342-R1与ADM模块D-342-P1连接,D-343-R1与ADM模块D-343-P1连接,构成第一组接口电缆与ADM模块的连接;D-344-R1与ADM模块D-344-P1连接,D-345-R1与ADM模块D-345-P1连接,构成第二组接口电缆与ADM模块的连接;D-346-R1与ADM模块D-346-P1连接,D-347-R1与ADM模块D-347-P1连接,D-348-R1与ADM模块D-348-P1连接,构成第三组接口电缆与ADM模块的连接。As shown in Figure 4, D-341-R1 is connected to ADM module D-341-P1, D-342-R1 is connected to ADM module D-342-P1, and D-343-R1 is connected to ADM module D-343-P1, forming a first group of connections between interface cables and ADM modules; D-344-R1 is connected to ADM module D-344-P1, and D-345-R1 is connected to ADM module D-345-P1, forming a second group of connections between interface cables and ADM modules; D-346-R1 is connected to ADM module D-346-P1, D-347-R1 is connected to ADM module D-347-P1, and D-348-R1 is connected to ADM module D-348-P1, forming a third group of connections between interface cables and ADM modules.
在飞机功能试验中,用大气数据的信号仿真模拟装置代替机上ADM和大气数据测试仪(模拟空速、高度的工装设备),试验前断开机上ADM连接器,将信号仿真模拟装置与机上电缆按图4所示连接,试验中按测试程序要求发送符合系统逻辑的空速、高度仿真信号,支持用户系统闭环测试。In the aircraft function test, the on-board ADM and the atmospheric data tester (tooling equipment simulating airspeed and altitude) are replaced by the atmospheric data signal simulation device. Before the test, the on-board ADM connector is disconnected, and the signal simulation device is connected to the on-board cable as shown in Figure 4. During the test, the airspeed and altitude simulation signals that conform to the system logic are sent according to the test procedure requirements to support the user system closed-loop test.
各组接口电缆所需大气数据可能存在一定差异。例如,各组接口电缆所需大气数据在信号发送时间、信号发送频率、信号发送种类以及信号发送阈值范围上存在一定差异。The atmospheric data required by each group of interface cables may be different to some extent. For example, the atmospheric data required by each group of interface cables may be different to some extent in terms of signal transmission time, signal transmission frequency, signal transmission type, and signal transmission threshold range.
为了更好地实现大气数据的数字仿真信号输出,可选的,预设发送信息,包括:各组接口电缆的信号发送时间、信号发送频率、信号发送种类以及信号发送阈值范围。从而根据预设发送信息可以实现各组接口电缆的具体配置。In order to better realize the digital simulation signal output of atmospheric data, the preset sending information includes: the signal sending time, signal sending frequency, signal sending type and signal sending threshold range of each group of interface cables. Therefore, the specific configuration of each group of interface cables can be realized according to the preset sending information.
进一步的,如图1所示,可选的,仿真服务器,包括:ADM输出仿真器;ADM输出仿真器,用于获取用户输入的ADM模块逻辑模型,并根据ADM模块逻辑模型配置接口电缆对应的预设发送信息。Further, as shown in FIG. 1 , optionally, the simulation server includes: an ADM output simulator; the ADM output simulator is used to obtain the ADM module logic model input by the user, and configure the preset sending information corresponding to the interface cable according to the ADM module logic model.
其中,ADM模块逻辑模型可由ADM模块的位置分布、分组、所需大气数据的差异等信息构成。仿真服务器根据对ADM模块逻辑模型的解析,可以确定接口电缆的具体配置,从而实现符合运算逻辑的仿真信号发送。The ADM module logic model may be composed of information such as the location distribution, grouping, and differences in required atmospheric data of the ADM modules. The simulation server may determine the specific configuration of the interface cable based on the analysis of the ADM module logic model, thereby implementing simulation signal transmission that complies with the operation logic.
本实施例的技术方案,通过设置包括仿真管理设备、仿真服务器、ARINC429设备、以及接口电缆的信号仿真模拟装置,其中,仿真管理设备,用于提供大气数据的数字仿真信号;仿真服务器与仿真管理设备连接,用于为仿真管理设备提供仿真环境;仿真服务器与ARINC429设备通过数据网络连接,接口电缆设置于ARINC429设备;仿真服务器,还用于根据预设发送信息,将大气数据的数字仿真信号发送至ARINC429设备;ARINC429设备,用于将大气数据的数字仿真信号传输至各接口电缆;接口电缆与飞机中的大气数据模块ADM对应连接,接口电缆,用于将数字仿真信号传输至对应的ADM模块,以使ADM模块获取大气数据进行飞机功能测试。解决了飞机控制系统的大气数据仿真问题,可以替代现有技术中的大气数据测试仪,提高飞机功能测试的效率以及可靠性。The technical solution of this embodiment is to set up a signal simulation device including a simulation management device, a simulation server, an ARINC429 device, and an interface cable, wherein the simulation management device is used to provide a digital simulation signal of atmospheric data; the simulation server is connected to the simulation management device to provide a simulation environment for the simulation management device; the simulation server is connected to the ARINC429 device through a data network, and the interface cable is arranged on the ARINC429 device; the simulation server is also used to send the digital simulation signal of atmospheric data to the ARINC429 device according to the preset sending information; the ARINC429 device is used to transmit the digital simulation signal of atmospheric data to each interface cable; the interface cable is correspondingly connected to the atmospheric data module ADM in the aircraft, and the interface cable is used to transmit the digital simulation signal to the corresponding ADM module, so that the ADM module obtains atmospheric data to perform aircraft function testing. The problem of atmospheric data simulation of the aircraft control system is solved, and the atmospheric data tester in the prior art can be replaced to improve the efficiency and reliability of aircraft function testing.
图5是根据本实用新型实施例提供的一种大气数据的信号仿真模拟系统的结构示意图,本实施例中的技术方案可以与上述一个或者多个实施例中的各个可选方案结合。FIG5 is a schematic diagram of the structure of a signal simulation system for atmospheric data provided according to an embodiment of the utility model. The technical solution in this embodiment can be combined with various optional solutions in one or more of the above embodiments.
如图5所示,该信号仿真模拟系统包括:如本实用新型任一实施例所提供的大气数据的信号仿真模拟装置、大气数据模块ADM、以及飞控系统;其中:大气数据的信号仿真模拟装置中的接口电缆与ADM模块连接,用于将大气数据的数字仿真信号传输至ADM模块;ADM模块与飞控系统连接,用于将大气数据的数字仿真信号传输至飞控系统,进行飞机各系统的功能测试。As shown in Figure 5, the signal simulation system includes: a signal simulation device for atmospheric data, an atmospheric data module ADM, and a flight control system as provided in any embodiment of the utility model; wherein: the interface cable in the signal simulation device for atmospheric data is connected to the ADM module, and is used to transmit the digital simulation signal of atmospheric data to the ADM module; the ADM module is connected to the flight control system, and is used to transmit the digital simulation signal of atmospheric data to the flight control system, so as to perform functional tests on various aircraft systems.
本实用新型的技术方案,通过大气数据的信号仿真模拟装置替代了传统的大气数据测试仪,通过总线信号仿真直接发送符合预期的ARINC429信号,提供大气数据模块仿真模型和接口仿真模型,通过服务器和板卡等硬件接口资源与机上被测系统进行物理连接,实现仿真装置和被测系统的数据通信。相比利用大气数据测试仪通过全压探头、静压孔、全静压探头模拟大气压力信号,数字信号仿真能够大幅提高测试效率,同时系统连接更加可靠,有效保证测试质量。The technical solution of the utility model replaces the traditional atmospheric data tester with an atmospheric data signal simulation device, directly sends the expected ARINC429 signal through bus signal simulation, provides an atmospheric data module simulation model and an interface simulation model, and physically connects with the on-board system under test through hardware interface resources such as servers and boards to achieve data communication between the simulation device and the system under test. Compared with using an atmospheric data tester to simulate atmospheric pressure signals through full pressure probes, static pressure holes, and full static pressure probes, digital signal simulation can greatly improve test efficiency, while the system connection is more reliable, effectively ensuring test quality.
上述具体实施方式,并不构成对本实用新型保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本实用新型的精神和原则之内所作的修改、等同替换和改进等,均应包含在本实用新型保护范围之内。The above specific implementations do not constitute a limitation on the protection scope of the present utility model. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions can be made according to design requirements and other factors. Any modification, equivalent substitution and improvement made within the spirit and principle of the present utility model shall be included in the protection scope of the present utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202420021930.4U CN221926952U (en) | 2024-01-04 | 2024-01-04 | Signal simulation device and system for atmospheric data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202420021930.4U CN221926952U (en) | 2024-01-04 | 2024-01-04 | Signal simulation device and system for atmospheric data |
Publications (1)
Publication Number | Publication Date |
---|---|
CN221926952U true CN221926952U (en) | 2024-10-29 |
Family
ID=93207639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202420021930.4U Active CN221926952U (en) | 2024-01-04 | 2024-01-04 | Signal simulation device and system for atmospheric data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN221926952U (en) |
-
2024
- 2024-01-04 CN CN202420021930.4U patent/CN221926952U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6002173B2 (en) | Aircraft message trigger logic test equipment and test method | |
US9639997B2 (en) | Test apparatus and test method based on DFDAU | |
CN101977133B (en) | A 1553B bus network simulation system suitable for spacecraft systems | |
CN109143033A (en) | A kind of whole star interface automatization test system | |
AU2014202810B2 (en) | Test apparatus and test method based on dfdau | |
CN113067745A (en) | Aircraft 1394B bus communication simulation test platform | |
CN104977884B (en) | A kind of EMU network control system simulated test platform | |
CN117193249A (en) | Complex avionics system test and integrated verification platform | |
CN116643553A (en) | Aircraft ground task bus detection equipment | |
CN221926952U (en) | Signal simulation device and system for atmospheric data | |
Eichinger et al. | Crush: Cognitive radio universal software hardware | |
CN108011766B (en) | Automatic switching device for system architecture and wiring relation | |
CN208608998U (en) | A kind of equipment test verifying system based on FC network | |
CN108594791A (en) | Integrated authentication system for integrating Aerial Electronic Equipment | |
RU2632546C1 (en) | Stand of complexing information-control systems of multifunctional aircraft | |
CN211123056U (en) | Avionics test system | |
US20210081342A1 (en) | General Purpose Interface Bus (GPIB) Sniffer System and Method | |
KR20160131680A (en) | Apparatus for testing flight control signal line in fly-by-wire control system | |
CN111884893B (en) | Input and output signal acquisition system and test method | |
CN112040183A (en) | Remote nondestructive transmission display and control system | |
CN113468054A (en) | Automatic test system and method for satellite interface and function test | |
CN110233824A (en) | A kind of system simulation method | |
CN216102849U (en) | Test tester of audio management subassembly | |
CN219162688U (en) | Locomotive signal remote server pressure testing device | |
CN115902902B (en) | An efficient integrated detection and processing system for airborne atmospheric information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |