[go: up one dir, main page]

CN221841639U - Integrated circuit system - Google Patents

Integrated circuit system Download PDF

Info

Publication number
CN221841639U
CN221841639U CN202322650871.5U CN202322650871U CN221841639U CN 221841639 U CN221841639 U CN 221841639U CN 202322650871 U CN202322650871 U CN 202322650871U CN 221841639 U CN221841639 U CN 221841639U
Authority
CN
China
Prior art keywords
data
input
read
circuit
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202322650871.5U
Other languages
Chinese (zh)
Inventor
T·库玛
H·乔拉
B·辛格
H·拉瓦特
K·J·多里
M·阿约提亚瓦西
N·乔拉
P·库玛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Italian Semiconductor International Co
Original Assignee
Italian Semiconductor International Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/228,118 external-priority patent/US20240112748A1/en
Application filed by Italian Semiconductor International Co filed Critical Italian Semiconductor International Co
Application granted granted Critical
Publication of CN221841639U publication Critical patent/CN221841639U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3308Design verification, e.g. functional simulation or model checking using simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3308Design verification, e.g. functional simulation or model checking using simulation
    • G06F30/3312Timing analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Tests Of Electronic Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

The present disclosure relates to integrated circuit systems. A memory circuit includes an address port, a data input port, and a data output port. The upstream shadow logic circuit is coupled to provide address data to an address port of the memory circuit and to provide input data to a data input port of the memory circuit. The downstream shadow logic circuit is coupled to receive output data from the data output port of the memory circuit. The memory circuit includes a bypass path between an address port and a data output port. This bypass path is activated during a test operation to pass bits of address data (forming test data) applied by the upstream shadow logic circuit from the address port to the data output port.

Description

集成电路系统Integrated Circuit System

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请要求于2022年9月30日提交的美国临时专利申请No.63/411,683的优先权,该专利申请的公开内容通过引用并入本文。This application claims priority to U.S. Provisional Patent Application No. 63/411,683, filed on September 30, 2022, the disclosure of which is incorporated herein by reference.

技术领域Technical Field

本文的实施例涉及测试集成电路,并且具体地涉及包括阴影逻辑以及多端口和多时钟存储器的集成电路的针对全速转换故障的测试。Embodiments herein relate to testing integrated circuits, and in particular to testing integrated circuits including shadow logic and multi-port and multi-clock memories for at-speed switching faults.

背景技术Background Art

复杂的集成电路包括被数字逻辑电路包围的非逻辑电路(诸如存储器电路、模拟电路)的组合。集成电路的测试是一项要求。本领域已知使用内置自测试(BIST)机制来达到测试非逻辑电路的目的。例如,BIST测试通常被用于存储器测试。但是,BIST不太适合提供对周围的数字逻辑电路(在本领域中常常被称为阴影逻辑)的测试覆盖。扫描链测试机制可以被用于单独测试数字逻辑电路。但是,包围可编程非逻辑电路的数字逻辑电路的测试仍然是一个挑战,尤其是在执行全速转换故障测试的上下文中以及在可编程非逻辑电路在读和写模式下异步操作的情况下。Complex integrated circuits include a combination of non-logic circuits (such as memory circuits, analog circuits) surrounded by digital logic circuits. Testing of integrated circuits is a requirement. It is known in the art to use built-in self-test (BIST) mechanisms to achieve the purpose of testing non-logic circuits. For example, BIST testing is commonly used for memory testing. However, BIST is not well suited to provide test coverage for surrounding digital logic circuits (often referred to as shadow logic in the art). Scan chain test mechanisms can be used to test digital logic circuits separately. However, testing of digital logic circuits surrounding programmable non-logic circuits remains a challenge, especially in the context of performing full-speed conversion fault testing and in the case where programmable non-logic circuits operate asynchronously in read and write modes.

发明内容Summary of the invention

在实施例中,一种集成电路系统包括:存储器电路,具有存储器阵列、耦合到地址端口的控制电路以及耦合到数据输入端口和数据输出端口的输入/输出电路。控制电路包括地址寄存器,该地址寄存器被配置为响应于读时钟而锁存读地址。每个输入/输出电路包括:第一数据路径,由写时钟控制并将数据输入端口的数据输入端耦合到存储器阵列的写位线;以及第二数据路径,由读时钟控制并将存储器阵列的读位线耦合到数据输出端口的数据输出端。每个输入/输出电路中的第二数据路径包括多路复用器电路,该多路复用器电路具有耦合到读位线的第一输入端、耦合到旁路路径的第二输入端和耦合到数据输出端的输出端。响应于读时钟将测试位施加到每个输入/输出电路中的多路复用器的第二输入端。多路复用器被控制以在测试操作期间选择第二输入端。In an embodiment, an integrated circuit system includes: a memory circuit having a memory array, a control circuit coupled to an address port, and an input/output circuit coupled to a data input port and a data output port. The control circuit includes an address register configured to latch a read address in response to a read clock. Each input/output circuit includes: a first data path controlled by a write clock and coupling a data input of a data input port to a write bit line of the memory array; and a second data path controlled by a read clock and coupling a read bit line of the memory array to a data output of a data output port. The second data path in each input/output circuit includes a multiplexer circuit having a first input coupled to the read bit line, a second input coupled to a bypass path, and an output coupled to the data output. A test bit is applied to a second input of the multiplexer in each input/output circuit in response to the read clock. The multiplexer is controlled to select the second input during a test operation.

在实施例中,一种集成电路系统包括:存储器电路,具有存储器阵列,耦合到地址端口的控制电路,以及耦合到数据输入端口和数据输出端口的输入/输出电路。控制电路包括地址寄存器,该地址寄存器被配置为响应于读时钟而锁存读地址。每个输入/输出电路包括:第一数据路径,由写时钟控制并将数据输入端口的数据输入端耦合到存储器阵列的写位线;以及第二数据路径,由读时钟控制并将存储器阵列的读位线耦合到数据输出端口的数据输出端。每个输入/输出电路中的第二数据路径包括多路复用器电路,该多路复用器电路具有耦合到读位线的第一输入端、耦合到旁路路径的第二输入端以及耦合到数据输出端的输出端。锁存在地址寄存器中的读地址的地址位被施加到每个输入/输出电路中的多路复用器的第二输入端。多路复用器被控制以在测试操作期间选择第二输入端。In an embodiment, an integrated circuit system includes: a memory circuit having a memory array, a control circuit coupled to an address port, and an input/output circuit coupled to a data input port and a data output port. The control circuit includes an address register configured to latch a read address in response to a read clock. Each input/output circuit includes: a first data path controlled by a write clock and coupling a data input of the data input port to a write bit line of the memory array; and a second data path controlled by a read clock and coupling a read bit line of the memory array to a data output of the data output port. The second data path in each input/output circuit includes a multiplexer circuit having a first input coupled to the read bit line, a second input coupled to a bypass path, and an output coupled to the data output. The address bit of the read address latched in the address register is applied to the second input of the multiplexer in each input/output circuit. The multiplexer is controlled to select the second input during a test operation.

在实施例中,一种集成电路系统包括:存储器电路、地址端口、数据输入端口和数据输出端口;上游阴影逻辑电路,被耦合成向存储器电路的地址端口提供地址数据并向存储器电路的数据输入端口提供输入数据;以及下游阴影逻辑电路,被耦合成从存储器电路的数据输出端口接收输出数据。存储器电路包括地址端口与数据输出端口之间的旁路路径,其中旁路路径在测试操作期间是活动的,以将由上游阴影逻辑电路施加的地址数据的位从地址端口传递到数据输出端口。In an embodiment, an integrated circuit system includes: a memory circuit, an address port, a data input port, and a data output port; an upstream shadow logic circuit coupled to provide address data to the address port of the memory circuit and to provide input data to the data input port of the memory circuit; and a downstream shadow logic circuit coupled to receive output data from the data output port of the memory circuit. The memory circuit includes a bypass path between the address port and the data output port, wherein the bypass path is active during a test operation to pass bits of address data applied by the upstream shadow logic circuit from the address port to the data output port.

根据本公开的一个方面,提供一种集成电路系统,包括:存储器电路,具有:存储器阵列,耦合到地址端口的控制电路,以及耦合到数据输入端口和数据输出端口的输入/输出电路;其中控制电路包括地址寄存器,该地址寄存器响应于读时钟而锁存读地址;其中每个输入/输出电路包括:第一数据路径以及第二数据路径,第一数据路径由写时钟控制并将数据输入端口的数据输入端耦合到存储器阵列的写位线,第二数据路径由读时钟控制并将存储器阵列的读位线耦合到数据输出端口的数据输出端;其中每个输入/输出电路中的第二数据路径包括多路复用器电路,该多路复用器电路具有耦合到读位线的第一输入端、耦合到旁路路径的第二输入端和耦合到数据输出端的输出端;其中响应于读时钟将测试位施加到每个输入/输出电路中的多路复用器的第二输入端;以及其中多路复用器被控制以在测试操作期间选择第二输入端。According to one aspect of the present disclosure, an integrated circuit system is provided, comprising: a memory circuit having: a memory array, a control circuit coupled to an address port, and an input/output circuit coupled to a data input port and a data output port; wherein the control circuit comprises an address register, which latches a read address in response to a read clock; wherein each input/output circuit comprises: a first data path and a second data path, the first data path being controlled by a write clock and coupling a data input end of the data input port to a write bit line of the memory array, and the second data path being controlled by a read clock and coupling a read bit line of the memory array to a data output end of the data output port; wherein the second data path in each input/output circuit comprises a multiplexer circuit having a first input end coupled to the read bit line, a second input end coupled to a bypass path, and an output end coupled to the data output end; wherein a test bit is applied to the second input end of the multiplexer in each input/output circuit in response to the read clock; and wherein the multiplexer is controlled to select the second input end during a test operation.

根据一个或多个实施例,其中存储器电路的存储器阵列包括具有单独的读端口和写端口的存储器单元。According to one or more embodiments, a memory array of a memory circuit includes memory cells having separate read and write ports.

根据一个或多个实施例,其中每个输入/输出电路中的第二数据路径包括锁存电路,该锁存电路响应于读时钟而锁存来自存储器阵列的读位线的数据。According to one or more embodiments, the second data path in each input/output circuit includes a latch circuit that latches data from a read bit line of the memory array in response to a read clock.

根据一个或多个实施例,其中测试位是响应于读时钟而锁存在地址寄存器中的读地址的地址位。According to one or more embodiments, wherein the test bits are address bits of a read address latched in an address register in response to a read clock.

根据一个或多个实施例,其中所述旁路路径包括延迟电路,该延迟电路使得将读地址的地址位施加到每个输入/输出电路中的多路复用器的第二输入端延迟达一延迟时间。According to one or more embodiments, the bypass path includes a delay circuit that delays application of address bits of the read address to the second input of the multiplexer in each input/output circuit by a delay time.

根据一个或多个实施例,其中延迟时间被设置为使得测试信号从寄存器通过旁路路径和多路复用器的第二输入端传播到数据输出端的定时等于通过第二数据路径从存储器阵列读取的存储器存取的定时。According to one or more embodiments, the delay time is set so that the timing of the test signal propagating from the register through the bypass path and the second input terminal of the multiplexer to the data output terminal is equal to the timing of the memory access reading from the memory array through the second data path.

根据一个或多个实施例,所述集成电路系统还包括地址端口上游的阴影逻辑,其中所述阴影逻辑在测试操作期间提供读地址。According to one or more embodiments, the integrated circuit system further includes shadow logic upstream of the address port, wherein the shadow logic provides a read address during a test operation.

根据一个或多个实施例,所述集成电路系统还包括耦合到数据输入端口上游的阴影逻辑的用于测试操作的扫描寄存器。According to one or more embodiments, the integrated circuit system further includes a scan register for a test operation coupled to the shadow logic upstream of the data input port.

根据一个或多个实施例,所述集成电路系统还包括内置自测试电路,该内置自测试电路在测试操作期间供给读地址。According to one or more embodiments, the integrated circuit system further includes a built-in self-test circuit that supplies a read address during a test operation.

根据一个或多个实施例,其中内置自测试电路还耦合到数据输出端口。According to one or more embodiments, the built-in self-test circuit is further coupled to the data output port.

根据一个或多个实施例,所述集成电路系统还包括数据输出端口下游的阴影逻辑。According to one or more embodiments, the integrated circuit system further includes shadow logic downstream of the data output port.

根据一个或多个实施例,所述集成电路系统还包括耦合到数据输出端口下游的阴影逻辑的用于测试操作的扫描寄存器。According to one or more embodiments, the integrated circuit system further includes a scan register for a test operation coupled to the shadow logic downstream of the data output port.

根据一个或多个实施例,所述集成电路系统还包括数据输入端口上游的阴影逻辑。According to one or more embodiments, the integrated circuit system further includes a shadow logic upstream of the data input port.

根据一个或多个实施例,所述集成电路系统还包括耦合到数据输入端口上游的阴影逻辑的用于测试操作的扫描寄存器。According to one or more embodiments, the integrated circuit system further includes a scan register for a test operation coupled to the shadow logic upstream of the data input port.

根据一个或多个实施例,其中读时钟与写时钟是异步的。According to one or more embodiments, the read clock is asynchronous to the write clock.

根据一个或多个实施例,其中读时钟与写时钟具有不同的频率。According to one or more embodiments, the read clock and the write clock have different frequencies.

根据一个或多个实施例,其中存储器阵列被划分为多个子阵列,每个子阵列包括局部读位线,并且其中每个输入/输出电路包括具有耦合到来自所述多个子阵列的局部读位线的输入端和耦合到第二数据路径的输出端的读逻辑。According to one or more embodiments, wherein the memory array is divided into a plurality of sub-arrays, each sub-array includes a local read bit line, and wherein each input/output circuit includes read logic having an input terminal coupled to the local read bit lines from the plurality of sub-arrays and an output terminal coupled to the second data path.

根据一个或多个实施例,其中每个输入/输出电路还包括多条另外的数据路径,每条另外的数据路径将所述多条局部读位线中的一条局部读位线耦合到数据输出端口的多个读数据输出端中的对应的一个读数据输出端。According to one or more embodiments, each input/output circuit further comprises a plurality of additional data paths, each of the additional data paths coupling one of the plurality of local read bit lines to a corresponding one of the plurality of read data output terminals of the data output port.

根据一个或多个实施例,其中测试位是响应于读时钟而锁存在地址寄存器中的读地址的地址位;其中每个输入/输出电路中的每条另外的数据路径包括另外的多路复用器电路,该另外的多路复用器电路具有耦合到局部读位线的第一输入端、耦合到旁路路径的第二输入端以及耦合到读数据输出端的输出端;其中锁存在地址寄存器中的读地址的地址位被施加到每个输入/输出电路中的所述另外的多路复用器的第二输入端;以及其中所述另外的多路复用器被控制以在测试操作期间选择第二输入端。According to one or more embodiments, wherein the test bits are address bits of a read address latched in an address register in response to a read clock; wherein each additional data path in each input/output circuit includes an additional multiplexer circuit having a first input coupled to a local read bit line, a second input coupled to a bypass path, and an output coupled to a read data output; wherein the address bits of the read address latched in the address register are applied to the second input of the additional multiplexer in each input/output circuit; and wherein the additional multiplexer is controlled to select the second input during a test operation.

根据一个或多个实施例,其中每个输入/输出电路中的第二数据路径包括锁存电路,该锁存电路响应于读时钟而锁存来自存储器阵列的读位线的数据。According to one or more embodiments, the second data path in each input/output circuit includes a latch circuit that latches data from a read bit line of the memory array in response to a read clock.

根据一个或多个实施例,其中所述旁路路径包括延迟电路,该延迟电路使得将读地址的地址位施加到每个输入/输出电路中的另外的多路复用器的第二输入端延迟达一延迟时间。According to one or more embodiments, the bypass path includes a delay circuit that delays application of address bits of the read address to the second input of the further multiplexer in each input/output circuit by a delay time.

根据一个或多个实施例,其中延迟时间被设置为使得测试信号从寄存器通过旁路路径和另外的多路复用器的第二输入端传播到读数据输出端的定时等于通过第二数据路径从存储器阵列读取的存储器存取的定时。According to one or more embodiments, the delay time is set so that the timing of the test signal propagating from the register through the bypass path and the second input terminal of the further multiplexer to the read data output terminal is equal to the timing of the memory access reading from the memory array through the second data path.

根据一个或多个实施例,所述集成电路系统还包括数据输出端口下游的阴影逻辑。According to one or more embodiments, the integrated circuit system further includes shadow logic downstream of the data output port.

根据一个或多个实施例,所述集成电路系统还包括耦合到数据输出端口下游的阴影逻辑的用于测试操作的扫描寄存器。According to one or more embodiments, the integrated circuit system further includes a scan register for a test operation coupled to the shadow logic downstream of the data output port.

根据一个或多个实施例,所述集成电路系统还包括数据输入端口上游的阴影逻辑。According to one or more embodiments, the integrated circuit system further includes a shadow logic upstream of the data input port.

根据一个或多个实施例,所述集成电路系统还包括耦合到数据输入端口上游的阴影逻辑的用于测试操作的扫描寄存器。According to one or more embodiments, the integrated circuit system further includes a scan register for a test operation coupled to the shadow logic upstream of the data input port.

根据一个或多个实施例,所述集成电路系统还包括地址端口上游的阴影逻辑,其中所述阴影逻辑在测试操作期间提供读地址。According to one or more embodiments, the integrated circuit system further includes shadow logic upstream of the address port, wherein the shadow logic provides a read address during a test operation.

根据一个或多个实施例,所述集成电路系统还包括耦合到数据输入端口上游的阴影逻辑的用于测试操作的扫描寄存器。According to one or more embodiments, the integrated circuit system further includes a scan register for a test operation coupled to the shadow logic upstream of the data input port.

根据一个或多个实施例,所述集成电路系统还包括内置自测试电路,该内置自测试电路在测试操作期间供给读地址。According to one or more embodiments, the integrated circuit system further includes a built-in self-test circuit that supplies a read address during a test operation.

根据一个或多个实施例,其中内置自测试电路还耦合到数据输出端口。According to one or more embodiments, the built-in self-test circuit is further coupled to the data output port.

根据一个或多个实施例,其中读时钟与写时钟是异步的。According to one or more embodiments, the read clock is asynchronous to the write clock.

根据本公开的另一个方面,提供一种集成电路系统,包括:存储器电路,地址端口、数据输入端口和数据输出端口;上游阴影逻辑电路,被耦合成向存储器电路的地址端口提供地址数据并向存储器电路的数据输入端口提供输入数据;以及下游阴影逻辑电路,被耦合成从存储器电路的数据输出端口接收输出数据;其中存储器电路包括地址端口与数据输出端口之间的旁路路径,所述旁路路径在测试操作期间是活动的,以将由上游阴影逻辑电路施加的地址数据的位从地址端口传递到数据输出端口。According to another aspect of the present disclosure, an integrated circuit system is provided, comprising: a memory circuit, an address port, a data input port and a data output port; an upstream shadow logic circuit coupled to provide address data to the address port of the memory circuit and to provide input data to the data input port of the memory circuit; and a downstream shadow logic circuit coupled to receive output data from the data output port of the memory circuit; wherein the memory circuit comprises a bypass path between the address port and the data output port, the bypass path being active during a test operation to pass bits of address data applied by the upstream shadow logic circuit from the address port to the data output port.

根据一个或多个实施例,其中旁路路径包括延迟电路,该延迟电路延迟地址数据的位从地址端口到数据输出端口的传递。According to one or more embodiments, the bypass path includes a delay circuit that delays the transfer of bits of address data from the address port to the data output port.

根据一个或多个实施例,其中延迟时间被设置为使得地址位从地址端口通过旁路路径传播到数据输出端口的定时等于用于从存储器电路读取数据以在数据输出端口处输出的存储器存取的定时。According to one or more embodiments, wherein the delay time is set so that the timing of address bits propagating from the address port through the bypass path to the data output port is equal to the timing of memory access for reading data from the memory circuit for output at the data output port.

根据一个或多个实施例,所述集成电路系统还包括耦合到下游阴影逻辑的用于测试操作的扫描寄存器。According to one or more embodiments, the integrated circuit system further includes a scan register coupled to the downstream shadow logic for a test operation.

根据一个或多个实施例,所述集成电路系统还包括耦合到上游阴影逻辑的用于测试操作的扫描寄存器。According to one or more embodiments, the integrated circuit system further includes a scan register for a test operation coupled to the upstream shadow logic.

根据一个或多个实施例,其中存储器电路包括存储器阵列,该存储器阵列具有通过读路径耦合到数据输出端口的读位线。According to one or more embodiments, a memory circuit includes a memory array having a read bit line coupled to a data output port through a read path.

根据一个或多个实施例,其中所述读路径包括:锁存电路,响应于读时钟而锁存来自存储器阵列的读位线的数据;以及多路复用器电路,具有耦合到锁存电路的输出端的第一输入端、耦合到旁路路径的第二输入端以及耦合到数据输出端口的输出端;以及其中多路复用器被控制以在测试操作期间选择第二输入端。According to one or more embodiments, the read path includes: a latch circuit that latches data from a read bit line of a memory array in response to a read clock; and a multiplexer circuit having a first input coupled to an output of the latch circuit, a second input coupled to a bypass path, and an output coupled to a data output port; and wherein the multiplexer is controlled to select the second input during a test operation.

根据一个或多个实施例,其中存储器电路包括被划分为多个子阵列的存储器阵列,每个子阵列包括通过读路径耦合到数据输出部分的局部读位线。According to one or more embodiments, a memory circuit includes a memory array divided into a plurality of sub-arrays, each sub-array including a local read bit line coupled to a data output portion through a read path.

根据一个或多个实施例,其中每条读路径包括:锁存电路,响应于读时钟而锁存来自存储器阵列的局部读位线的数据;以及多路复用器电路,具有耦合到锁存电路的输出端的第一输入端、耦合到旁路路径的第二输入端以及耦合到数据输出端口的输出端;以及其中多路复用器被控制以在测试操作期间选择第二输入端。According to one or more embodiments, each read path includes: a latch circuit that latches data from a local read bit line of a memory array in response to a read clock; and a multiplexer circuit having a first input coupled to an output of the latch circuit, a second input coupled to a bypass path, and an output coupled to a data output port; and wherein the multiplexer is controlled to select the second input during a test operation.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更好地理解实施例,现在将仅通过示例的方式参考附图,其中:For a better understanding of the embodiments, reference will now be made, by way of example only, to the accompanying drawings, in which:

图1是包括存储器电路的集成电路系统的框图;FIG1 is a block diagram of an integrated circuit system including a memory circuit;

图2是用于图1的存储器电路的输入/输出(I/O)电路的框图;FIG2 is a block diagram of an input/output (I/O) circuit for the memory circuit of FIG1;

图3是存储器电路的框图;FIG3 is a block diagram of a memory circuit;

图4是图3中所示的存储器阵列所使用的标准8T静态随机存取存储器(SRAM)单元的电路图;FIG4 is a circuit diagram of a standard 8T static random access memory (SRAM) cell used in the memory array shown in FIG3 ;

图5是用于图3的存储器电路的I/O电路的框图;FIG5 is a block diagram of an I/O circuit for the memory circuit of FIG3;

图6示出了图5中所示的I/O电路在用于支持测试操作的扫描链配置中的连接;FIG6 illustrates the connection of the I/O circuit shown in FIG5 in a scan chain configuration for supporting test operations;

图7是存储器电路的框图;FIG7 is a block diagram of a memory circuit;

图8是用于图7的存储器电路的I/O电路的另一个实施例的框图;FIG8 is a block diagram of another embodiment of an I/O circuit for the memory circuit of FIG7;

图9是存储器电路的框图;FIG9 is a block diagram of a memory circuit;

图10是用于图9的存储器电路的I/O电路的另一个实施例的框图;FIG10 is a block diagram of another embodiment of an I/O circuit for the memory circuit of FIG9;

图11是存储器电路的示意图;以及FIG11 is a schematic diagram of a memory circuit; and

图12是用于图11的存储器电路的I/O电路的实施例的框图。12 is a block diagram of an embodiment of an I/O circuit for the memory circuit of FIG. 11 .

具体实施方式DETAILED DESCRIPTION

参考图1,图1示出了集成电路系统10的框图,该集成电路系统10包括存储器电路12,该存储器电路12在这里通过示例被示为随机存取存储器(RAM)的形式,其被上游(或输入)阴影逻辑14和下游(或输出)阴影逻辑16包围。提供存储器内置自测试(BIST)电路18来测试存储器电路12(注意的是,阴影逻辑14、16的测试不是由BIST电路18执行)。上游阴影逻辑14被配置为通过多路复用器22的第一输入端向存储器电路12的数据输入端口(data_in)提供多位数据输入20。BIST电路18被配置为通过多路复用器22的第二输入端向存储器电路12的数据输入端口(data_in)提供多位BIST数据输入24。上游阴影逻辑14还被配置为通过多路复用器28的第一输入端向存储器电路12的地址端口(addr_in)提供多位地址输入26。BIST电路18还被配置为通过多路复用器28的第二输入端向存储器电路12的地址端口(addr_in)提供多位BIST地址输入30。在存储器电路12的数据输出端口(data_out)处,通过多路复用器34的第一输入端将多位数据输出32提供给下游阴影逻辑16。多位数据输出32还作为反馈被施加到BIST电路18。来自上游阴影逻辑14的多位数据输入20进一步通过存储器旁路36通过多路复用器34的第二输入端施加到下游阴影逻辑16。输入扫描链寄存器40可以提供测试数据42以施加到上游阴影逻辑14。由下游阴影逻辑16生成的测试数据46由输出扫描链寄存器44接收。Referring to FIG. 1 , there is shown a block diagram of an integrated circuit system 10 that includes a memory circuit 12, which is shown here by way of example in the form of a random access memory (RAM), surrounded by an upstream (or input) shadow logic 14 and a downstream (or output) shadow logic 16. A memory built-in self-test (BIST) circuit 18 is provided to test the memory circuit 12 (note that the testing of the shadow logics 14, 16 is not performed by the BIST circuit 18). The upstream shadow logic 14 is configured to provide a multi-bit data input 20 to a data input port (data_in) of the memory circuit 12 through a first input of a multiplexer 22. The BIST circuit 18 is configured to provide a multi-bit BIST data input 24 to a data input port (data_in) of the memory circuit 12 through a second input of the multiplexer 22. The upstream shadow logic 14 is also configured to provide a multi-bit address input 26 to an address port (addr_in) of the memory circuit 12 through a first input of a multiplexer 28. The BIST circuit 18 is also configured to provide a multi-bit BIST address input 30 to an address port (addr_in) of the memory circuit 12 through a second input of the multiplexer 28. At a data output port (data_out) of the memory circuit 12, a multi-bit data output 32 is provided to the downstream shadow logic 16 through a first input of a multiplexer 34. The multi-bit data output 32 is also applied to the BIST circuit 18 as feedback. The multi-bit data input 20 from the upstream shadow logic 14 is further applied to the downstream shadow logic 16 through a second input of the multiplexer 34 through a memory bypass 36. An input scan chain register 40 may provide test data 42 to be applied to the upstream shadow logic 14. Test data 46 generated by the downstream shadow logic 16 is received by an output scan chain register 44.

如上所述,使用BIST电路18的BIST测试特定于提供存储器电路12的测试。使用自动测试图案生成(ATPG)电路系统(未明确示出)来执行包围存储器电路12的上游阴影逻辑14和下游阴影逻辑16的测试,该ATPG电路系统将测试数据输入加载到输入扫描链寄存器40并提取来自输出扫描链寄存器44的测试数据输出。为了避免在ATPG控制的逻辑测试期间访问存储器12的复杂性,存储器旁路36通过测试旁路控制信号(Tbypass)的断言被启用,以允许来自上游阴影逻辑14的多位数据输入20避开(旁路)存储器电路12并且通过多路复用器34的第二输入端被施加到下游阴影逻辑16。As described above, BIST testing using the BIST circuit 18 is specific to providing testing of the memory circuit 12. Testing of the upstream shadow logic 14 and the downstream shadow logic 16 surrounding the memory circuit 12 is performed using automatic test pattern generation (ATPG) circuitry (not explicitly shown) that loads test data inputs to the input scan chain registers 40 and extracts test data outputs from the output scan chain registers 44. To avoid the complexity of accessing the memory 12 during ATPG-controlled logic testing, the memory bypass 36 is enabled by assertion of the test bypass control signal (Tbypass) to allow the multi-bit data input 20 from the upstream shadow logic 14 to bypass (bypass) the memory circuit 12 and be applied to the downstream shadow logic 16 through the second input of the multiplexer 34.

多路复用器34和存储器旁路36可以代替地被实现为存储器电路12的数据输入端口(data_in)和数据输出端口(data_out)之间的输入/输出(I/O)电路的一部分。图2中示出了这种情况的示例(参见多路复用器34'和旁路路径36')。I/O电路50包括数据输入端D(作为存储器数据输入端口data_in的一部分)和数据输出端Q(作为存储器数据输出端口data_out的一部分)。例如由触发器(FF)形成的数据输出锁存器52耦合到存储器电路12的存储器阵列,以接收由读逻辑电路系统通过位线BL从存储器阵列读取的数据位。数据输出锁存器52由时钟信号CLK控制。来自数据输出锁存器52的输出被施加到多路复用器34'的第一输入端,多路复用器34'的输出端被耦合到I/O电路50的数据输出端Q。数据输入锁存器54被耦合成接收在数据输入端D处输入到存储器电路12的数据位。数据输入锁存器54由时钟信号CLK控制。来自数据输入锁存器54的输出通过写逻辑电路系统施加以通过位线BL将数据写入到存储器阵列中。来自数据输入锁存器54的输出还通过旁路路径36'施加到多路复用器34'的第二输入端,多路复用器34'的输出端耦合到I/O电路50的数据输出端Q。多路复用器34'的选择输入端接收测试旁路(Tbypass)控制信号56。当测试旁路控制信号56被断言(例如,逻辑高)时,多路复用器34'选择多路复用器34'的第二输入端处的数据以输出到I/O电路50的数据输出端Q。Multiplexer 34 and memory bypass 36 may alternatively be implemented as part of an input/output (I/O) circuit between a data input port (data_in) and a data output port (data_out) of memory circuit 12. An example of this is shown in FIG. 2 (see multiplexer 34' and bypass path 36'). I/O circuit 50 includes a data input terminal D (as part of memory data input port data_in) and a data output terminal Q (as part of memory data output port data_out). A data output latch 52, for example formed by a flip-flop (FF), is coupled to a memory array of memory circuit 12 to receive data bits read from the memory array by a read logic circuit system via a bit line BL. Data output latch 52 is controlled by a clock signal CLK. The output from data output latch 52 is applied to a first input terminal of multiplexer 34', and the output terminal of multiplexer 34' is coupled to data output terminal Q of I/O circuit 50. The data input latch 54 is coupled to receive the data bit input to the memory circuit 12 at the data input terminal D. The data input latch 54 is controlled by the clock signal CLK. The output from the data input latch 54 is applied by the write logic circuit system to write the data into the memory array through the bit line BL. The output from the data input latch 54 is also applied to the second input terminal of the multiplexer 34' through the bypass path 36', and the output terminal of the multiplexer 34' is coupled to the data output terminal Q of the I/O circuit 50. The select input terminal of the multiplexer 34' receives the test bypass (Tbypass) control signal 56. When the test bypass control signal 56 is asserted (e.g., logic high), the multiplexer 34' selects the data at the second input terminal of the multiplexer 34' to output to the data output terminal Q of the I/O circuit 50.

在存储器旁路操作中,在数据输入端D处输入到存储器电路12的数据位通过旁路路径36'传递以用于在数据输出端Q处从存储器电路输出使得能够实现用于阴影逻辑的固定型故障测试覆盖。此外,通过旁路路径36'从数据输入端D到数据输出端Q的数据传递的定时可以由自时间延迟来控制,该自时间延迟与正常存储器访问时间延迟(对于存储器阵列读/写操作)相匹配,以便使得能够实现瞬态故障测试覆盖。In a memory bypass operation, data bits input to the memory circuit 12 at the data input terminal D are passed through the bypass path 36' for output from the memory circuit at the data output terminal Q to enable stuck-at fault test coverage for the shadow logic. In addition, the timing of the data transfer from the data input terminal D to the data output terminal Q through the bypass path 36' can be controlled by a self-time delay that matches the normal memory access time delay (for memory array read/write operations) to enable transient fault test coverage.

将注意到的是,在这个示例中,存储器阵列经由包括互补位线对的位线BL耦合到I/O电路50,其中阵列由单端口类型的存储器位单元形成。在存储器电路的位单元代替地是多端口单元(即,具有单独的读和写端口)并且存储器电路支持用于在不同读/写端口上的读和写定时操作的不同的时钟的情况下,这种测试操作变得更加复杂。It will be noted that in this example, the memory array is coupled to the I/O circuit 50 via bit lines BL comprising complementary bit line pairs, wherein the array is formed of memory bit cells of a single-port type. Such testing operations become more complicated where the bit cells of the memory circuit are instead multi-port cells (i.e., having separate read and write ports) and the memory circuit supports different clocks for read and write timing operations on different read/write ports.

现在参考图3,图3示出了存储器电路110的框图,该存储器电路110包括由以具有N行和M列的矩阵格式布置的多个SRAM存储器单元114形成的静态随机存取存储器(SRAM)阵列112。每个SRAM存储器单元都是众所周知的双端口(一个读,一个写)8T类型(参见图4),并且包括写字线WWL、一对互补(写)位线BLT和BLC、读字线RWL和读位线RBL。矩阵的共用行中的SRAM存储器单元通过共用写字线WWL并通过共用读字线RWL彼此连接。在读和写操作期间,每条字线(WWL和/或RWL)由字线驱动电路116用由行解码器电路118生成的字线信号来驱动。跨整个阵列112的矩阵的共用列中的SRAM存储器单元通过共用的互补位线对BLT和BLC(与每个存储器单元114的写端口对应)并通过共用读位线RBL(与每个存储器单元114的读端口对应)彼此连接。位线(BLT、BLC和RBL)中的每一条耦合到列输入/输出(I/O)电路120。列I/O电路120的数据输入端口(D)(作为存储器数据输入端口data_in的一部分提供)响应于由写时钟WCK信号定时的写字线信号的断言而接收要通过位线BLT、BLC写入到列中的SRAM存储器单元114的输入数据。列I/O电路120的数据输出端口(Q)(作为存储器数据输出端口data_out的一部分提供)响应于由读时钟RCK信号定时的读字线信号的断言而生成通过读位线RBL从列中的SRAM存储器单元114读取的输出数据。控制电路200控制存储器内的电路系统的操作。将注意的是,时钟信号WCK和RCK可以是异步时钟。因此,在这种配置中,存储器电路110可以被称为多端口(即,双端口:一个读、一个写)和多时钟(读和写)型存储器。Referring now to FIG. 3 , there is shown a block diagram of a memory circuit 110 including a static random access memory (SRAM) array 112 formed of a plurality of SRAM memory cells 114 arranged in a matrix format having N rows and M columns. Each SRAM memory cell is of the well-known dual-port (one read, one write) 8T type (see FIG. 4 ) and includes a write word line WWL, a pair of complementary (write) bit lines BLT and BLC, a read word line RWL, and a read bit line RBL. The SRAM memory cells in a common row of the matrix are connected to each other by a common write word line WWL and by a common read word line RWL. During read and write operations, each word line (WWL and/or RWL) is driven by a word line driver circuit 116 with a word line signal generated by a row decoder circuit 118. The SRAM memory cells in a common column of the matrix across the entire array 112 are connected to each other through a common complementary bit line pair BLT and BLC (corresponding to the write port of each memory cell 114) and through a common read bit line RBL (corresponding to the read port of each memory cell 114). Each of the bit lines (BLT, BLC, and RBL) is coupled to a column input/output (I/O) circuit 120. The data input port (D) of the column I/O circuit 120 (provided as part of the memory data input port data_in) receives input data to be written to the SRAM memory cells 114 in the column through the bit lines BLT, BLC in response to the assertion of the write word line signal timed by the write clock WCK signal. The data output port (Q) of the column I/O circuit 120 (provided as part of the memory data output port data_out) generates output data read from the SRAM memory cells 114 in the column through the read bit line RBL in response to the assertion of the read word line signal timed by the read clock RCK signal. The control circuit 200 controls the operation of the circuit system within the memory. It will be noted that the clock signals WCK and RCK may be asynchronous clocks.Thus, in this configuration, the memory circuit 110 may be referred to as a multi-port (ie, dual port: one read, one write) and multi-clock (read and write) type memory.

现在参考图4,每个存储器单元114包括两个交叉耦合的CMOS反相器122和124,每个反相器包括串联连接的p沟道和n沟道MOSFET晶体管对。反相器122和124的输入端和输出端被耦合成形成锁存电路,该锁存电路具有真实数据存储节点QT和互补数据存储节点QC,该互补数据存储节点QC存储所存储数据位的互补逻辑状态。单元114还包括两个传输(转移门)晶体管126和128,其栅极端子由字线WL驱动。晶体管126的源极-漏极路径连接在真实数据存储节点QT和与真实位线BLT相关联的节点之间。晶体管128的源极-漏极路径连接在互补数据存储节点QC和与互补位线BLC相关联的节点之间。每个反相器122和124中的p沟道晶体管130和132的源极端子被耦合成在高供电节点处接收高供电电压(例如,Vdd),而每个反相器122和124中的n沟道晶体管134和136的源极端子被耦合成在低供电节点处接收低供电电压(例如,地(Gnd)参考)。读位线RBL与低供电电压参考之间的信号路径由串联耦合的晶体管138和140形成。(读)晶体管138的栅极端子耦合到互补存储节点QC,并且(传输)晶体管140的栅极端子被耦合成接收读字线RWL上的信号。字线驱动器电路116通常还被耦合成在高供电节点处接收高供电电压(Vdd)并且参考低供电节点处的低供电电压(Gnd)。Referring now to FIG. 4 , each memory cell 114 includes two cross-coupled CMOS inverters 122 and 124, each inverter including a pair of p-channel and n-channel MOSFET transistors connected in series. The input and output of the inverters 122 and 124 are coupled to form a latch circuit having a true data storage node QT and a complementary data storage node QC, which stores the complementary logic states of the stored data bits. The cell 114 also includes two transmission (transfer gate) transistors 126 and 128, whose gate terminals are driven by the word line WL. The source-drain path of transistor 126 is connected between the true data storage node QT and a node associated with the true bit line BLT. The source-drain path of transistor 128 is connected between the complementary data storage node QC and a node associated with the complementary bit line BLC. The source terminals of p-channel transistors 130 and 132 in each inverter 122 and 124 are coupled to receive a high supply voltage (e.g., Vdd) at a high supply node, while the source terminals of n-channel transistors 134 and 136 in each inverter 122 and 124 are coupled to receive a low supply voltage (e.g., ground (Gnd) reference) at a low supply node. A signal path between the read bit line RBL and the low supply voltage reference is formed by transistors 138 and 140 coupled in series. The gate terminal of (read) transistor 138 is coupled to a complementary storage node QC, and the gate terminal of (pass) transistor 140 is coupled to receive a signal on a read word line RWL. The word line driver circuit 116 is also typically coupled to receive a high supply voltage (Vdd) at a high supply node and referenced to a low supply voltage (Gnd) at a low supply node.

存储器电路110可以例如被用作图1中所示的系统10中的存储器电路12。为了支持集成电路测试操作,存储器电路110的输入/输出(I/O)电路120可以具有像是如图5中所示的电路配置,其中M个I/O电路120(0)至120(M-1)以如图6中所示的扫描链配置连接。每个I/O电路120包括数据输入端D(作为存储器数据输入端口data_in的一部分)和数据输出端Q(作为存储器数据输出端口data_out的一部分)。例如由触发器(FF)形成的数据输出锁存器152通过多路复用器153的第一输入端耦合到存储器电路110的存储器阵列(经由列读位线RBL)以接收由读逻辑电路系统从存储器阵列读取的数据位。数据输出锁存器152由读时钟信号RCK控制。来自数据输出锁存器152的输出耦合到I/O电路120的数据输出端Q。数据输入锁存器154被耦合成接收在数据输入端D处输入到存储器电路110的数据位。数据输入锁存器154由写时钟信号WCK控制。来自数据输入锁存器154的输出通过写逻辑电路系统施加以将数据写入到存储器阵列中(经由列互补写位线BLT、BLC)。每个I/O电路120还包括被耦合成接收测试数据位的测试输入端T(例如,作为存储器数据输入端口data_in的一部分提供)。测试数据锁存器158被耦合成从测试输入端T接收测试数据位。测试数据锁存器158由读时钟信号RCK控制。测试数据锁存器158的输出端耦合到多路复用器153的第二输入端,多路复用器153的输出端耦合到I/O电路120的数据输出端Q。多路复用器153的选择输入端接收测试模式(Tmode)控制信号156。当测试模式控制信号156被断言(例如,逻辑高)时,多路复用器153选择多路复用器153的第二输入端处的数据(如从测试输入端T接收的)以输出到数据输出端Q。The memory circuit 110 may be used, for example, as the memory circuit 12 in the system 10 shown in FIG. 1 . To support integrated circuit test operations, the input/output (I/O) circuit 120 of the memory circuit 110 may have a circuit configuration such as that shown in FIG. 5 , where M I/O circuits 120 (0) to 120 (M-1) are connected in a scan chain configuration as shown in FIG. 6 . Each I/O circuit 120 includes a data input terminal D (as part of a memory data input port data_in) and a data output terminal Q (as part of a memory data output port data_out). A data output latch 152, for example formed by a flip-flop (FF), is coupled to a memory array of the memory circuit 110 (via a column read bit line RBL) through a first input terminal of a multiplexer 153 to receive data bits read from the memory array by a read logic circuit system. The data output latch 152 is controlled by a read clock signal RCK. The output from the data output latch 152 is coupled to a data output terminal Q of the I/O circuit 120. The data input latch 154 is coupled to receive the data bit input to the memory circuit 110 at the data input terminal D. The data input latch 154 is controlled by the write clock signal WCK. The output from the data input latch 154 is applied by the write logic circuit system to write the data into the memory array (via the column complementary write bit lines BLT, BLC). Each I/O circuit 120 also includes a test input terminal T coupled to receive the test data bit (for example, provided as part of the memory data input port data_in). The test data latch 158 is coupled to receive the test data bit from the test input terminal T. The test data latch 158 is controlled by the read clock signal RCK. The output of the test data latch 158 is coupled to the second input terminal of the multiplexer 153, and the output terminal of the multiplexer 153 is coupled to the data output terminal Q of the I/O circuit 120. The select input terminal of the multiplexer 153 receives the test mode (Tmode) control signal 156. When the test mode control signal 156 is asserted (eg, logic high), the multiplexer 153 selects data at the second input terminal of the multiplexer 153 (as received from the test input terminal T) for output to the data output terminal Q.

对于图6中的扫描链配置,第一I/O电路120的测试输入端T接收测试数据输入信号。在图1电路实施方式的上下文中,测试数据可以从上游阴影逻辑14或从输入扫描链寄存器40或从BIST电路18施加到存储器电路的第一I/O电路120的测试输入端T。I/O电路120(0)的数据输出端Q耦合到第二I/O电路120(1)的测试输入端T。这种提供扫描链的连接配置在M个I/O电路120上重复,其中最后一个I/O电路120(M-1)的测试输入端T耦合到倒数第二个I/O电路120(M-2)的数据输出端Q。For the scan chain configuration of FIG6 , the test input terminal T of the first I/O circuit 120 receives a test data input signal. In the context of the circuit implementation of FIG1 , the test data may be applied to the test input terminal T of the first I/O circuit 120 of the memory circuit from the upstream shadow logic 14 or from the input scan chain register 40 or from the BIST circuit 18. The data output terminal Q of the I/O circuit 120(0) is coupled to the test input terminal T of the second I/O circuit 120(1). This connection configuration providing the scan chain is repeated on the M I/O circuits 120, where the test input terminal T of the last I/O circuit 120(M-1) is coupled to the data output terminal Q of the second to last I/O circuit 120(M-2).

前述测试方案的缺点在于需要在每个I/O电路120中提供附加的测试相关电路系统。此外,这种解决方案不支持对包围存储器的阴影逻辑进行全速测试。这种解决方案对于提供与检测全速转换故障相关的多端口和多时钟存储器的测试来说并不令人满意。The disadvantage of the aforementioned test scheme is that additional test-related circuitry needs to be provided in each I/O circuit 120. In addition, this solution does not support full-speed testing of shadow logic surrounding the memory. This solution is not satisfactory for providing testing of multi-port and multi-clock memories associated with detecting full-speed switching failures.

现在参考图7,图7示出了存储器电路210的框图。图3和图7中的类似附图标记指相同或相似的组件。存储器电路210可以例如用作图1中所示的系统10中的存储器电路12。Referring now to Figure 7, a block diagram of memory circuit 210 is shown. Like reference numbers in Figures 3 and 7 refer to the same or similar components. Memory circuit 210 may be used, for example, as memory circuit 12 in system 10 shown in Figure 1 .

存储器电路210与存储器电路110的不同之处主要在于如图8中所示的I/O电路220的配置。每个I/O电路220包括数据输入端D(作为存储器数据输入端口data_in的一部分)和数据输出端Q(作为存储器数据输出端口data_out的一部分)。例如由触发器(FF)形成的数据输出锁存器152耦合到存储器电路210的存储器阵列,以接收由读逻辑电路系统通过读位线RBL从存储器阵列读取的数据位。数据输出锁存器152由读时钟信号RCK控制。来自数据输出锁存器152的输出被施加到多路复用器34'的第一输入端,多路复用器34'的输出端被耦合到I/O电路220的数据输出端Q。数据输入锁存器154被耦合成接收在数据输入端D处输入到存储器电路210的数据位。数据输入锁存器154由写时钟信号WCK控制。来自数据输入锁存器154的输出通过写逻辑电路系统施加以通过互补写位线BLT、BLC将数据写入到存储器阵列中。来自数据输入锁存器154的输出还通过旁路路径36'施加到多路复用器34'的第二输入端,多路复用器34'的输出端耦合到I/O电路220的数据输出端Q。多路复用器34'的选择输入端接收测试旁路(Tbypass)控制信号56。当测试旁路控制信号56被断言(例如,逻辑高)时,多路复用器34'选择多路复用器34'的第二输入端处的数据(来自锁存器154和旁路路径36')以输出到数据输出端Q。The memory circuit 210 differs from the memory circuit 110 mainly in the configuration of the I/O circuit 220 as shown in FIG8 . Each I/O circuit 220 includes a data input terminal D (as part of the memory data input port data_in) and a data output terminal Q (as part of the memory data output port data_out). A data output latch 152 formed, for example, by a flip-flop (FF) is coupled to the memory array of the memory circuit 210 to receive data bits read from the memory array by the read logic circuit system through the read bit line RBL. The data output latch 152 is controlled by a read clock signal RCK. The output from the data output latch 152 is applied to a first input terminal of a multiplexer 34 ', and the output terminal of the multiplexer 34 ' is coupled to the data output terminal Q of the I/O circuit 220. The data input latch 154 is coupled to receive the data bit input to the memory circuit 210 at the data input terminal D. The data input latch 154 is controlled by a write clock signal WCK. The output from the data input latch 154 is applied through the write logic circuit system to write data into the memory array through the complementary write bit lines BLT, BLC. The output from the data input latch 154 is also applied to the second input of the multiplexer 34' through the bypass path 36', and the output of the multiplexer 34' is coupled to the data output terminal Q of the I/O circuit 220. The select input of the multiplexer 34' receives the test bypass (Tbypass) control signal 56. When the test bypass control signal 56 is asserted (e.g., logic high), the multiplexer 34' selects the data at the second input of the multiplexer 34' (from the latch 154 and the bypass path 36') to be output to the data output terminal Q.

有利地,这种测试解决方案支持用于存储器和阴影逻辑的固定型故障测试覆盖。但是,瞬态测试覆盖并没有得到很好的支持。其原因在于,通过数据输入锁存器154、旁路路径36'和多路复用器34'的第二输入端到数据输出端Q的测试路径取决于测试模式选择期间的写时钟信号WCK。但是,来自数据输出端Q的测试输出信号是在读时钟RCK域中捕获的,并且时钟频率和时钟偏斜的差异(注意WCK与RCK是异步的)妨碍了瞬态故障测试的性能。问题在于,不能使得通过数据输入锁存器154和多路复用器134的第二输入端到数据输出端Q的测试路径的定时(取决于写时钟WCK)等于从存储器阵列通过读逻辑、锁存器152、多路复用器34'的第一输入端到数据输出端Q的读信号路径的定时(取决于读时钟RCK)。Advantageously, this test solution supports fixed fault test coverage for memory and shadow logic. However, transient test coverage is not well supported. The reason is that the test path from the second input of the data input latch 154, the bypass path 36' and the multiplexer 34' to the data output terminal Q depends on the write clock signal WCK during the test mode selection. However, the test output signal from the data output terminal Q is captured in the read clock RCK domain, and the difference in clock frequency and clock skew (note that WCK is asynchronous with RCK) hinders the performance of transient fault testing. The problem is that the timing of the test path from the second input of the data input latch 154 and the multiplexer 134 to the data output terminal Q (depending on the write clock WCK) cannot be made equal to the timing of the read signal path from the memory array through the read logic, latch 152, the first input of the multiplexer 34' to the data output terminal Q (depending on the read clock RCK).

现在参考图9,图9示出了存储器电路310的框图。图7和图9中的类似附图标记指相同或相似的组件。存储器电路310可以例如用作图1中所示的系统10中的存储器电路12。Referring now to Figure 9, a block diagram of memory circuit 310 is shown. Like reference numbers in Figures 7 and 9 refer to the same or similar components. Memory circuit 310 may be used, for example, as memory circuit 12 in system 10 shown in Figure 1 .

存储器电路310与存储器电路210的不同之处主要在于如图10中所示的I/O电路320的配置。每个I/O电路320包括数据输入端D(作为存储器数据输入端口data_in的一部分)和数据输出端Q(作为存储器数据输出端口data_out的一部分)。例如由触发器(FF)形成的数据输出锁存器152耦合到存储器电路310的存储器阵列,以接收由读逻辑电路系统通过读位线RBL从存储器阵列读取的数据位。数据输出锁存器152由读时钟信号RCK控制。来自数据输出锁存器152的输出被施加到多路复用器34'的第一输入端,多路复用器34'的输出端耦合到I/O电路320的数据输出端Q。数据输入锁存器154被耦合成接收在数据输入端D处输入到存储器电路310的数据位。数据输入锁存器154由写时钟信号WCK控制。来自数据输入锁存器154的输出通过写逻辑电路系统被施加以通过互补写入位线BLT、BLC将数据写入到存储器阵列中。多路复用器34'的第二输入端被耦合成从延迟电路304的输出端接收测试数据位。延迟电路304的输入端耦合到旁路路径36”。这里将注意的是,在图1的上下文中,旁路路径36”代替地位于存储器电路12的地址端口(addr_in)和存储器数据输出端口data_out之间。The memory circuit 310 differs from the memory circuit 210 mainly in the configuration of the I/O circuit 320 as shown in FIG. 10. Each I/O circuit 320 includes a data input terminal D (as part of the memory data input port data_in) and a data output terminal Q (as part of the memory data output port data_out). A data output latch 152 formed, for example, by a flip-flop (FF) is coupled to the memory array of the memory circuit 310 to receive data bits read from the memory array by the read logic circuit system through the read bit line RBL. The data output latch 152 is controlled by the read clock signal RCK. The output from the data output latch 152 is applied to the first input terminal of the multiplexer 34', and the output terminal of the multiplexer 34' is coupled to the data output terminal Q of the I/O circuit 320. The data input latch 154 is coupled to receive the data bit input to the memory circuit 310 at the data input terminal D. The data input latch 154 is controlled by the write clock signal WCK. The output from the data input latch 154 is applied through the write logic circuit system to write data into the memory array through the complementary write bit lines BLT, BLC. The second input of the multiplexer 34' is coupled to receive the test data bit from the output of the delay circuit 304. The input of the delay circuit 304 is coupled to the bypass path 36". It will be noted here that in the context of Figure 1, the bypass path 36" is instead located between the address port (addr_in) of the memory circuit 12 and the memory data output port data_out.

存储器电路310的控制电路200包括寄存器202,寄存器202被配置为响应于读时钟信号RCK而锁存施加到地址输入端(addr_in)的多位读地址(Read Address)。锁存的读地址的位在测试操作期间从寄存器202输出并通过旁路路径36”供给到I/O电路320。每个读地址有B位,其中B<<M。利用M个I/O电路320(0)至320(M-1),接收并锁存的多位读地址的B位根据图案通过旁路路径36”分配到I/O电路320。作为示例,M个I/O电路320被划分为M/B组,并且每组的B个I/O电路320接收多位读地址的对应B位(即,将B位供给到对应的B个I/O电路320(0)至320(B-1)、供给到对应的B个I/O电路320(B)至320(2B-1),…,以及供给到对应的B个I/O电路320(M-1-B)至320(M-1))。在每个I/O电路320处,所递送的读地址的位被施加到延迟电路304的输入端、被延迟达延迟时间Δt(其可以在每个I/O电路中是唯一的,或者在I/O电路中的多个I/O电路中是相同的)并输出到多路复用器34'的第二输入端。随着测试旁路(Tbypass)控制信号56的断言(例如,逻辑高),多路复用器34'选择在多路复用器34'的第二输入端处的延迟的读地址数据位以输出到I/O电路320的数据输出端Q。这个延迟时间Δt可以在每个I/O电路320中使用逻辑延迟或通过内部自时间延迟来控制。The control circuit 200 of the memory circuit 310 includes a register 202, which is configured to latch a multi-bit read address (Read Address) applied to an address input terminal (addr_in) in response to a read clock signal RCK. The latched read address bits are output from the register 202 during a test operation and supplied to the I/O circuit 320 via a bypass path 36". Each read address has B bits, where B<<M. Using M I/O circuits 320(0) to 320(M-1), the B bits of the received and latched multi-bit read address are distributed to the I/O circuit 320 according to a pattern via a bypass path 36". As an example, M I/O circuits 320 are divided into M/B groups, and each group of B I/O circuits 320 receives corresponding B bits of a multi-bit read address (i.e., the B bits are supplied to corresponding B I/O circuits 320(0) to 320(B-1), to corresponding B I/O circuits 320(B) to 320(2B-1), ..., and to corresponding B I/O circuits 320(M-1-B) to 320(M-1)). At each I/O circuit 320, the delivered bits of the read address are applied to the input of the delay circuit 304, delayed by a delay time Δt (which may be unique in each I/O circuit or the same in multiple I/O circuits in the I/O circuits) and output to the second input of the multiplexer 34'. With the test bypass (Tbypass) control signal 56 asserted (e.g., logic high), the multiplexer 34' selects the delayed read address data bit at the second input of the multiplexer 34' to output to the data output Q of the I/O circuit 320. This delay time Δt may be controlled using a logic delay in each I/O circuit 320 or by an internal self-time delay.

在图1电路实施方式的上下文中,读地址可以通过多路复用器28的第一输入端从上游阴影逻辑14施加到存储器电路的地址输入端(addr_in)(作为多位地址数据26)。可替代地,可以通过多路复用器28的第二输入端将读地址从BIST电路18施加到存储器电路的地址输入端(addr_in)(作为多位地址数据30)。来自I/O电路320的数据输出端Q的测试输出数据可以被传递通过到下游阴影逻辑16和/或以反馈形式施加到BIST电路18。In the context of the circuit implementation of FIG. 1 , the read address may be applied from the upstream shadow logic 14 to the address input (addr_in) of the memory circuit (as multi-bit address data 26) via a first input of the multiplexer 28. Alternatively, the read address may be applied from the BIST circuit 18 to the address input (addr_in) of the memory circuit (as multi-bit address data 30) via a second input of the multiplexer 28. The test output data from the data output Q of the I/O circuit 320 may be passed through to the downstream shadow logic 16 and/or applied to the BIST circuit 18 in a feedback form.

有利地,这个测试解决方案支持用于阴影逻辑的固定型故障测试覆盖。此外,还支持瞬态故障测试覆盖。将注意的是,使用读地址寄存器202通过旁路路径36”和多路复用器34'的第二输入端到数据输出端Q的测试路径现在取决于测试模式选择期间的读时钟信号RCK(以及所施加的延迟Δt)。来自数据输出端Q的测试输出信号同样在读时钟RCK域中被捕获,因此不存在会妨碍瞬态故障测试的性能的时钟频率和时钟偏斜中的差异。通过设置由延迟电路304实现的延迟时间Δt,可以将从寄存器202经过旁路路径36”和多路复用器34'的第二输入端到数据输出端Q的测试路径的定时控制为等于从读逻辑经过锁存器152和多路复用器34'的第一输入端到数据输出端Q的存储器访问读路径的定时。Advantageously, this test solution supports fixed fault test coverage for shadow logic. In addition, transient fault test coverage is also supported. It will be noted that the test path using the read address register 202 through the bypass path 36" and the second input of the multiplexer 34' to the data output terminal Q now depends on the read clock signal RCK (and the applied delay Δt) during the test mode selection. The test output signal from the data output terminal Q is also captured in the read clock RCK domain, so there are no differences in clock frequency and clock skew that would hinder the performance of transient fault testing. By setting the delay time Δt implemented by the delay circuit 304, the timing of the test path from the register 202 through the bypass path 36" and the second input of the multiplexer 34' to the data output terminal Q can be controlled to be equal to the timing of the memory access read path from the read logic through the latch 152 and the first input of the multiplexer 34' to the data output terminal Q.

现在参考图11,图11示出了存储器电路410的框图。电路410包括由以具有N行和M列的矩阵格式布置的多个SRAM存储器单元114形成的静态随机存取存储器(SRAM)阵列112。每个SRAM存储器单元具有众所周知的8T类型(参见图4)并且包括写字线WWL、互补的位线对BLT和BLC、读字线RWL以及读位线RBL。矩阵的共用行中的SRAM存储器单元通过共用写字线WWL并通过共用读字线RWL彼此连接。在读和写操作期间,字线中的每一条(WL和/或RWL)由字线驱动器电路116利用由行解码器电路118生成的字线信号来驱动。跨整个阵列112的矩阵的共用列中的SRAM存储器单元通过共用的互补(写)位线对BLT和BLC彼此连接。阵列112被分段成P个子阵列1130至113P-1。每个子阵列113包括存储器单元114的M列和N/P行。每个子阵列113的共用列中的SRAM存储器单元通过局部读位线RBL彼此连接。来自阵列112中的列x的子阵列113的P条局部读位线RBL0<x>至RBLP-1<x>与用于阵列112中的列x的共用互补位线对BLT<x>和BLC<x>一起耦合到列输入/输出(I/O)电路420。列I/O电路420的数据输入端口(D)(作为存储器数据输入端口data_in的一部分提供)响应于写字线信号的断言而接收要通过位线BLT、BLC写入到列中的SRAM存储器单元114的输入数据。列I/O电路420的数据输出端口(Q)(作为存储器数据输出端口data_out的一部分提供)响应于在第一读操作模式下的读字线信号的断言而生成通过读位线RBL从列中的SRAM存储器单元114读取的输出数据。此外,列I/O电路420还包括P个子阵列数据输出端口R0至RP-1,以响应于在第二读操作模式下多个读字线信号(每个子阵列113一个)的同时断言而生成分别从对应子阵列1130至113P-1的局部读位线RBL上的存储器单元114读取的输出数据。控制电路200控制存储器内的电路系统的操作。Referring now to FIG. 11 , a block diagram of a memory circuit 410 is shown. The circuit 410 includes a static random access memory (SRAM) array 112 formed of a plurality of SRAM memory cells 114 arranged in a matrix format having N rows and M columns. Each SRAM memory cell is of the well-known 8T type (see FIG. 4 ) and includes a write word line WWL, a complementary bit line pair BLT and BLC, a read word line RWL, and a read bit line RBL. The SRAM memory cells in a common row of the matrix are connected to each other via a common write word line WWL and via a common read word line RWL. During read and write operations, each of the word lines (WL and/or RWL) is driven by a word line driver circuit 116 using a word line signal generated by a row decoder circuit 118. The SRAM memory cells in a common column of the matrix across the entire array 112 are connected to each other via a common complementary (write) bit line pair BLT and BLC. The array 112 is segmented into P sub-arrays 113 0 to 113 P-1 . Each sub-array 113 includes M columns and N/P rows of memory cells 114. The SRAM memory cells in a common column of each sub-array 113 are connected to each other via local read bit lines RBL. P local read bit lines RBL0 <x> through RBLP -1 <x> of sub-array 113 from column x in array 112 are coupled to column input/output (I/O) circuitry 420 along with a common complementary bit line pair BLT<x> and BLC<x> for column x in array 112. A data input port (D) of column I/O circuitry 420 (provided as part of a memory data input port data_in) receives input data to be written to the SRAM memory cells 114 in the column via bit lines BLT, BLC in response to assertion of a write word line signal. The data output port (Q) of the column I/O circuit 420 (provided as part of the memory data output port data_out) generates output data read from the SRAM memory cells 114 in the column through the read bit lines RBL in response to the assertion of the read word line signal in the first read operation mode. In addition, the column I/O circuit 420 also includes P sub-array data output ports R0 to R P-1 to generate output data read from the memory cells 114 on the local read bit lines RBL of the corresponding sub-arrays 113 0 to 113 P-1 respectively in response to the simultaneous assertion of multiple read word line signals (one for each sub-array 113) in the second read operation mode. The control circuit 200 controls the operation of the circuit system within the memory.

当存储器电路410在第一读操作模式下操作时,行解码器电路118利用字线信号脉冲选择性地致动整个阵列112的仅一条读字线RWL以访问存储器单元114的行中的对应的单行。存储在一列的单个被访问的存储器单元中的逻辑状态被输出到读位线RBL并输入到列I/O电路420以在数据输出端口Q处输出。在该第一操作模式下,存储器电路410被配置用于以与图9的存储器电路310相同的方式进行操作。When the memory circuit 410 operates in the first read operation mode, the row decoder circuit 118 selectively actuates only one read word line RWL of the entire array 112 using a word line signal pulse to access a corresponding single row of the rows of memory cells 114. The logic state stored in a single accessed memory cell of a column is output to the read bit line RBL and input to the column I/O circuit 420 to be output at the data output port Q. In this first operation mode, the memory circuit 410 is configured to operate in the same manner as the memory circuit 310 of FIG. 9 .

当存储器电路410在第二读操作模式下操作时,行解码器电路118利用字线信号脉冲选择性地(且同时)致动存储器阵列112中的每个子阵列113中的一条读字线RWL以访问每个子阵列113中的存储器单元114的行中的对应的单行。存储在每列的子阵列113的单个被访问的存储器单元中的逻辑状态被输出到读位线RBL0至RBLP-1并且输入到列I/O电路420以用于在对应的子阵列数据输出端口R0至RP-1处输出。When the memory circuit 410 operates in the second read operation mode, the row decoder circuit 118 selectively (and simultaneously) actuates one read word line RWL in each sub-array 113 in the memory array 112 using a word line signal pulse to access a corresponding single one of the rows of memory cells 114 in each sub-array 113. The logic state stored in the single accessed memory cell of the sub-array 113 of each column is output to the read bit lines RBL 0 to RBL P-1 and input to the column I/O circuit 420 for output at the corresponding sub-array data output ports R 0 to R P-1 .

例如,该第二读操作模式可以结合存储器的操作来实现,以支持存储器内计算的性能(其中,例如,存储器单元114存储权重数据的位并且读字线上的字线信号脉冲传送特征数据)。在这个上下文中,参考图1,下游(或输出)阴影逻辑16可以被配置为对从每个列I/O电路420的子阵列数据输出端口R0至RP-1输出的数据实现乘法累加(MAC)操作以用于宽向量存储器内计算模式。For example, this second read operation mode can be implemented in conjunction with the operation of the memory to support the performance of in-memory computation (where, for example, the memory cell 114 stores bits of weight data and the word line signal pulses on the read word line convey the characteristic data). In this context, referring to FIG. 1 , the downstream (or output) shadow logic 16 can be configured to implement a multiply-accumulate (MAC) operation on the data output from the sub-array data output ports R 0 to R P-1 of each column I/O circuit 420 for the wide vector in-memory computation mode.

图12中示出了用于列I/O电路420的实施例的框图。例如由触发器(FF)形成的数据输出锁存器152在第一读操作模式下耦合到存储器电路410的存储器阵列,以接收由读逻辑电路系统通过读位线RBL0至RBLP-1从存储器阵列读取的数据位。数据输出锁存器152由读时钟信号RCK控制。来自数据输出锁存器152的输出被施加到多路复用器34'的第一输入端,多路复用器34'的输出端耦合到I/O电路420的数据输出端Q。例如由触发器(FF)形成的数据输出锁存器153y在第二读操作模式下耦合到存储器电路410的存储器阵列以接收由读逻辑电路系统通过读位线RBLy中的对应的一条读位线从存储器阵列读取的数据位。这里,y=0至P-1。数据输出锁存器153y由读时钟信号RCK控制。来自数据输出锁存器153y的输出被施加到多路复用器135y的第一输入端,多路复用器135y的输出端耦合到I/O电路420的子阵列数据输出端口Ry。数据输入锁存器154被耦合成接收在数据输入端D处输入到存储器电路110的数据位。数据输入锁存器254由写时钟信号WCK控制。来自数据输入锁存器154的输出通过写逻辑电路系统被施加以通过互补写位线BLT、BLC将数据写入到存储器阵列中。多路复用器34'、135y的第二输入端被耦合成分别从延迟电路304、305y的输出端接收测试数据位。每个延迟电路的输入端耦合到旁路路径36”。A block diagram of an embodiment for column I/O circuit 420 is shown in FIG. 12 . A data output latch 152, for example formed by a flip-flop (FF), is coupled to the memory array of memory circuit 410 in a first read operation mode to receive data bits read from the memory array by a read logic circuit system through read bit lines RBL 0 to RBL P-1 . Data output latch 152 is controlled by a read clock signal RCK. The output from data output latch 152 is applied to a first input of multiplexer 34 ', and the output of multiplexer 34 ' is coupled to a data output Q of I/O circuit 420. A data output latch 153 y, for example formed by a flip-flop (FF), is coupled to the memory array of memory circuit 410 in a second read operation mode to receive data bits read from the memory array by a read logic circuit system through a corresponding one of read bit lines RBL y . Here, y=0 to P-1. Data output latch 153 y is controlled by a read clock signal RCK. The output from the data output latch 153 y is applied to a first input of a multiplexer 135 y , the output of which is coupled to a subarray data output port R y of the I/O circuit 420. The data input latch 154 is coupled to receive data bits input to the memory circuit 110 at the data input terminal D. The data input latch 254 is controlled by a write clock signal WCK. The output from the data input latch 154 is applied through a write logic circuit system to write data into the memory array through complementary write bit lines BLT, BLC. The second inputs of the multiplexers 34', 135 y are coupled to receive test data bits from the outputs of the delay circuits 304, 305y, respectively. The input of each delay circuit is coupled to a bypass path 36".

存储器电路410的控制电路200包括寄存器202,寄存器202被配置为响应于读时钟信号RCK而锁存施加到地址输入端(addr_in)的多位读地址(Read Address)。锁存的读地址的位在测试操作期间从寄存器202输出并且通过旁路路径36”供给到I/O电路420。每个读地址有B位,其中B<<M。利用M个I/O电路420(0)至420(M-1),接收并锁存的多位读地址的B位根据图案通过旁路路径36'被分配到I/O电路420。作为示例,M个I/O电路420被划分为M/B组,并且每组的I/O电路420接收多位读地址的B位(即,将B位供给到B个I/O电路420(0)至420(B-1),供给到B个I/O电路420(B)至420(2B-1),…,以及供给到B个I/O电路420(M-1-B)至420(M-1))。在每个I/O电路420处,所递送的读地址的位被施加到延迟电路304的输入端、被延迟达延迟时间Δt(其可以在每个I/O电路中是唯一的,或者在I/O电路中的多个I/O电路中是相同的)并输出到多路复用器34'的第二输入端。随着测试旁路(Tbypass)控制信号56的断言(例如,逻辑高),多路复用器34'选择多路复用器34'的第二输入端处的延迟的读地址数据位以输出到I/O电路420的数据输出端Q。这个延迟时间Δt可以在每个I/O电路420中使用逻辑延迟或通过内部自时间延迟来控制。The control circuit 200 of the memory circuit 410 includes a register 202 configured to latch a multi-bit read address (Read Address) applied to an address input terminal (addr_in) in response to a read clock signal RCK. The latched bits of the read address are output from the register 202 during the test operation and supplied to the I/O circuits 420 through the bypass path 36″. Each read address has B bits, where B<<M. With M I/O circuits 420(0) to 420(M-1), the received and latched B bits of the multi-bit read address are distributed to the I/O circuits 420 through the bypass path 36′ according to a pattern. As an example, the M I/O circuits 420 are divided into M/B groups, and the I/O circuits 420 of each group receive the B bits of the multi-bit read address (i.e., the B bits are supplied to the B I/O circuits 420(0) to 420(B-1), to the B I/O circuits 420(B) to 420(2B-1), . . . , and to the B I/O circuits 420(M-2). -1-B) to 420(M-1)). At each I/O circuit 420, the delivered read address bit is applied to the input of the delay circuit 304, delayed by a delay time Δt (which may be unique in each I/O circuit, or the same in multiple I/O circuits in the I/O circuits), and output to the second input of the multiplexer 34'. With the assertion (e.g., logic high) of the test bypass (Tbypass) control signal 56, the multiplexer 34' selects the delayed read address data bit at the second input of the multiplexer 34' to output to the data output Q of the I/O circuit 420. This delay time Δt may be controlled using a logic delay in each I/O circuit 420 or by an internal self-time delay.

在M个I/O电路420(0)至420(M-1)以及每个I/O电路420包括P个子阵列数据输出端口R0至RP-1的情况下,接收并锁存的多位读地址的B位根据图案通过旁路路径36”被分配到I/O电路420。作为示例,M个I/O电路420被分为M/B组,并且每组的I/O电路420接收多位读地址的B位(即,将B位供给到I/O电路420(0)至420(B-1),供给到I/O电路420(B)至420(2B-1),…,以及供给到I/O电路420(M-1-B)至420(M-1))。在每个I/O电路420处,所递送的读地址的位被施加到P个延迟电路305y中的每一个的输入端、被延迟达延迟时间Δt(其可以在每个I/O电路中是唯一的,或者在I/O电路中的多个I/O电路中是相同的)并输出到多路复用器135y的第二输入端。随着测试旁路(Tbypass)控制信号56的断言(例如,逻辑高),多路复用器135y选择多路复用器135y的第二输入端处的延迟的读地址数据位以输出到I/O电路420的对应子阵列数据输出端口Ry。这个延迟时间Δt可以在每个I/O电路420中使用逻辑延迟或通过内部自时间延迟来控制。In the case of M I/O circuits 420(0) to 420(M-1) and each I/O circuit 420 including P sub-array data output ports R 0 to R P-1 , the B bits of the received and latched multi-bit read address are distributed to the I/O circuits 420 through the bypass path 36″ according to the pattern. As an example, the M I/O circuits 420 are divided into M/B groups, and the I/O circuits 420 of each group receive the B bits of the multi-bit read address (i.e., the B bits are supplied to the I/O circuits 420(0) to 420(B-1), to the I/O circuits 420(B) to 420(2B-1), ..., and to the I/O circuits 420(M-1-B) to 420(M-1)). At each I/O circuit 420, the delivered bits of the read address are applied to the P delay circuits 305. The input terminal of each of the multiplexers 135 y is delayed by a delay time Δt (which may be unique in each I/O circuit or the same in multiple I/O circuits in the I/O circuits) and output to the second input terminal of the multiplexer 135 y . With the assertion (e.g., logic high) of the test bypass (Tbypass) control signal 56, the multiplexer 135 y selects the delayed read address data bit at the second input terminal of the multiplexer 135 y to output to the corresponding sub-array data output port R y of the I/O circuit 420. This delay time Δt may be controlled using a logic delay in each I/O circuit 420 or by an internal self-time delay.

在图1电路实施方式的上下文中,读地址可以通过多路复用器28的第一输入端从上游阴影逻辑14施加到存储器电路的地址输入端(addr_in)(作为多位地址数据26)。可替代地,读地址可以通过多路复用器28的第二输入端从BIST电路18施加到存储器电路的地址输入端(addr_in)(作为多位地址数据30)。来自I/O电路420的数据输出端Q和/或子阵列数据输出端口Ry的测试输出数据可以被传递通过到下游阴影逻辑16和/或被施加在到BIST电路18的反馈中。In the context of the circuit implementation of FIG. 1 , the read address may be applied from the upstream shadow logic 14 to the address input (addr_in) of the memory circuit (as multi-bit address data 26) via a first input of the multiplexer 28. Alternatively, the read address may be applied from the BIST circuit 18 to the address input (addr_in) of the memory circuit (as multi-bit address data 30) via a second input of the multiplexer 28. Test output data from the data output Q of the I/O circuit 420 and/or the sub-array data output port R y may be passed through to the downstream shadow logic 16 and/or applied in feedback to the BIST circuit 18.

有利地,这种测试解决方案支持用于存储器和阴影逻辑的固定故障测试覆盖。此外,还支持瞬态故障测试覆盖。将注意的是,使用读地址寄存器202通过多路复用器135y的第二输入端到数据输出端Ry的测试路径现在取决于测试模式选择期间的读时钟信号RCK(以及所施加的延迟Δt)。来自数据输出端Ry的测试输出信号同样在读时钟RCK域中被捕获,因此不存在会妨碍瞬态故障测试的性能时钟频率和时钟偏斜中的差异。通过设置由延迟电路305y实现的延迟时间Δt,可以将从寄存器202经过旁路路径36”和多路复用器135y的第二输入端到子阵列数据输出端口Ry的测试路径的定时控制为等于从读逻辑经过锁存器153y和多路复用器135y的第一输入端到子阵列数据输出端口Ry的存储器访问读路径的定时。Advantageously, this test solution supports stuck-at fault test coverage for memory and shadow logic. In addition, transient fault test coverage is also supported. It will be noted that the test path from the second input of the multiplexer 135 y to the data output R y using the read address register 202 now depends on the read clock signal RCK (and the applied delay Δt) during the test mode selection. The test output signal from the data output R y is also captured in the read clock RCK domain, so there are no differences in performance clock frequency and clock skew that would hinder transient fault testing. By setting the delay time Δt implemented by the delay circuit 305 y , the timing of the test path from the register 202 through the bypass path 36 ″ and the second input of the multiplexer 135 y to the sub-array data output port R y can be controlled to be equal to the timing of the memory access read path from the read logic through the latch 153 y and the first input of the multiplexer 135 y to the sub-array data output port R y .

前面的描述已经通过示例性和非限制性示例的方式提供了本发明的示例性实施例的完整且信息丰富的描述。但是,当结合附图和所附权利要求书阅读时,鉴于前面的描述,各种修改和调整对于相关领域的技术人员来说是清楚的。但是,本发明的教导的所有此类和类似的修改仍将落入所附权利要求书中限定的本发明的范围内。The foregoing description has provided by way of exemplary and non-limiting examples a complete and informative description of exemplary embodiments of the present invention. However, various modifications and adaptations will be apparent to those skilled in the relevant arts in view of the foregoing description when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings of the present invention will still fall within the scope of the present invention as defined in the appended claims.

Claims (40)

1.一种集成电路系统,其特征在于,包括:1. An integrated circuit system, comprising: 存储器电路,具有:存储器阵列,耦合到地址端口的控制电路,以及耦合到数据输入端口和数据输出端口的输入/输出电路;A memory circuit having: a memory array, a control circuit coupled to an address port, and an input/output circuit coupled to a data input port and a data output port; 其中控制电路包括地址寄存器,该地址寄存器响应于读时钟而锁存读地址;wherein the control circuit includes an address register that latches a read address in response to a read clock; 其中每个输入/输出电路包括:第一数据路径以及第二数据路径,第一数据路径由写时钟控制并将数据输入端口的数据输入端耦合到存储器阵列的写位线,第二数据路径由读时钟控制并将存储器阵列的读位线耦合到数据输出端口的数据输出端;Each input/output circuit includes: a first data path and a second data path, the first data path is controlled by a write clock and couples a data input end of a data input port to a write bit line of a memory array, and the second data path is controlled by a read clock and couples a read bit line of the memory array to a data output end of a data output port; 其中每个输入/输出电路中的第二数据路径包括多路复用器电路,该多路复用器电路具有耦合到读位线的第一输入端、耦合到旁路路径的第二输入端和耦合到数据输出端的输出端;wherein the second data path in each input/output circuit comprises a multiplexer circuit having a first input coupled to the read bit line, a second input coupled to the bypass path, and an output coupled to the data output; 其中响应于读时钟将测试位施加到每个输入/输出电路中的多路复用器的第二输入端;以及wherein a test bit is applied to a second input of a multiplexer in each input/output circuit in response to a read clock; and 其中多路复用器被控制以在测试操作期间选择第二输入端。The multiplexer is controlled to select the second input terminal during the test operation. 2.如权利要求1所述的集成电路系统,其特征在于,其中存储器电路的存储器阵列包括具有单独的读端口和写端口的存储器单元。2. The integrated circuit system of claim 1, wherein the memory array of the memory circuit comprises memory cells having separate read ports and write ports. 3.如权利要求1所述的集成电路系统,其特征在于,其中每个输入/输出电路中的第二数据路径包括锁存电路,该锁存电路响应于读时钟而锁存来自存储器阵列的读位线的数据。3. The integrated circuit system of claim 1, wherein the second data path in each input/output circuit comprises a latch circuit that latches data from a read bit line of the memory array in response to a read clock. 4.如权利要求1所述的集成电路系统,其特征在于,其中测试位是响应于读时钟而锁存在地址寄存器中的读地址的地址位。4. The integrated circuit system of claim 1, wherein the test bits are address bits of a read address latched in an address register in response to a read clock. 5.如权利要求3所述的集成电路系统,其特征在于,其中所述旁路路径包括延迟电路,该延迟电路使得将读地址的地址位施加到每个输入/输出电路中的多路复用器的第二输入端延迟达一延迟时间。5. The integrated circuit system of claim 3, wherein the bypass path comprises a delay circuit that delays application of the address bits of the read address to the second input terminal of the multiplexer in each input/output circuit by a delay time. 6.如权利要求5所述的集成电路系统,其特征在于,其中延迟时间被设置为使得测试信号从寄存器通过旁路路径和多路复用器的第二输入端传播到数据输出端的定时等于通过第二数据路径从存储器阵列读取的存储器存取的定时。6. The integrated circuit system of claim 5, wherein the delay time is set so that the timing of the test signal propagating from the register through the bypass path and the second input terminal of the multiplexer to the data output terminal is equal to the timing of the memory access read from the memory array through the second data path. 7.如权利要求4所述的集成电路系统,其特征在于,还包括地址端口上游的阴影逻辑,其中所述阴影逻辑在测试操作期间提供读地址。7. The integrated circuit system of claim 4, further comprising shadow logic upstream of the address port, wherein the shadow logic provides a read address during a test operation. 8.如权利要求7所述的集成电路系统,其特征在于,还包括耦合到数据输入端口上游的阴影逻辑的用于测试操作的扫描寄存器。8. The integrated circuit system of claim 7, further comprising a scan register for test operation coupled to the shadow logic upstream of the data input port. 9.如权利要求4所述的集成电路系统,其特征在于,还包括内置自测试电路,该内置自测试电路在测试操作期间供给读地址。9. The integrated circuit system of claim 4, further comprising a built-in self-test circuit that supplies a read address during a test operation. 10.如权利要求9所述的集成电路系统,其特征在于,其中内置自测试电路还耦合到数据输出端口。10. The integrated circuit system of claim 9, wherein the built-in self-test circuit is further coupled to the data output port. 11.如权利要求1所述的集成电路系统,其特征在于,还包括数据输出端口下游的阴影逻辑。11. The integrated circuit system of claim 1, further comprising shadow logic downstream of the data output port. 12.如权利要求11所述的集成电路系统,其特征在于,还包括耦合到数据输出端口下游的阴影逻辑的用于测试操作的扫描寄存器。12. The integrated circuit system of claim 11, further comprising a scan register for test operations coupled to the shadow logic downstream of the data output port. 13.如权利要求1所述的集成电路系统,其特征在于,还包括数据输入端口上游的阴影逻辑。13. The integrated circuit system of claim 1, further comprising shadow logic upstream of the data input port. 14.如权利要求13所述的集成电路系统,其特征在于,还包括耦合到数据输入端口上游的阴影逻辑的用于测试操作的扫描寄存器。14. The integrated circuit system of claim 13, further comprising a scan register for test operation coupled to the shadow logic upstream of the data input port. 15.如权利要求1所述的集成电路系统,其特征在于,其中读时钟与写时钟是异步的。15. The integrated circuit system of claim 1, wherein the read clock is asynchronous to the write clock. 16.如权利要求1所述的集成电路系统,其特征在于,其中读时钟与写时钟具有不同的频率。16. The integrated circuit system of claim 1, wherein the read clock and the write clock have different frequencies. 17.如权利要求1所述的集成电路系统,其特征在于,其中存储器阵列被划分为多个子阵列,每个子阵列包括局部读位线,并且其中每个输入/输出电路包括具有耦合到来自所述多个子阵列的局部读位线的输入端和耦合到第二数据路径的输出端的读逻辑。17. The integrated circuit system of claim 1, wherein the memory array is divided into a plurality of sub-arrays, each sub-array comprising a local read bit line, and wherein each input/output circuit comprises read logic having an input coupled to the local read bit lines from the plurality of sub-arrays and an output coupled to the second data path. 18.如权利要求17所述的集成电路系统,其特征在于,其中每个输入/输出电路还包括多条另外的数据路径,每条另外的数据路径将所述多条局部读位线中的一条局部读位线耦合到数据输出端口的多个读数据输出端中的对应的一个读数据输出端。18. An integrated circuit system as described in claim 17, characterized in that each input/output circuit also includes multiple additional data paths, each additional data path couples a local read bit line of the multiple local read bit lines to a corresponding one of the multiple read data output terminals of the data output port. 19.如权利要求18所述的集成电路系统,其特征在于:19. The integrated circuit system of claim 18, wherein: 其中测试位是响应于读时钟而锁存在地址寄存器中的读地址的地址位;wherein the test bit is an address bit of a read address latched in an address register in response to a read clock; 其中每个输入/输出电路中的每条另外的数据路径包括另外的多路复用器电路,该另外的多路复用器电路具有耦合到局部读位线的第一输入端、耦合到旁路路径的第二输入端以及耦合到读数据输出端的输出端;wherein each additional data path in each input/output circuit comprises an additional multiplexer circuit having a first input coupled to the local read bit line, a second input coupled to the bypass path, and an output coupled to the read data output; 其中锁存在地址寄存器中的读地址的地址位被施加到每个输入/输出电路中的所述另外的多路复用器的第二输入端;以及wherein the address bits of the read address latched in the address register are applied to the second input of the further multiplexer in each input/output circuit; and 其中所述另外的多路复用器被控制以在测试操作期间选择第二输入端。Wherein the further multiplexer is controlled to select the second input terminal during a test operation. 20.如权利要求19所述的集成电路系统,其特征在于,其中每个输入/输出电路中的第二数据路径包括锁存电路,该锁存电路响应于读时钟而锁存来自存储器阵列的读位线的数据。20. The integrated circuit system of claim 19, wherein the second data path in each input/output circuit comprises a latch circuit that latches data from a read bit line of the memory array in response to a read clock. 21.如权利要求19所述的集成电路系统,其特征在于,其中所述旁路路径包括延迟电路,该延迟电路使得将读地址的地址位施加到每个输入/输出电路中的另外的多路复用器的第二输入端延迟达一延迟时间。21. The integrated circuit system of claim 19, wherein the bypass path includes a delay circuit that delays application of address bits of the read address to the second input of the additional multiplexer in each input/output circuit by a delay time. 22.如权利要求21所述的集成电路系统,其特征在于,其中延迟时间被设置为使得测试信号从寄存器通过旁路路径和另外的多路复用器的第二输入端传播到读数据输出端的定时等于通过第二数据路径从存储器阵列读取的存储器存取的定时。22. An integrated circuit system as described in claim 21, characterized in that the delay time is set so that the timing of the test signal propagating from the register through the bypass path and the second input terminal of the further multiplexer to the read data output terminal is equal to the timing of the memory access read from the memory array through the second data path. 23.如权利要求19所述的集成电路系统,其特征在于,还包括数据输出端口下游的阴影逻辑。23. The integrated circuit system of claim 19, further comprising shadow logic downstream of the data output port. 24.如权利要求23所述的集成电路系统,其特征在于,还包括耦合到数据输出端口下游的阴影逻辑的用于测试操作的扫描寄存器。24. The integrated circuit system of claim 23, further comprising a scan register for test operations coupled to the shadow logic downstream of the data output port. 25.如权利要求19所述的集成电路系统,其特征在于,还包括数据输入端口上游的阴影逻辑。25. The integrated circuit system of claim 19, further comprising shadow logic upstream of the data input port. 26.如权利要求25所述的集成电路系统,其特征在于,还包括耦合到数据输入端口上游的阴影逻辑的用于测试操作的扫描寄存器。26. The integrated circuit system of claim 25, further comprising a scan register for test operations coupled to the shadow logic upstream of the data input port. 27.如权利要求19所述的集成电路系统,其特征在于,还包括地址端口上游的阴影逻辑,其中所述阴影逻辑在测试操作期间提供读地址。27. The integrated circuit system of claim 19, further comprising shadow logic upstream of the address port, wherein the shadow logic provides a read address during a test operation. 28.如权利要求27所述的集成电路系统,其特征在于,还包括耦合到数据输入端口上游的阴影逻辑的用于测试操作的扫描寄存器。28. The integrated circuit system of claim 27, further comprising a scan register for test operations coupled to the shadow logic upstream of the data input port. 29.如权利要求19所述的集成电路系统,其特征在于,还包括内置自测试电路,该内置自测试电路在测试操作期间供给读地址。29. The integrated circuit system of claim 19, further comprising a built-in self-test circuit that supplies a read address during a test operation. 30.如权利要求29所述的集成电路系统,其特征在于,其中内置自测试电路还耦合到数据输出端口。30. The integrated circuit system of claim 29, wherein the built-in self-test circuit is further coupled to the data output port. 31.如权利要求19所述的集成电路系统,其特征在于,其中读时钟与写时钟是异步的。31. The integrated circuit system of claim 19, wherein the read clock is asynchronous to the write clock. 32.一种集成电路系统,其特征在于,包括:32. An integrated circuit system, comprising: 存储器电路,地址端口、数据输入端口和数据输出端口;a memory circuit, an address port, a data input port, and a data output port; 上游阴影逻辑电路,被耦合成向存储器电路的地址端口提供地址数据并向存储器电路的数据输入端口提供输入数据;以及an upstream shadow logic circuit coupled to provide address data to an address port of the memory circuit and to provide input data to a data input port of the memory circuit; and 下游阴影逻辑电路,被耦合成从存储器电路的数据输出端口接收输出数据;a downstream shadow logic circuit coupled to receive output data from a data output port of the memory circuit; 其中存储器电路包括地址端口与数据输出端口之间的旁路路径,所述旁路路径在测试操作期间是活动的,以将由上游阴影逻辑电路施加的地址数据的位从地址端口传递到数据输出端口。Wherein the memory circuit includes a bypass path between the address port and the data output port, the bypass path being active during the test operation to pass bits of address data applied by the upstream shadow logic circuit from the address port to the data output port. 33.如权利要求32所述的集成电路系统,其特征在于,其中旁路路径包括延迟电路,该延迟电路延迟地址数据的位从地址端口到数据输出端口的传递。33. The integrated circuit system of claim 32, wherein the bypass path comprises a delay circuit that delays the transfer of bits of address data from the address port to the data output port. 34.如权利要求33所述的集成电路系统,其特征在于,其中延迟时间被设置为使得地址位从地址端口通过旁路路径传播到数据输出端口的定时等于用于从存储器电路读取数据以在数据输出端口处输出的存储器存取的定时。34. The integrated circuit system of claim 33, wherein the delay time is set so that the timing of the address bits propagating from the address port through the bypass path to the data output port is equal to the timing of the memory access for reading data from the memory circuit for output at the data output port. 35.如权利要求32所述的集成电路系统,其特征在于,还包括耦合到下游阴影逻辑的用于测试操作的扫描寄存器。35. The integrated circuit system of claim 32, further comprising a scan register coupled to downstream shadow logic for test operations. 36.如权利要求32所述的集成电路系统,其特征在于,还包括耦合到上游阴影逻辑的用于测试操作的扫描寄存器。36. The integrated circuit system of claim 32, further comprising a scan register coupled to upstream shadow logic for test operations. 37.如权利要求32所述的集成电路系统,其特征在于,其中存储器电路包括存储器阵列,该存储器阵列具有通过读路径耦合到数据输出端口的读位线。37. The integrated circuit system of claim 32, wherein the memory circuit comprises a memory array having a read bit line coupled to the data output port through a read path. 38.如权利要求37所述的集成电路系统,其特征在于,其中所述读路径包括:38. The integrated circuit system of claim 37, wherein the read path comprises: 锁存电路,响应于读时钟而锁存来自存储器阵列的读位线的数据;以及a latch circuit that latches data from a read bit line of a memory array in response to a read clock; and 多路复用器电路,具有耦合到锁存电路的输出端的第一输入端、耦合到旁路路径的第二输入端以及耦合到数据输出端口的输出端;以及a multiplexer circuit having a first input coupled to the output of the latch circuit, a second input coupled to the bypass path, and an output coupled to the data output port; and 其中多路复用器被控制以在测试操作期间选择第二输入端。The multiplexer is controlled to select the second input terminal during the test operation. 39.如权利要求32所述的集成电路系统,其特征在于,其中存储器电路包括被划分为多个子阵列的存储器阵列,每个子阵列包括通过读路径耦合到数据输出部分的局部读位线。39. The integrated circuit system of claim 32, wherein the memory circuit comprises a memory array partitioned into a plurality of subarrays, each subarray comprising a local read bit line coupled to the data output portion via a read path. 40.如权利要求39所述的集成电路系统,其特征在于,其中每条读路径包括:40. The integrated circuit system of claim 39, wherein each read path comprises: 锁存电路,响应于读时钟而锁存来自存储器阵列的局部读位线的数据;以及a latch circuit that latches data from a local read bit line of the memory array in response to a read clock; and 多路复用器电路,具有耦合到锁存电路的输出端的第一输入端、耦合到旁路路径的第二输入端以及耦合到数据输出端口的输出端;以及a multiplexer circuit having a first input coupled to the output of the latch circuit, a second input coupled to the bypass path, and an output coupled to the data output port; and 其中多路复用器被控制以在测试操作期间选择第二输入端。The multiplexer is controlled to select the second input terminal during the test operation.
CN202322650871.5U 2022-09-30 2023-09-28 Integrated circuit system Active CN221841639U (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US63/411,683 2022-09-30
US18/228,118 2023-07-31
US18/228,118 US20240112748A1 (en) 2022-09-30 2023-07-31 At-speed transition fault testing for a multi-port and multi-clock memory

Publications (1)

Publication Number Publication Date
CN221841639U true CN221841639U (en) 2024-10-15

Family

ID=90425616

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202322650871.5U Active CN221841639U (en) 2022-09-30 2023-09-28 Integrated circuit system
CN202311271068.9A Pending CN117807926A (en) 2022-09-30 2023-09-28 Full speed transition fault test for multiport and multi-clock memories

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311271068.9A Pending CN117807926A (en) 2022-09-30 2023-09-28 Full speed transition fault test for multiport and multi-clock memories

Country Status (1)

Country Link
CN (2) CN221841639U (en)

Also Published As

Publication number Publication date
CN117807926A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
US8555119B2 (en) Test structure for characterizing multi-port static random access memory and register file arrays
US6288969B1 (en) Multi-port random access memory
US5734613A (en) Multi-port random access memory
JP6991910B2 (en) Semiconductor device
JP2013065391A (en) Memory arbitration circuitry
EP2082399B1 (en) Memory bus output driver of a multi-bank memory device and method therefor
US10535416B2 (en) Automatic test-pattern generation for memory-shadow-logic testing
US6553552B1 (en) Method of designing an integrated circuit memory architecture
US20240112748A1 (en) At-speed transition fault testing for a multi-port and multi-clock memory
CN221841639U (en) Integrated circuit system
US20050128855A1 (en) Self timed bit and read/write pulse stretchers
KR20210093135A (en) Systems and methods for memory operation using local word lines
US5883844A (en) Method of stress testing integrated circuit having memory and integrated circuit having stress tester for memory thereof
KR100543226B1 (en) Semiconductor memory device with test mode
US6351139B1 (en) Configuration bit read/write data shift register
US6154394A (en) Data input-output circuit and semiconductor data storage device provided therewith
US12170120B2 (en) Built-in self test circuit for segmented static random access memory (SRAM) array input/output
US20240069096A1 (en) Built-in self test circuit for segmented static random access memory (sram) array input/output
US12260924B2 (en) Testability circuit and read and write path decoupling circuit of SRAM
US20240412797A1 (en) Fully Scannable Memory Arrays
TWI882435B (en) Integrated circuit, memory circuit, and method for operating memory circuit
US20250060777A1 (en) Memory structure with optimized latch clock design
US20250022526A1 (en) Clock generation circuits for memory devices with built-in self test
US20140071783A1 (en) Memory device with clock generation based on segmented address change detection
Silburt et al. A 200MHz 0.8 m BiCMOS modular memory family of DRAM and multi-port SRAM’s

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant