CN221708719U - Electronic Devices - Google Patents
Electronic Devices Download PDFInfo
- Publication number
- CN221708719U CN221708719U CN202320529154.4U CN202320529154U CN221708719U CN 221708719 U CN221708719 U CN 221708719U CN 202320529154 U CN202320529154 U CN 202320529154U CN 221708719 U CN221708719 U CN 221708719U
- Authority
- CN
- China
- Prior art keywords
- layer
- carbon
- sic
- electronic device
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域Technical Field
本公开涉及至少部分地以3C-SiC形成的电子器件。The present disclosure relates to electronic devices formed at least in part with 3C-SiC.
背景技术Background Art
如已知的,具有宽带隙,特别是具有大于1.1eV的带隙能量值Eg,低导通状态电阻(RON)、高热导率值、高工作频率和高电荷载流子饱和速度的半导体材料对于生产电子元件,例如二极管或晶体管,特别是用于功率应用是理想的。具有所述特性并设计用于制造电子元件的材料是碳化硅(SiC)。碳化硅具有不同的晶体形式,也称为多型。最常见的多型是立方多型(多型3C-SiC),六方多型(多型4H-SiC和6H-SiC)和菱形多型(多型15R-SiC)。As is known, semiconductor materials having a wide bandgap, in particular having a bandgap energy value Eg greater than 1.1 eV, low on-state resistance (RON), high thermal conductivity values, high operating frequencies and high charge carrier saturation velocity are ideal for the production of electronic components, such as diodes or transistors, in particular for power applications. A material having the described properties and designed for the manufacture of electronic components is silicon carbide (SiC). Silicon carbide has different crystal forms, also called polytypes. The most common polytypes are the cubic polytype (polytype 3C-SiC), the hexagonal polytype (polytypes 4H-SiC and 6H-SiC) and the rhombohedral polytype (polytype 15R-SiC).
与设置在硅衬底上的类似器件相比,设置在碳化硅衬底上的电子器件具有许多优点,例如传导中的低输出电阻、低泄漏电流、高工作温度和高工作频率。特别地,SiC肖特基二极管已经表现出更高的开关性能,使得SiC电子器件特别有利于高频应用。当前的应用对器件的电性能以及长期可靠性提出了要求。Electronic devices arranged on silicon carbide substrates have many advantages over similar devices arranged on silicon substrates, such as low output resistance in conduction, low leakage current, high operating temperature and high operating frequency. In particular, SiC Schottky diodes have shown higher switching performance, making SiC electronic devices particularly beneficial for high-frequency applications. Current applications place demands on the electrical performance of the devices as well as long-term reliability.
由于相对于其它多型更容易制造,4H-SiC通常用作衬底。然而,相对于3C-SiC(2.3eV)或硅(1.12eV)的相应带隙,4H-SiC的带隙较大(3.2eV),使得4H-SiC相对于3C-SiC或相对于硅对一些电子应用的吸引力较小。例如,在肖特基势垒二极管的情况下,控制肖特基势垒高度(SBH)值的可能性是重要的方面,以便降低能耗并使传导损耗最小化。为此,相对于金属/4H-SiC接触的SBH值,金属/3C-SiC或金属/Si接触的实施导致更低的SBH值,使得能够制造更有效的肖特基二极管。4H-SiC is often used as a substrate due to its easier fabrication relative to other polytypes. However, the larger band gap of 4H-SiC (3.2 eV) relative to the corresponding band gaps of 3C-SiC (2.3 eV) or silicon (1.12 eV) makes 4H-SiC less attractive for some electronic applications relative to 3C-SiC or relative to silicon. For example, in the case of Schottky barrier diodes, the possibility to control the Schottky barrier height (SBH) value is an important aspect in order to reduce energy consumption and minimize conduction losses. To this end, the implementation of metal/3C-SiC or metal/Si contacts leads to lower SBH values relative to the SBH values of metal/4H-SiC contacts, enabling the fabrication of more efficient Schottky diodes.
此外,SiC的击穿电压也大于硅的击穿电压。这是由于碳化硅的临界电场大约是硅的十倍。通常,与在4H-SiC的衬底(体)上制造器件相关的另一优点是保持击穿电压的优点,但在表面上具有较低带隙的材料(例如,硅或3C-SiC),使得例如肖特基接触的势垒高度降低。换句话说,期望保持反向偏置的优点并优化正向偏置的电压降。In addition, the breakdown voltage of SiC is also greater than that of silicon. This is due to the critical electric field of silicon carbide being approximately ten times greater than that of silicon. Another advantage associated with fabricating devices on a substrate (bulk) of 4H-SiC in general is maintaining the advantages of the breakdown voltage, but having a lower bandgap material (e.g., silicon or 3C-SiC) on the surface, such that the barrier height of, for example, a Schottky contact is reduced. In other words, it is desirable to maintain the advantages of reverse bias and optimize the voltage drop for forward bias.
图1示出了在X,Y,Z轴的笛卡尔(三轴)参考系中的横向截面图,结势垒肖特基(JBS)器件,或类似的合并PN肖特基(MPS)二极管,用附图标记1表示。图1的器件不一定是现有技术,并且在下文中将参考JBS器件1而不因此失去一般性。FIG1 shows a lateral cross-sectional view in a Cartesian (triaxial) reference system of the X, Y, Z axes, of a Junction Barrier Schottky (JBS) device, or a similar Merged PN Schottky (MPS) diode, indicated by reference numeral 1. The device of FIG1 is not necessarily prior art, and reference will be made hereinafter to the JBS device 1 without loss of generality.
JBS器件1包括:N型掺杂的4H-SiC的衬底3,具有第一掺杂剂浓度(例如,包括在1·1019和1·1022原子/cm3之间),包括例如在2mΩ·cm和40mΩ·cm之间的电阻率,具有与表面3b相对的表面3a,以及包括在50μm和350μm之间,更特别地在160μm和200μm之间,例如等于180μm的厚度;漂移层(外延生长)2,由N型4H-SiC制成,具有低于第一掺杂剂浓度的第二掺杂剂浓度(例如包括在1014和1016原子/cm3之间),其在衬底3的表面3a上延伸,并且厚度包括在5μm和15μm之间;欧姆接触区域6(例如硅化镍),其在衬底3的表面3b上延伸;阴极金属化7,例如Ti/NiV/Ag或Ti/NiV/Au,其在欧姆接触区域6上延伸;阳极金属化8,例如Ti/AlSiCu或Ni/AlSiCu,其在漂移层2的顶表面2a上延伸;阳极金属化8上的钝化层19,以保护阳极金属化;漂移层2中的多个结势垒(JB)元件9,面向漂移层2的顶表面2a,并且每个结势垒元件9包括相应的P型注入区域9'和欧姆接触9";以及边缘终结区域或保护环10(可选),特别是P型注入区域,其围绕(完全或部分地,取决于设计选择)JB元件9。The JBS device 1 comprises: a substrate 3 of N-type doped 4H-SiC with a first dopant concentration (for example comprised between 1·10 19 and 1·10 22 atoms/cm 3 ), with a resistivity comprised, for example, between 2 mΩ·cm and 40 mΩ·cm, with a surface 3a opposite to a surface 3b, and a thickness comprised between 50 μm and 350 μm, more particularly between 160 μm and 200 μm, for example equal to 180 μm; a drift layer (epitaxially grown) 2 made of N-type 4H-SiC with a second dopant concentration lower than the first dopant concentration (for example comprised between 10 14 and 10 16 atoms/cm 3 ), which extends on the surface 3a of the substrate 3 and has a thickness included between 5μm and 15μm; an ohmic contact region 6 (e.g., nickel silicide), which extends on the surface 3b of the substrate 3; a cathode metallization 7, such as Ti/NiV/Ag or Ti/NiV/Au, which extends on the ohmic contact region 6; an anode metallization 8, such as Ti/AlSiCu or Ni/AlSiCu, which extends on the top surface 2a of the drift layer 2; a passivation layer 19 on the anode metallization 8 to protect the anode metallization; a plurality of junction barrier (JB) elements 9 in the drift layer 2, facing the top surface 2a of the drift layer 2, and each junction barrier element 9 includes a corresponding P-type implant region 9' and an ohmic contact 9"; and an edge termination region or guard ring 10 (optional), in particular a P-type implant region, which surrounds (completely or partially, depending on design choice) the JB element 9.
肖特基二极管12形成在漂移层2和阳极金属化8之间的界面处。特别地,肖特基(半导体-金属)结由漂移层2的与阳极金属化8的相应部分直接电接触的部分形成。The Schottky diode 12 is formed at the interface between the drift layer 2 and the anode metallization 8. In particular, a Schottky (semiconductor-metal) junction is formed by portions of the drift layer 2 that are in direct electrical contact with corresponding portions of the anode metallization 8.
包括JB元件9和肖特基二极管12的JBS器件1的区域(即,包含在保护环10内的区域)是JBS器件1的激活区4。The region of the JBS device 1 including the JB element 9 and the Schottky diode 12 (ie, the region included in the guard ring 10 ) is the active region 4 of the JBS device 1 .
参考图2A和2B,图1的JBS器件1的制造步骤(图2A)提供了在漂移层2中掩模注入具有第二导电类型(P)的掺杂物质(例如硼或铝)的步骤。图2A中的箭头18示出了注入。掩模11用于注入,特别是氧化硅或TEOS的硬掩模。在示例性实施例中,注入步骤包括具有第二导电类型的掺杂物质的一个或多个注入,注入能量在30keV和400keV之间,剂量在1·1012原子/cm2和1·1015原子/cm2之间。Referring to FIGS. 2A and 2B , the manufacturing step of the JBS device 1 of FIG. 1 ( FIG. 2A ) provides a step of masking and implanting a dopant substance (e.g., boron or aluminum) having a second conductivity type (P) in the drift layer 2. The implantation is shown by arrow 18 in FIG. 2A . The mask 11 is used for implantation, in particular a hard mask of silicon oxide or TEOS. In an exemplary embodiment, the implantation step includes one or more implantations of a dopant substance having a second conductivity type, with an implantation energy between 30 keV and 400 keV and a dose between 1·10 12 atoms/cm 2 and 1·10 15 atoms/cm 2 .
由此形成注入区域9'和边缘终结区域10。注入区域9'和边缘终结区域10具有从表面2a测量的包括在0.2μm和1μm之间的深度。Thereby an implantation region 9' and an edge termination region 10 are formed. The implantation region 9' and the edge termination region 10 have a depth measured from the surface 2a comprised between 0.2 μm and 1 μm.
然后,在图2B中,去除掩模11,并执行热退火步骤以激活在图2A的步骤中注入的掺杂物质。热退火例如在高于1600℃(例如,1700-1900℃,在一些情况下甚至更高)的温度下在炉中执行。2B, the mask 11 is removed and a thermal annealing step is performed to activate the doping species implanted in the step of Fig. 2A. The thermal annealing is performed in a furnace at a temperature above 1600°C (eg 1700-1900°C, even higher in some cases), for example.
参考图3A-3C,然后执行另外的步骤以形成欧姆接触9"。参考图3A,形成氧化硅或TEOS的沉积掩模13,以覆盖漂移层2的除了注入区域9'之外的表面区域(以及边缘终端10的表面区域,如果有的话)。换句话说,掩模13在注入区域9'处(并且可选地在边缘终端10的至少一部分处)具有贯通开口13a。然后,在图3B中,在掩模13上和贯通开口13a(图3B中的金属层14)内执行镍沉积。这样沉积的镍通过贯通开口13a到达并接触注入区域9'和边缘终结区域10。3A-3C , additional steps are then performed to form an ohmic contact 9 ″. Referring to FIG. 3A , a deposition mask 13 of silicon oxide or TEOS is formed to cover the surface area of the drift layer 2 except for the implantation region 9 ′ (and the surface area of the edge termination 10 , if any). In other words, the mask 13 has a through opening 13 a at the implantation region 9 ′ (and optionally at least a portion of the edge termination 10 ). Then, in FIG. 3B , nickel deposition is performed on the mask 13 and within the through opening 13 a (the metal layer 14 in FIG. 3B ). The nickel thus deposited reaches and contacts the implantation region 9 ′ and the edge termination region 10 through the through opening 13 a.
参考图3C,随后的高温热退火(在700℃和1200℃之间,时间间隔从1分钟到120分钟)允许通过在贯通开口13a处沉积的镍和漂移层2的碳化硅(4H-SiC)之间的化学反应形成硅化镍的欧姆接触9"。实际上,沉积的镍在与漂移层2的表面材料接触的地方反应,形成Ni2Si(即欧姆接触)。随后,执行去除在掩模13上方延伸的金属的步骤和掩模13的去除。With reference to FIG. 3C , a subsequent high temperature thermal annealing (between 700° C. and 1200° C., with a time interval ranging from 1 minute to 120 minutes) allows the formation of an ohmic contact 9″ of nickel silicide by a chemical reaction between the nickel deposited at the through opening 13 a and the silicon carbide (4H-SiC) of the drift layer 2 . In practice, the deposited nickel reacts where it is in contact with the surface material of the drift layer 2 , forming Ni 2 Si (i.e., an ohmic contact). Subsequently, a step of removing the metal extending above the mask 13 and the removal of the mask 13 are performed.
在形成欧姆接触之后,该方法继续在漂移层2的顶表面2a上并与欧姆接触9"直接电接触地形成(例如通过沉积)阳极金属化8,例如Ti/AlSiCu或Ni/AlSiCu。然后,在阳极金属化层8上形成钝化层19,以保护阳极金属化。因此,相应的肖特基二极管12形成在漂移层2和阳极金属化8之间的界面处,横向于注入区域9'。特别地,肖特基(半导体-金属)结由漂移层2的在JB元件9之间的与阳极金属化8的相应部分直接电接触的部分形成。After forming the ohmic contact, the method continues by forming (e.g. by deposition) an anode metallization 8, such as Ti/AlSiCu or Ni/AlSiCu, on the top surface 2a of the drift layer 2 and in direct electrical contact with the ohmic contact 9". Then, a passivation layer 19 is formed on the anode metallization layer 8 to protect the anode metallization. Thus, a corresponding Schottky diode 12 is formed at the interface between the drift layer 2 and the anode metallization 8, laterally to the implantation region 9'. In particular, a Schottky (semiconductor-metal) junction is formed by a portion of the drift layer 2 between the JB elements 9 that is in direct electrical contact with a corresponding portion of the anode metallization 8.
实用新型内容Utility Model Content
本实用新型的目的是提供至少部分地以3C-SiC形成的电子器件,以克服现有技术的缺点。The utility model aims to provide an electronic device at least partially formed of 3C-SiC to overcome the disadvantages of the prior art.
本公开的一方面提供了一种电子器件,包括:六方多型碳化硅固态主体,具有第一导电性;至少一个注入区域,在固态主体的前侧处延伸,至少一个注入区域具有与第一导电性相对的第二导电性;立方多型碳化硅层,在前侧上;硅层,在立方多型碳化硅层上;含碳层,在硅层上;欧姆接触区域,穿过立方多型碳化硅层、硅层和含碳层的整个厚度,直到到达注入区域;以及导电的第一电端子,位于含碳层上方并且与含碳层直接接触。One aspect of the present disclosure provides an electronic device, comprising: a hexagonal polytype silicon carbide solid body having a first conductivity; at least one implanted region extending at a front side of the solid body, the at least one implanted region having a second conductivity opposite to the first conductivity; a cubic polytype silicon carbide layer on the front side; a silicon layer on the cubic polytype silicon carbide layer; a carbon-containing layer on the silicon layer; an ohmic contact region extending through the entire thickness of the cubic polytype silicon carbide layer, the silicon layer, and the carbon-containing layer until reaching the implanted region; and a conductive first electrical terminal located above and in direct contact with the carbon-containing layer.
根据一个或多个实施例,其中固态主体是六方多型碳化硅的,并且含碳层是石墨的,包括石墨,包括一个或多个石墨层,包括石墨烯,或者包括石墨和石墨烯。According to one or more embodiments, wherein the solid body is of hexagonal polytype silicon carbide and the carbon-containing layer is graphitic, includes graphite, includes one or more graphite layers, includes graphene, or includes graphite and graphene.
根据一个或多个实施例,其中第一电端子形成具有含碳层的肖特基二极管和具有欧姆接触区域的结势垒二极管。In accordance with one or more embodiments, the first electrical terminal forms a Schottky diode having a carbon-containing layer and a junction barrier diode having an ohmic contact region.
根据一个或多个实施例,其中第一电端子为结势垒二极管和肖特基二极管所共用,电子器件还包括在与固态主体的前侧相对的后侧处的为结势垒二极管和肖特基二极管所共用的第二电端子。According to one or more embodiments, wherein the first electrical terminal is common to the junction barrier diode and the Schottky diode, the electronic device further includes a second electrical terminal common to the junction barrier diode and the Schottky diode at a rear side opposite to the front side of the solid state body.
根据一个或多个实施例,其中电子器件是以下之一:合并PiN肖特基MPS器件;结势垒肖特基JBS器件;MOSFET;IGBT;JFET;DMOS。According to one or more embodiments, the electronic device is one of: a merged PiN Schottky MPS device; a junction barrier Schottky JBS device; a MOSFET; an IGBT; a JFET; or a DMOS.
本公开的另一方面提供了一种电子器件,包括:六方多型碳化硅固态主体,具有第一导电性;第一注入区域,在固态主体的前侧处延伸,第一注入区域具有与第一导电性相对的第二导电性,第一注入区域包括源极端子;第二注入区域,具有第二导电性,在固态主体的前侧处与第一注入区域相距一定距离延伸,第二注入区域包括漏极端子;立方多型碳化硅层,在前侧上;氧化硅的栅极电介质,在第一注入区域和第二注入区域之间的立方多型碳化硅层上;以及金属电栅极端子,位于栅极电介质上方并且与栅极电介质直接接触。Another aspect of the present disclosure provides an electronic device, comprising: a hexagonal polytype silicon carbide solid body having a first conductivity; a first implanted region extending at a front side of the solid body, the first implanted region having a second conductivity opposite to the first conductivity, the first implanted region including a source terminal; a second implanted region having a second conductivity, extending at a distance from the first implanted region at the front side of the solid body, the second implanted region including a drain terminal; a cubic polytype silicon carbide layer on the front side; a gate dielectric of silicon oxide on the cubic polytype silicon carbide layer between the first implanted region and the second implanted region; and a metal electric gate terminal located above the gate dielectric and in direct contact with the gate dielectric.
根据一个或多个实施例,电子器件包括以下中的一项或多项:合并PiN肖特基MPS器件;结势垒肖特基JBS器件;MOSFET;IGBT;JFET;DMOS。According to one or more embodiments, the electronic device includes one or more of: a merged PiN Schottky MPS device; a junction barrier Schottky JBS device; a MOSFET; an IGBT; a JFET; or a DMOS.
本公开的实施例具有更低的肖特基势垒高度值,使得能够制造更有效的肖特基二极管。Embodiments of the present disclosure have lower Schottky barrier height values, enabling the fabrication of more efficient Schottky diodes.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更好地理解本公开,现在参照附图仅通过非限制性示例描述其优选实施例,其中:For a better understanding of the present disclosure, preferred embodiments thereof will now be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:
图1示出了根据一个实施例的JBS或MPS器件的截面图;FIG. 1 illustrates a cross-sectional view of a JBS or MPS device according to one embodiment;
图2A和2B示出了根据实施例的图1的器件的中间制造步骤的截面图;2A and 2B illustrate cross-sectional views of intermediate fabrication steps of the device of FIG. 1 according to an embodiment;
图3A-3C示出了根据实施例的在图2A和2B的步骤之后的用于形成图1的器件的欧姆接触的步骤的截面图;3A-3C illustrate cross-sectional views of steps for forming ohmic contacts for the device of FIG. 1 , following the steps of FIGS. 2A and 2B , according to an embodiment;
图4示出了根据实施例的JBS或MPS器件的截面图;FIG4 illustrates a cross-sectional view of a JBS or MPS device according to an embodiment;
图5A和5B示出了根据实施例的图4的器件的中间制造步骤的截面图;5A and 5B illustrate cross-sectional views of intermediate fabrication steps of the device of FIG. 4 according to an embodiment;
图6A-6D示出了根据另一个实施例的图4的器件的中间制造步骤的截面图,该中间制造步骤是图6A-6B的实施例的替代;6A-6D illustrate cross-sectional views of intermediate fabrication steps of the device of FIG. 4 according to another embodiment, which is an alternative to the embodiment of FIGS. 6A-6B ;
图7示出了根据另一实施例的JBS或MPS器件的截面图;FIG7 illustrates a cross-sectional view of a JBS or MPS device according to another embodiment;
图8A-8C示出了根据实施例的图7的器件的中间制造步骤的截面图;8A-8C illustrate cross-sectional views of intermediate fabrication steps of the device of FIG. 7 according to an embodiment;
图9以截面视图示出了根据一个实施例的JBS或MPS器件;FIG9 illustrates a JBS or MPS device in cross-sectional view according to one embodiment;
图10A-10D示出了根据一个实施例的图9的器件的中间制造步骤的截面视图;以及10A-10D illustrate cross-sectional views of intermediate fabrication steps of the device of FIG. 9 according to one embodiment; and
图11示出了根据另一实施例的平面MOSFET器件的截面图。FIG. 11 shows a cross-sectional view of a planar MOSFET device according to another embodiment.
具体实施方式DETAILED DESCRIPTION
与图1的JBS器件共通的元件以相同的附图标记标识,并且不再进一步进行描述。Elements common to the JBS device of FIG. 1 are identified with the same reference numerals and will not be described further.
图4以图1的X、Y、Z轴的笛卡尔(三轴)参考系统中的横截面视图显示了根据一个实施例的JBS器件50。图4的视图可能类似于MPS器件(二极管)(以下将仅参考JBS器件,而不会因此失去一般性)。Figure 4 shows a JBS device 50 according to one embodiment in a cross-sectional view in the Cartesian (three-axis) reference system of the X, Y, Z axes of Figure 1. The view of Figure 4 may be similar to an MPS device (diode) (reference will be made below only to JBS devices without loss of generality).
JBS器件50包括:具有第一掺杂剂浓度的N型4H-SiC的衬底3;具有第二掺杂剂浓度的N型4H-SiC的(外延)漂移层2;表面2a上的立方碳化硅(3C-SiC)层52;阳极金属化层8,例如Ti/AlSiCu或Ni/AlSiCu,其在3C-SiC层52上延伸;阳极金属化8上的钝化层19;漂移层2中的多个注入区域9',面向漂移层2的顶表面2a,在与3C-SiC层52的界面处;多个欧姆接触54,在相应的注入区域9'处延伸穿过3C-SiC层,并与后者形成相应的JB元件59;边缘终结区域或保护环10(可选),特别是P型注入区域,完全或部分地围绕JB元件9;欧姆接触区域或层6(例如硅化镍),其在衬底3的表面3b上延伸;阴极金属化7,例如Ti/NiV/Ag或Ti/NiV/Au,其在欧姆接触区域6上延伸。The JBS device 50 comprises: a substrate 3 of N-type 4H-SiC having a first dopant concentration; an (epitaxial) drift layer 2 of N-type 4H-SiC having a second dopant concentration; a cubic silicon carbide (3C-SiC) layer 52 on a surface 2a; an anode metallization layer 8, such as Ti/AlSiCu or Ni/AlSiCu, extending on the 3C-SiC layer 52; a passivation layer 19 on the anode metallization 8; a plurality of implanted regions 9' in the drift layer 2, facing the top surface 2a of the drift layer 2, in contact with the 3C-SiC layer 52; and a plurality of implanted regions 9' in the drift layer 2, facing the top surface 2a of the drift layer 2. at the interface of the C-SiC layer 52; multiple ohmic contacts 54, extending through the 3C-SiC layer at the corresponding implantation area 9' and forming corresponding JB elements 59 with the latter; an edge termination area or guard ring 10 (optional), in particular a P-type implantation area, completely or partially surrounding the JB element 9; an ohmic contact area or layer 6 (for example, nickel silicide), which extends on the surface 3b of the substrate 3; a cathode metallization 7, for example Ti/NiV/Ag or Ti/NiV/Au, which extends on the ohmic contact area 6.
一个或多个肖特基二极管57在3C-SiC层52和阳极金属化8之间的界面处横向于注入区域9'延伸。特别地,一个或多个肖特基(半导体-金属)结由与阳极金属化8的相应部分直接电接触的3C-SiC层52的部分形成。One or more Schottky diodes 57 extend transversely to the implanted region 9' at the interface between the 3C-SiC layer 52 and the anode metallization 8. In particular, one or more Schottky (semiconductor-metal) junctions are formed by portions of the 3C-SiC layer 52 that are in direct electrical contact with corresponding portions of the anode metallization 8.
包括JB元件59和肖特基二极管57的JBS器件50的区域(即,包含在保护环10内的区域,如果有的话)是JBS器件50的激活区4。The region of the JBS device 50 including the JB element 59 and the Schottky diode 57 (ie, the region included within the guard ring 10 , if any) is the active region 4 of the JBS device 50 .
图5A和5B在图2A-2B,3A-3C和4的X,Y,Z轴的笛卡尔(三轴)参考系中的横向截面图中示出了根据本公开实施例的JBS器件50的中间制造步骤。5A and 5B illustrate intermediate fabrication steps of a JBS device 50 according to an embodiment of the present disclosure in transverse cross-sectional views in the Cartesian (three-axis) reference system of the X, Y, and Z axes of FIGS. 2A-2B , 3A-3C , and 4 .
具体地,在执行图2A和2B的步骤(这里不再进一步描述)之后,执行在漂移层2的表面2a上形成(例如生长)立方碳化硅(3C-SiC)层52的步骤,如图5A所示。Specifically, after performing the steps of FIGS. 2A and 2B (not further described here), a step of forming (eg, growing) a cubic silicon carbide (3C-SiC) layer 52 on the surface 2 a of the drift layer 2 is performed, as shown in FIG. 5A .
3C-SiC在4H-SiC衬底/层上的生长本身是已知的。用于此目的的方法称为气-液-固(VLS)机理,例如由Soueidan M等人描述的,“A Vapor–Liquid–Solid Mechanismfor Growing 3C-SiC Single-Domain Layers on 6H-SiC(0001)”,advanced functionalmaterials,vol.16,pages 975-979,02May 2006。The growth of 3C-SiC on 4H-SiC substrates/layers is known per se. The method used for this purpose is called the vapor-liquid-solid (VLS) mechanism, as described, for example, by Soueidan M et al., "A Vapor–Liquid–Solid Mechanism for Growing 3C-SiC Single-Domain Layers on 6H-SiC (0001)", advanced functional materials, vol. 16, pages 975-979, 02 May 2006.
另一种方法被称为升华外延(SE),例如由Valdas Jokubavicius等人在“LateralEnlargement Growth Mechanism of 3C-SiC on Off-Oriented 4H-SiC Substrates”,Crystal Growth&Design 2014 14(12),6514-6520中描述的。Another method is known as sublimation epitaxy (SE), as described, for example, by Valdas Jokubavicius et al. in “Lateral Enlargement Growth Mechanism of 3C-SiC on Off-Oriented 4H-SiC Substrates”, Crystal Growth & Design 2014 14(12), 6514-6520.
从Rositsa Yakimova等人的“Growth,Defects and Doping of3C-SiC onHexagonal Polytypes”,ECS Journal of Solid State Science and Technology,卷6,第10号,第741页,2017年11月中已知另一种方法。Another method is known from Rositsa Yakimova et al., “Growth, Defects and Doping of 3C-SiC on Hexagonal Polytypes”, ECS Journal of Solid State Science and Technology, Vol. 6, No. 10, p. 741, November 2017.
然后,该方法继续执行,图5B,具有形成欧姆接触54的步骤,利用已经参考图3A-3C描述的工艺,其适用于图5B的实施例。特别地,在这种情况下,掩模13形成在3C-SiC层52上,并且贯通开口13a延伸直到到达3C-SiC层52。因此,金属层14延伸直到到达3C-SiC层52。The method then continues, FIG5B , with the step of forming an ohmic contact 54 , using the process already described with reference to FIGS3A-3C , which is applicable to the embodiment of FIG5B . In particular, in this case, the mask 13 is formed on the 3C-SiC layer 52 , and the through opening 13 a extends until reaching the 3C-SiC layer 52 . Thus, the metal layer 14 extends until reaching the 3C-SiC layer 52 .
欧姆接触的形成包括在开口13a内沉积镍。这样沉积的镍到达并接触3C-SiC52层。随后的高温热处理(在700℃和1200℃之间持续1分钟至120分钟的时间间隔)允许通过开口13a处沉积的镍和碳化硅(3C-SiC)之间的化学反应形成硅化镍欧姆接触54。The formation of the ohmic contact includes depositing nickel in the opening 13a. The nickel thus deposited reaches and contacts the 3C-SiC 52 layer. Subsequent high temperature heat treatment (at a time interval of 1 minute to 120 minutes between 700°C and 1200°C) allows the formation of a nickel silicide ohmic contact 54 by a chemical reaction between the nickel deposited at the opening 13a and the silicon carbide (3C-SiC).
或者,可以在注入区域9'形成延伸到漂移层2的开口13a。在这种情况下,欧姆接触的形成包括在开口13a内沉积镍直到其到达注入区域9'。Alternatively, an opening 13a extending to the drift layer 2 may be formed in the implantation region 9'. In this case, the formation of the ohmic contact includes depositing nickel in the opening 13a until it reaches the implantation region 9'.
在图5B的步骤之后,该方法执行以下步骤:在3C-SiC层52上形成(例如通过沉积)与欧姆接触54直接电接触的阳极金属化8,例如Ti/AlSiCu或Ni/AlSiCu。然后,在阳极金属化层8上形成钝化层19,以保护阳极金属化。因此,相应的肖特基二极管57形成在3C-SiC层52和阳极金属化8之间的界面处,横向于欧姆接触57。After the step of FIG. 5B , the method performs the following steps: forming (e.g., by deposition) an anode metallization 8, such as Ti/AlSiCu or Ni/AlSiCu, in direct electrical contact with the ohmic contact 54 on the 3C-SiC layer 52. Then, a passivation layer 19 is formed on the anode metallization layer 8 to protect the anode metallization. Thus, a corresponding Schottky diode 57 is formed at the interface between the 3C-SiC layer 52 and the anode metallization 8, lateral to the ohmic contact 57.
图6A-6D示出了用于形成3C-SiC层52的另一种方法。6A-6D illustrate another method for forming the 3C—SiC layer 52 .
在这种情况下,在漂移层2的表面2a上形成立方碳化硅(3C-SiC)层52的步骤可以通过漂移层2的4H-SiC材料的熔融和再凝固(结晶)来执行,例如Choi,I.,Jeong,H.,Shin,H.等人所描述的“Laser-induced phase separation of silicon carbide”,NatureCommunications7,13562(2016)。In this case, the step of forming a cubic silicon carbide (3C-SiC) layer 52 on the surface 2a of the drift layer 2 can be performed by melting and resolidification (crystallization) of the 4H-SiC material of the drift layer 2, such as described in "Laser-induced phase separation of silicon carbide" by Choi, I., Jeong, H., Shin, H. et al., Nature Communications 7, 13562 (2016).
如图6A所示,该过程导致形成堆叠60,其包括:在4H-SiC的漂移层2上的3C-SiC层52;3C-SiC层52上的硅层56;以及在硅层56上的富碳层58(例如石墨或包括石墨或包括石墨层)。在一个实施例中,3C-SiC层52的厚度为10-200nm,硅层56的厚度为5-100nm,富碳层的厚度为5-100nm。由于该工艺需要漂移层2的一部分在顶表面2a处的晶相变化,因此在形成叠层60之后,漂移层2具有减小的厚度。从电学或功能的观点来看,该熔融和结晶步骤不会损坏注入区域9'。As shown in FIG6A , the process results in the formation of a stack 60, which includes: a 3C-SiC layer 52 on a drift layer 2 of 4H-SiC; a silicon layer 56 on the 3C-SiC layer 52; and a carbon-rich layer 58 (e.g., graphite or including graphite or including a graphite layer) on the silicon layer 56. In one embodiment, the thickness of the 3C-SiC layer 52 is 10-200 nm, the thickness of the silicon layer 56 is 5-100 nm, and the thickness of the carbon-rich layer is 5-100 nm. Since the process requires a crystalline phase change of a portion of the drift layer 2 at the top surface 2a, the drift layer 2 has a reduced thickness after the stack 60 is formed. From an electrical or functional point of view, the melting and crystallization steps do not damage the implanted region 9'.
3C-SiC层52和硅层56具有与4H-SiC的漂移层2基本相同的掺杂,这是因为熔融和结晶步骤不需要改变漂移层2中已经存在的掺杂剂的剂量。The 3C—SiC layer 52 and the silicon layer 56 have substantially the same doping as the drift layer 2 of 4H—SiC, since the melting and crystallization steps do not require a change in the dosage of the dopant already present in the drift layer 2 .
漂移层2的4H-SiC材料的熔融特别地通过激光处理来执行,其配置和操作参数如下:The melting of the 4H-SiC material of the drift layer 2 is performed in particular by laser processing, the configuration and operating parameters of which are as follows:
波长在240至700nm之间,特别是308nm;The wavelength is between 240 and 700 nm, especially 308 nm;
脉冲持续时间在20ns至500ns之间,特别是160ns;The pulse duration is between 20ns and 500ns, especially 160ns;
脉冲数在1至16之间,特别是4;The number of pulses is between 1 and 16, especially 4;
能量密度在1.6至4J/cm2之间,特别是2.6J/cm2(在顶表面2a的层级处考虑);energy density between 1.6 and 4 J/cm 2 , in particular 2.6 J/cm 2 (considered at the level of the top surface 2 a );
温度在1400℃与2600℃之间,特别是2200℃(在表面2a的层级处考虑)。The temperature is between 1400° C. and 2600° C., in particular 2200° C. (considered at the level of the surface 2 a ).
在前侧2a的层级处的光束102的光斑的面积例如包括在0.7和1.5cm2之间。The area of the spot of the light beam 102 at the level of the front side 2 a is, for example, comprised between 0.7 and 1.5 cm 2 .
在熔融步骤之后,熔融部分的结晶在1600-2600℃的温度处执行200-600ns的时间。由此形成前述的叠层60。After the melting step, crystallization of the melted portion is performed at a temperature of 1600 to 2600° C. for a time of 200 to 600 ns. Thus, the aforementioned stacked layer 60 is formed.
然后,图6B,执行富碳层58和下伏的硅层56的氧化步骤,从而形成相应的氧化层。该步骤通过将晶片插入800℃的炉中60分钟来执行。这有利于富碳层58和硅层56二者的氧化。衬底3和外延层2的3C-SiC层52和4H-SiC材料的相应氧化将不会发生。Then, FIG. 6B , an oxidation step of the carbon-rich layer 58 and the underlying silicon layer 56 is performed, thereby forming a corresponding oxide layer. This step is performed by inserting the wafer into a furnace at 800° C. for 60 minutes. This facilitates oxidation of both the carbon-rich layer 58 and the silicon layer 56. Corresponding oxidation of the 3C-SiC layer 52 and the 4H-SiC material of the substrate 3 and the epitaxial layer 2 will not occur.
然后,图6C,在合适的湿蚀刻溶液中进行后续浴,例如BOE(缓冲氧化物蚀刻剂),允许在图6B的步骤中完全去除氧化层,暴露3C-SiC层52。由于蚀刻化学溶液选择性地去除已被氧化的层56,58的材料,所以执行蚀刻直到这种被氧化的层被完全去除,而不去除下伏的3C-SiC层52。Then, FIG6C, a subsequent bath in a suitable wet etching solution, such as BOE (buffered oxide etchant), allows the oxide layer to be completely removed in the step of FIG6B, exposing the 3C-SiC layer 52. Since the etching chemical solution selectively removes the material of the layers 56, 58 that have been oxidized, the etching is performed until such oxidized layers are completely removed, without removing the underlying 3C-SiC layer 52.
然后,根据已经参考图5B描述的内容(即,遵循图3A-3C的工艺,已经讨论了适当的修改),在图6D中,欧姆接触54在注入区域9'处穿过3C-SiC层52(并且可能地位于环10处,如果有的话)。Then, in accordance with what has been described with reference to FIG. 5B (ie, following the process of FIGS. 3A-3C , with appropriate modifications already discussed), in FIG. 6D , the ohmic contact 54 passes through the 3C-SiC layer 52 at the implanted region 9 ′ (and possibly at the ring 10 , if any).
通过使用适当配置的激光源,可以同时熔融漂移层2的表面部分(从而形成如上所述的3C-SiC层52)并激活注入区域9'的掺杂物质。相关激光配置参数如下:By using a properly configured laser source, it is possible to simultaneously melt the surface portion of the drift layer 2 (thereby forming the 3C-SiC layer 52 as described above) and activate the dopant species implanted in the region 9'. The relevant laser configuration parameters are as follows:
-等于或大于2.4J/cm2的能量密度(在顶表面2a的层级处考虑),- an energy density equal to or greater than 2.4 J/cm 2 (considered at the level of the top surface 2a),
-脉冲数目在1和16之间,例如等于4,- the number of pulses is between 1 and 16, for example 4,
-每个脉冲的持续时间包含在20至500ns之间,例如等于160ns,- the duration of each pulse is comprised between 20 and 500 ns, for example equal to 160 ns,
-所发射的辐射的波长包括在240至700之间,例如等于308nm。The wavelength of the emitted radiation is comprised between 240 and 700 nm, for example equal to 308 nm.
在该实施例中,可以省略参照图2B所述的在炉中激活掺杂剂的步骤。In this embodiment, the step of activating the dopant in the furnace described with reference to FIG. 2B may be omitted.
在图6D的步骤之后,该方法执行以下步骤:在3C-SiC层52上形成(例如通过沉积)与欧姆接触54直接电接触的阳极金属化8,例如Ti/AlSiCu或Ni/AlSiCu。然后,在阳极金属化层8上形成钝化层19,以保护阳极金属化。因此,相应的肖特基二极管57形成在3C-SiC层52和阳极金属化8之间的界面处,横向于欧姆接触57。After the step of FIG. 6D , the method performs the following steps: forming (e.g., by deposition) an anode metallization 8, such as Ti/AlSiCu or Ni/AlSiCu, in direct electrical contact with the ohmic contact 54 on the 3C-SiC layer 52. Then, a passivation layer 19 is formed on the anode metallization layer 8 to protect the anode metallization. Thus, a corresponding Schottky diode 57 is formed at the interface between the 3C-SiC layer 52 and the anode metallization 8, lateral to the ohmic contact 57.
图7在图1和图4的X,Y,Z轴的笛卡尔(三轴)参考系的侧向截面图中示出了根据本公开实施例的JBS器件80。FIG. 7 illustrates a JBS device 80 according to an embodiment of the present disclosure in a side cross-sectional view of the Cartesian (three-axis) reference system of the X, Y, and Z axes of FIGS. 1 and 4 .
图1的JBS器件1或图4的JBS器件50所共有的元件用相同的附图标记标识,并且不必再次描述。Elements common to the JBS device 1 of FIG. 1 or the JBS device 50 of FIG. 4 are identified with the same reference numerals and need not be described again.
JBS器件80包括:具有第一掺杂剂浓度的N型4H-SiC的衬底3;具有第二掺杂剂浓度的N型4H-SiC的(外延)漂移层2;表面2a上的立方碳化硅(3C-SiC)层52;3C-SiC层52上的硅层56;阳极金属化8,例如Ti/AlSiCu或Ni/AlSiCu,其在硅层56上延伸;阳极金属化8上的钝化层19;漂移层2中的多个注入区域9',面向漂移层2的顶表面2a,在与3C-SiC层52的界面处;多个欧姆接触84,在相应的注入区域9'处延伸穿过3C-SiC层52并穿过硅层56,并与注入区域一起形成相应的JB元件89;边缘终结区域或保护环10(可选),特别是P型注入区域,其完全或部分地围绕JB元件9;欧姆接触区域或层6(例如硅化镍),其在衬底3的表面3b上延伸;阴极金属化7,例如Ti/NiV/Ag或Ti/NiV/Au,其在欧姆接触区域6上延伸。The JBS device 80 comprises: a substrate 3 of N-type 4H-SiC having a first dopant concentration; an (epitaxial) drift layer 2 of N-type 4H-SiC having a second dopant concentration; a cubic silicon carbide (3C-SiC) layer 52 on a surface 2a; a silicon layer 56 on the 3C-SiC layer 52; an anode metallization 8, such as Ti/AlSiCu or Ni/AlSiCu, extending on the silicon layer 56; a passivation layer 19 on the anode metallization 8; a plurality of implanted regions 9' in the drift layer 2, facing the top surface 2a of the drift layer 2, in contact with the 3C-SiC layer 52; and a plurality of implanted regions 9' in the drift layer 2, facing the top surface 2a of the drift layer 2. At the interface of the SiC layer 52; multiple ohmic contacts 84, extending through the 3C-SiC layer 52 and through the silicon layer 56 at the corresponding injection area 9', and forming a corresponding JB element 89 together with the injection area; an edge termination area or guard ring 10 (optional), in particular a P-type injection area, which completely or partially surrounds the JB element 9; an ohmic contact area or layer 6 (for example, nickel silicide), which extends on the surface 3b of the substrate 3; a cathode metallization 7, for example Ti/NiV/Ag or Ti/NiV/Au, which extends on the ohmic contact area 6.
一个或多个肖特基二极管87在硅层56和阳极金属化8之间的界面处横向于注入区域9'延伸。特别地,一个或多个肖特基(半导体-金属)结由与阳极金属化8的相应部分直接电接触的硅层56的部分形成。One or more Schottky diodes 87 extend transversely to implant region 9' at the interface between silicon layer 56 and anode metallization 8. In particular, one or more Schottky (semiconductor-metal) junctions are formed by portions of silicon layer 56 in direct electrical contact with corresponding portions of anode metallization 8.
包括JB元件89和肖特基二极管87的JBS器件80的区域(即,包含在保护环10内的区域,如果有的话)是JBS器件80的激活区4。The region of the JBS device 80 including the JB element 89 and the Schottky diode 87 (ie, the region included within the guard ring 10 , if any) is the active region 4 of the JBS device 80 .
图8A-8C以X,Y,Z轴的笛卡尔(三轴)参考系的横向截面图示出了根据本公开实施例的JBS器件80的中间制造步骤。8A-8C illustrate intermediate fabrication steps of a JBS device 80 according to an embodiment of the present disclosure in transverse cross-sectional views of a Cartesian (three-axis) reference system of X, Y, and Z axes.
在这种情况下,形成立方碳化硅(3C-SiC)层52和硅层56的步骤通过漂移层2的4H-SiC材料的熔融和再凝固(结晶)而发生,如参考图6A-6D已经讨论的。In this case, the steps of forming the cubic silicon carbide (3C—SiC) layer 52 and the silicon layer 56 occur by melting and resolidification (crystallization) of the 4H—SiC material of the drift layer 2 , as already discussed with reference to FIGS. 6A-6D .
如图8A所示(对应于图5A),最初该工艺导致形成图6A已经描述的相同叠层,即包括4H-SiC的漂移层2上的3C-SiC层52,3C-SiC层52上的硅层56,以及硅层56上的富碳(例如石墨或包括石墨或包括石墨层)层58。As shown in Figure 8A (corresponding to Figure 5A), initially the process results in the formation of the same stack already described in Figure 6A, namely a 3C-SiC layer 52 on the drift layer 2 including 4H-SiC, a silicon layer 56 on the 3C-SiC layer 52, and a carbon-rich (e.g., graphite or including graphite or including a graphite layer) layer 58 on the silicon layer 56.
然后,图8B,执行选择性地去除富碳层58而不去除下伏的硅层56的步骤。该步骤例如通过在O2环境中的等离子体蚀刻工艺来执行。可以使用用于选择性除去石墨的其它化学物质或方法。8B , a step is performed to selectively remove the carbon-rich layer 58 without removing the underlying silicon layer 56. This step is performed, for example, by a plasma etching process in an O 2 environment. Other chemicals or methods for selectively removing graphite may be used.
然后,在图8C中,欧姆接触84被形成为在注入区域9'处(并且可能在保护环10处,如果有的话)穿过硅层56和3C-SiC层52。为此,使用已经参考图3A-3C描述的过程,适当地修改该过程以使其适合于这里讨论的情况。特别地,在这种情况下,掩模13形成在硅层56上,并且贯通开口13a延伸直到到达硅层56。因此,金属层14延伸直到到达硅层56。Then, in FIG8C , an ohmic contact 84 is formed through the silicon layer 56 and the 3C-SiC layer 52 at the implantation region 9 ′ (and possibly at the guard ring 10 , if any). To this end, the process already described with reference to FIGS. 3A-3C is used, appropriately modified to make it suitable for the case discussed here. In particular, in this case, the mask 13 is formed on the silicon layer 56 and the through opening 13 a extends until it reaches the silicon layer 56. Therefore, the metal layer 14 extends until it reaches the silicon layer 56.
欧姆接触的形成涉及在开口13a内沉积镍。随后的高温热处理(在700℃和1200℃之间持续1分钟至120分钟的时间间隔)允许通过在开口13a处的层52中沉积的镍和硅之间的化学反应形成硅化镍的欧姆接触84。The formation of the ohmic contact involves depositing nickel inside the opening 13a. A subsequent high temperature thermal treatment (between 700°C and 1200°C for a time interval of 1 minute to 120 minutes) allows the formation of an ohmic contact 84 of nickel silicide by chemical reaction between the nickel deposited in the layer 52 at the opening 13a and the silicon.
在另一种实现形式中,开口13a在注入区域9'处延伸到3C-SiC52层或漂移层2。欧姆接触的形成包括在这些开口13a内沉积镍。In another form of implementation, the openings 13a extend to the 3C-SiC52 layer or the drift layer 2 at the implantation region 9'. The formation of the ohmic contacts comprises the deposition of nickel in these openings 13a.
通过使用适当配置的激光源,可以同时熔融漂移层2的表面部分(从而如上所述地形成3C-SiC层52和硅层56)并且激活注入区域9'的掺杂剂。相关激光配置参数如下:By using a properly configured laser source, it is possible to simultaneously melt the surface portion of the drift layer 2 (thereby forming the 3C-SiC layer 52 and the silicon layer 56 as described above) and activate the dopants implanted in the region 9'. The relevant laser configuration parameters are as follows:
-等于或大于2.4J/cm2的能量密度(在顶表面2a的层级处考虑),- an energy density equal to or greater than 2.4 J/cm 2 (considered at the level of the top surface 2a),
-脉冲数目在1和16之间,例如等于4,- the number of pulses is between 1 and 16, for example 4,
-每个脉冲的持续时间包括在20至500ns之间,例如等于160ns,- the duration of each pulse is comprised between 20 and 500 ns, for example equal to 160 ns,
-所发射的辐射的波长包括在240至700之间,例如等于308nm。The wavelength of the emitted radiation is comprised between 240 and 700 nm, for example equal to 308 nm.
在该实施例中,可以省略参照图2B所述的在炉中激活掺杂剂的步骤。In this embodiment, the step of activating the dopant in the furnace described with reference to FIG. 2B may be omitted.
在图8C的步骤之后,该方法执行以下步骤:在硅层56上形成(例如通过沉积)与欧姆接触84直接电接触的阳极金属化8,例如Ti/AlSiCu或Ni/AlSiCu。然后,在阳极金属化层8上形成钝化层19,以保护阳极金属化。因此,相应的肖特基二极管87形成在硅层56和阳极金属化8之间的界面处,横向于欧姆接触84。After the step of FIG. 8C , the method performs the following steps: forming (e.g., by deposition) an anode metallization 8, such as Ti/AlSiCu or Ni/AlSiCu, in direct electrical contact with the ohmic contact 84 on the silicon layer 56. Then, a passivation layer 19 is formed on the anode metallization layer 8 to protect the anode metallization. Thus, a corresponding Schottky diode 87 is formed at the interface between the silicon layer 56 and the anode metallization 8, lateral to the ohmic contact 84.
图9在图7的笛卡尔(三轴)X,Y,Z参考系统的侧截面视图中示出了根据另一实施例的电子器件(特别是JBS)100器件。FIG. 9 shows an electronic device (specifically a JBS) 100 device according to another embodiment in a side cross-sectional view of the Cartesian (tri-axial) X, Y, Z reference system of FIG. 7 .
与图7中的JBS80器件共同的元件由相同的附图标记表示,并且不必再次详细描述。Elements common to the JBS80 device of FIG. 7 are denoted by the same reference numerals and need not be described again in detail.
JBS器件100包括:具有第一掺杂剂浓度的N型4H-SiC的衬底3;具有第二掺杂剂浓度的N型4H-SiC的漂移(外延)层2;表面2a上的立方碳化硅(3C-SiC)层52;3C-SiC层52上的硅层56;硅层56上的富碳层58;在富碳层58上延伸的阳极金属化层8,例如Ti/AlSiCu或Ni/AlSiCu;阳极金属化8上的钝化层19;漂移层2中的多个注入区域9',面向漂移层2的顶表面2a,在与3C-SiC层52的界面处;多个欧姆接触104,在相应的注入区域9'处延伸穿过3C-SiC层52,硅层56和富碳层58,并与注入区域形成相应的JB元件89;完全或部分围绕JB元件9的边缘终止区域或保护环10(可选),特别是P型注入区域;在衬底3的表面3b上延伸的欧姆接触区域或层6(例如,硅化镍);例如Ti/NiV/Ag或Ti/NiV/Au的阴极金属化7在欧姆接触区域6上延伸。The JBS device 100 includes: a substrate 3 of N-type 4H-SiC having a first dopant concentration; a drift (epitaxial) layer 2 of N-type 4H-SiC having a second dopant concentration; a cubic silicon carbide (3C-SiC) layer 52 on a surface 2a; a silicon layer 56 on the 3C-SiC layer 52; a carbon-rich layer 58 on the silicon layer 56; an anode metallization layer 8 extending on the carbon-rich layer 58, such as Ti/AlSiCu or Ni/AlSiCu; a passivation layer 19 on the anode metallization 8; a plurality of implanted regions 9' in the drift layer 2, facing a top surface 2a of the drift layer 2; a, at the interface with the 3C-SiC layer 52; multiple ohmic contacts 104, extending through the 3C-SiC layer 52, the silicon layer 56 and the carbon-rich layer 58 at the corresponding implantation area 9', and forming a corresponding JB element 89 with the implantation area; an edge termination area or guard ring 10 (optional) completely or partially surrounding the JB element 9, in particular a P-type implantation area; an ohmic contact area or layer 6 (e.g., nickel silicide) extending on the surface 3b of the substrate 3; a cathode metallization 7 such as Ti/NiV/Ag or Ti/NiV/Au extending on the ohmic contact area 6.
一个或多个肖特基二极管87在富碳层58和阳极金属化8之间的界面处横向于注入区域9'延伸。具体地,一个或多个肖特基(半导体-金属)结由与阳极金属化8的相应部分直接电接触的富碳层58的部分形成。注意,3C-SiC52和硅56层以及富碳层58具有形成它们的漂移层2的掺杂(N型),因此是导电的。One or more Schottky diodes 87 extend transversely to the implanted region 9' at the interface between the carbon rich layer 58 and the anode metallization 8. Specifically, one or more Schottky (semiconductor-metal) junctions are formed by portions of the carbon rich layer 58 that are in direct electrical contact with corresponding portions of the anode metallization 8. Note that the 3C-SiC 52 and silicon 56 layers and the carbon rich layer 58 have the doping (N-type) of the drift layer 2 from which they are formed and are therefore conductive.
包括JB元件89和肖特基二极管87的JBS器件100的区域(即,包含在保护环10内的区域,当存在时)是JBS器件100的激活区4。The region of the JBS device 100 including the JB element 89 and the Schottky diode 87 (ie, the region contained within the guard ring 10 , when present) is the active region 4 of the JBS device 100 .
在金属化层8与硅层56之间存在富碳层58具有防止金属离子或金属污染物从金属化层8扩散到硅层56,以及从硅层扩散到3C-SiC层52,并因此扩散到漂移层2的功能。The carbon-rich layer 58 between the metallization layer 8 and the silicon layer 56 has the function of preventing metal ions or metal contaminants from diffusing from the metallization layer 8 to the silicon layer 56 , and from the silicon layer to the 3C—SiC layer 52 , and thus to the drift layer 2 .
图10A-10D以X,Y,Z轴的笛卡尔(三轴)参考系的侧面截面图示出了根据实施例的JBS器件100的中间制造步骤。10A-10D illustrate intermediate fabrication steps of a JBS device 100 according to an embodiment in side cross-sectional views of a Cartesian (three-axis) reference system of X, Y, and Z axes.
在这种情况下,通过漂移层2的4H-SiC材料的熔融和再凝固(结晶),发生立方碳化硅(3C-SiC)层52,硅层56和富碳层58的形成步骤,如上面参考图6A-6D和图8A所讨论的。In this case, the steps of forming the cubic silicon carbide (3C-SiC) layer 52, the silicon layer 56 and the carbon rich layer 58 occur by melting and resolidification (crystallization) of the 4H-SiC material of the drift layer 2, as discussed above with reference to FIGS. 6A-6D and 8A.
如图10A所示(其对应于图6A和图8A),最初该工艺导致形成先前描述的叠层(“叠层”),即,包括4H-SiC漂移层2上的3C-SiC层52,3C-SiC层52上的硅层56,以及硅层56上的富碳层58(例如,石墨或包括石墨或包括石墨层)。As shown in FIG. 10A (which corresponds to FIG. 6A and FIG. 8A ), initially the process results in the formation of the previously described stack (“stack”), i.e., including a 3C-SiC layer 52 on the 4H-SiC drift layer 2, a silicon layer 56 on the 3C-SiC layer 52, and a carbon-rich layer 58 (e.g., graphite or including graphite or including a graphite layer) on the silicon layer 56.
然后,在图10B中,在注入区域9'处(和保护环10,如果存在的话)跨富碳层58、硅层56和3C-SiC层52形成欧姆接触104。已经参考图3A-3C描述的过程用于此目的,适当地修改以使它适应这里讨论的情况。具体地,在这种情况下,在富碳层58上形成掩模13,并且贯通开口13a延伸以暴露富碳层58。Then, in FIG. 10B , an ohmic contact 104 is formed across the carbon-rich layer 58, the silicon layer 56, and the 3C-SiC layer 52 at the implanted region 9 ' (and the guard ring 10, if present). The process already described with reference to FIGS. 3A-3C is used for this purpose, appropriately modified to adapt it to the case discussed here. Specifically, in this case, a mask 13 is formed on the carbon-rich layer 58, and a through opening 13a extends to expose the carbon-rich layer 58.
欧姆接触的形成涉及镍在贯通开口13a内的沉积。参考图10C,随后的高温热处理(在700℃和1200℃之间持续1分钟至120分钟的时间间隔)允许通过沉积的镍和层58中存在的硅之间的化学反应形成硅化镍欧姆接触104。10C , a subsequent high temperature thermal treatment (between 700° C. and 1200° C. for a time interval of 1 to 120 minutes) allows the formation of a nickel silicide ohmic contact 104 by chemical reaction between the deposited nickel and the silicon present in layer 58 .
可选地,贯通开口13a延伸穿过富碳层58,直到它们到达硅层56;或者,贯通开口13a延伸穿过富碳层58和硅层56,直到它们到达3C-SiC层52;或者,贯通开口13a延伸穿过富碳层58,硅层56和3C-SiC层52,直到它们到达漂移层2中的注入区域9'。在所有这些可能的实施例中,在高温热处理(在700℃与1200℃之间持续1分钟到120分钟的时间间隔)之后,沉积在贯通开口13a中的镍通过所沉积的镍与存在于层56,52,2中的硅之间的化学反应形成硅化镍的欧姆接触104(取决于各个实施例)。Alternatively, the through openings 13a extend through the carbon-rich layer 58 until they reach the silicon layer 56; or, the through openings 13a extend through the carbon-rich layer 58 and the silicon layer 56 until they reach the 3C-SiC layer 52; or, the through openings 13a extend through the carbon-rich layer 58, the silicon layer 56 and the 3C-SiC layer 52 until they reach the implantation region 9' in the drift layer 2. In all these possible embodiments, after a high-temperature thermal treatment (at a time interval between 700°C and 1200°C for 1 minute to 120 minutes), the nickel deposited in the through openings 13a forms an ohmic contact 104 of nickel silicide by a chemical reaction between the deposited nickel and the silicon present in the layers 56, 52, 2 (depending on the respective embodiment).
通过使用适当配置的激光源,可以同时熔融漂移层2的表面部分(为了形成如上所述的3C-SiC层52,硅层56和富碳层58)并激活注入区域9'的掺杂剂种类。相关的激光配置参数如下:By using a properly configured laser source, it is possible to simultaneously melt the surface portion of the drift layer 2 (in order to form the 3C-SiC layer 52, the silicon layer 56 and the carbon-rich layer 58 as described above) and activate the dopant species implanted in the region 9'. The relevant laser configuration parameters are as follows:
-能量密度为或大于2.4J/cm2(在上表面2a的层级处考虑),- an energy density of or greater than 2.4 J/cm 2 (considered at the level of the upper surface 2a),
-脉冲数目在1和16之间,例如等于4,- the number of pulses is between 1 and 16, for example 4,
-每个脉冲的持续时间在20至500ns之间,例如等于160ns,- the duration of each pulse is between 20 and 500 ns, for example, equal to 160 ns,
-发射的辐射的波长在240至700nm之间,例如等于308nm。The wavelength of the emitted radiation is between 240 and 700 nm, for example equal to 308 nm.
在该实施例中,可以省略参照图2B描述的炉掺杂剂活化步骤。In this embodiment, the furnace dopant activation step described with reference to FIG. 2B may be omitted.
在图10B中的步骤之后,执行形成(例如,通过沉积)例如由Ti/AlSiCu或Ni/AlSiCu制成的阳极金属化8的步骤;阳极金属化层8形成在富碳层58上并与欧姆接触104直接电接触。然后,在阳极金属化层8上形成钝化层19,以保护阳极金属化。因此,在富碳层58和阳极金属化8之间的界面处横向于欧姆接触104形成相应的肖特基二极管87。这产生图9的器件100。After the step in FIG. 10B , a step of forming (e.g., by deposition) an anode metallization 8, for example made of Ti/AlSiCu or Ni/AlSiCu, is performed; the anode metallization layer 8 is formed on the carbon-rich layer 58 and in direct electrical contact with the ohmic contact 104. Then, a passivation layer 19 is formed on the anode metallization layer 8 to protect the anode metallization. Thus, a corresponding Schottky diode 87 is formed at the interface between the carbon-rich layer 58 and the anode metallization 8, transverse to the ohmic contact 104. This produces the device 100 of FIG. 9 .
根据图11所示的另一实施例,3C-SiC层52,硅层56和富碳层58的叠层的形成可用于制造晶体管(例如MOSFET)的栅极端子。According to another embodiment shown in FIG. 11 , the formation of a stack of a 3C-SiC layer 52 , a silicon layer 56 , and a carbon-rich layer 58 may be used to fabricate a gate terminal of a transistor (eg, MOSFET).
在形成叠层3C-SiC52,硅56和富碳层58之后,执行至少在电子器件的要形成栅极端子的选择区域处去除富碳层58的步骤。例如,在两个注入区域9'之间的区域中去除富碳层58,暴露下伏的硅层56。After forming the stack 3C-SiC52, silicon 56 and carbon-rich layer 58, a step of removing the carbon-rich layer 58 is performed at least at the selected area where the gate terminal of the electronic device is to be formed. For example, the carbon-rich layer 58 is removed in the area between two implanted areas 9', exposing the underlying silicon layer 56.
然后进行一个步骤,以氧化由此暴露的硅层56的部分,从而形成氧化硅(SiO2),即图11所示的部分56′。A step is then performed to oxidize the portion of the silicon layer 56 thus exposed to form silicon oxide (SiO 2 ), namely, the portion 56 ′ shown in FIG. 11 .
在一个备选实施例中,完全去除富碳层58,例如通过光刻工艺对硅层56进行成形,使得硅层56仅保留在两个注入区域9’之间。然后氧化两个注入区域9′之间的硅层56,从而形成部分56′。In an alternative embodiment, the carbon rich layer 58 is completely removed, and the silicon layer 56 is patterned, for example by a photolithography process, so that the silicon layer 56 remains only between the two implanted regions 9'. The silicon layer 56 between the two implanted regions 9' is then oxidized to form the portion 56'.
3C-SiC层52也可以在部分56′的侧面去除,并保持在部分56’的下方。The 3C-SiC layer 52 may also be removed at the sides of the portion 56' and remain underneath the portion 56'.
硅层56的氧化部分56'具有栅极氧化物的功能。氧化部分56'在平面XY上的俯视图中在两个注入区域9'之间延伸,任选地部分重叠两个注入区域9'的部分。The oxidized portion 56' of the silicon layer 56 has the function of a gate oxide. The oxidized portion 56' extends between the two implanted regions 9' in a top view on the plane XY, optionally partially overlapping parts of the two implanted regions 9'.
因此,在氧化部分56'上形成具有栅极金属化110功能的金属层。Thus, a metal layer having the function of gate metallization 110 is formed on the oxidized portion 56 ′.
MOSFET的源极区域和漏极区域可以通过在P型注入区域9'内执行N型注入而以对于本领域技术人员而言显而易见的方式形成。The source region and the drain region of the MOSFET may be formed by performing N-type implantation within the P-type implantation region 9 ′ in a manner that will be apparent to a person skilled in the art.
在使用期间,在氧化部分56’下方的3C-SiC层52可以参与导电沟道的形成。During use, the 3C-SiC layer 52 below the oxidized portion 56' may participate in the formation of a conductive channel.
通过检查根据本说明书提供的本实用新型的特征,其提供的优点是明显的。By examining the features of the present invention provided in light of this specification, the advantages it provides will become apparent.
特别地,可以充分利用4H-SiC衬底的优点以及由3C-SiC或硅(在各个实施例中)的减小的带隙值产生的优点,用于形成JB元件和肖特基接触,如前所述。In particular, the advantages of the 4H-SiC substrate and the advantages resulting from the reduced band gap value of 3C-SiC or silicon (in various embodiments) can be fully utilized for forming the JB element and the Schottky contact, as described above.
最后,清楚的是,在不脱离如所附权利要求所限定的本实用新型的范围的情况下,可以对本文所描述和示出的内容执行修改和变化。Finally, it is clear that modifications and variations may be carried out in what is described and illustrated herein without departing from the scope of the present invention as defined in the appended claims.
例如,参考图6A和8A描述的熔融4H-SiC的步骤可以在没有注入区域9'的情况下执行。因此,在这种情况下,外延层2不容纳注入区域9',注入区域9'如下形成:For example, the step of melting 4H-SiC described with reference to Figures 6A and 8A can be performed without the implantation region 9'. Therefore, in this case, the epitaxial layer 2 does not accommodate the implantation region 9', which is formed as follows:
i)在去除硅56和碳58层的步骤之后(即,对于各个实施例,紧接在图6C的步骤之后);或i) after the step of removing the silicon 56 and carbon 58 layers (ie, immediately after the step of FIG. 6C for various embodiments); or
ii)在去除富碳层58的步骤之后(即,对于各个实施例,紧接在图8B的步骤之后)。ii) after the step of removing the carbon-rich layer 58 (ie, immediately after the step of FIG. 8B for various embodiments).
此外,本实用新型不限于3C-SiC JBS器件的制造,而是扩展到在诸如MOSFET(特别是垂直沟道MOSFET),IGBT,JFET,DMOS,合并PN肖特基(MPS)二极管等的普通电子器件中形成欧姆接触。由于3C-SiC和4H-SiC之间不同的电子迁移率,在3C-SiC层(而不是在其它SiC多型中,诸如4H-SiC)中形成垂直MOSFET的沟道在器件的输出电阻方面带来相当大的优点。Furthermore, the present invention is not limited to the fabrication of 3C-SiC JBS devices, but extends to forming ohmic contacts in common electronic devices such as MOSFET (especially vertical channel MOSFET), IGBT, JFET, DMOS, Merged PN Schottky (MPS) diodes, etc. Due to the different electron mobility between 3C-SiC and 4H-SiC, forming the channel of the vertical MOSFET in the 3C-SiC layer (rather than in other SiC polytypes, such as 4H-SiC) brings considerable advantages in terms of the output resistance of the device.
在一个实施例中,用于制造电子器件的方法可概括为包括以下步骤:在具有第一导电性(N)的4H-SiC固态主体的前侧形成至少一个具有与第一电导性(N)相对的第二导电性(P)的注入区域;在前侧上形成3C-SiC层;以及在3C-SiC层中形成欧姆接触区域,该欧姆接触区域延伸穿过3C-SiC层的整个厚度,直到到达注入区域。In one embodiment, a method for manufacturing an electronic device can be summarized as including the following steps: forming at least one implanted region having a second conductivity (P) opposite to the first conductivity (N) on a front side of a 4H-SiC solid body having a first conductivity (N); forming a 3C-SiC layer on the front side; and forming an ohmic contact region in the 3C-SiC layer, the ohmic contact region extending through the entire thickness of the 3C-SiC layer until reaching the implanted region.
形成3C-SiC层可以包括通过VLS技术或SE技术来执行生长3C-SiC的步骤。Forming the 3C-SiC layer may include performing a step of growing 3C-SiC by a VLS technique or a SE technique.
形成3C-SiC层可以包括通过激光束加热固态主体的前侧的至少一部分,至少加热到4H-SiC材料的熔化温度;以及允许冷却和结晶所述固态主体的熔融部分,从而形成叠层,所述叠层包括:与所述固态主体接触的所述3C-SiC层、所述3C-SiC层上的硅层和所述硅层上的富碳层。Forming the 3C-SiC layer may include heating at least a portion of the front side of the solid body by a laser beam, at least to the melting temperature of the 4H-SiC material; and allowing the molten portion of the solid body to cool and crystallize, thereby forming a stack comprising: the 3C-SiC layer in contact with the solid body, a silicon layer on the 3C-SiC layer, and a carbon-rich layer on the silicon layer.
该方法还可以包括完全去除富碳层和硅层、暴露3C-SiC层的步骤。The method may further include the step of completely removing the carbon-rich layer and the silicon layer to expose the 3C-SiC layer.
完全去除富碳层和硅层可以包括执行氧化硅层和富碳层的步骤,以及蚀刻氧化硅层以及氧化富碳层。Completely removing the carbon rich layer and the silicon layer may include performing the steps of oxidizing the silicon layer and the carbon rich layer, and etching the silicon oxide layer and oxidizing the carbon rich layer.
该方法还可以包括完全去除富碳层以暴露硅层的步骤。The method may further include the step of completely removing the carbon rich layer to expose the silicon layer.
完全去除富碳层可包括执行选择性蚀刻以去除保留硅层的富碳层。Completely removing the carbon rich layer may include performing a selective etch to remove the carbon rich layer leaving the silicon layer.
该方法还可以包括在硅层的整个厚度上形成欧姆接触区直至到达注入区的步骤。The method may further include the step of forming an ohmic contact region throughout the thickness of the silicon layer until reaching the implantation region.
该方法还可以包括在3C-SiC层和欧姆接触区上形成金属层的步骤,从而在金属层和3C-SiC之间形成肖特基二极管,同时在金属层与欧姆接触区之间形成结势垒JB二极管。The method may further include the step of forming a metal layer on the 3C-SiC layer and the ohmic contact region, thereby forming a Schottky diode between the metal layer and the 3C-SiC and simultaneously forming a junction barrier JB diode between the metal layer and the ohmic contact region.
该方法还可以包括以下步骤:在金属层处形成JB二极管和肖特基二极管共用的第一电端子;以及在与所述固态的前侧相对的后侧形成JB二极管和肖特基二极管共用的第二电端子。The method may further include the steps of forming a first electrical terminal common to the JB diode and the Schottky diode at the metal layer; and forming a second electrical terminal common to the JB diode and the Schottky diode at a rear side opposite to the front side of the solid state.
电子设备可以是以下之一:合并的PiN肖特基MPS器件;结势垒肖特基JBS器件;MOSFET;IGBT;JFET;DMOS。The electronic device may be one of: a merged PiN Schottky MPS device; a junction barrier Schottky JBS device; a MOSFET; an IGBT; a JFET; or a DMOS.
电子器件可概括为包括具有第一导电性(N)的4H-SiC的固态主体;至少一个注入区域,其具有与第一导电性(N)相对的第二导电性(P);前侧上的3C-SiC层;以及穿过3C-SiC层的整个厚度直到到达注入区域的欧姆接触区域。The electronic device can be summarized as including a solid body of 4H-SiC having a first conductivity (N); at least one implanted region having a second conductivity (P) opposite to the first conductivity (N); a 3C-SiC layer on the front side; and an ohmic contact region through the entire thickness of the 3C-SiC layer until reaching the implanted region.
该器件可以进一步包括在3C-SiC层上的硅层,欧姆接触区也延伸穿过硅层的整个厚度,直到到达注入区。The device may further include a silicon layer on the 3C-SiC layer, the ohmic contact region also extending through the entire thickness of the silicon layer until reaching the implantation region.
固态主体可以包括4H-SiC衬底;以及在所述衬底上的4H-SiC外延层,其中外延层是电子器件的漂移层。The solid body may include a 4H-SiC substrate; and a 4H-SiC epitaxial layer on the substrate, wherein the epitaxial layer is a drift layer of the electronic device.
第一导电性可以是N型,而第二导电性是P型。The first conductivity may be N-type and the second conductivity is P-type.
该器件可以进一步包括在3C-SiC层上和欧姆接触区域上的金属层,从而在金属层和3C-SiC层之间形成肖特基二极管,在金属层与欧姆接触区域之间形成结势垒JB二极管。The device may further include a metal layer on the 3C-SiC layer and on the ohmic contact region, so that a Schottky diode is formed between the metal layer and the 3C-SiC layer, and a junction barrier JB diode is formed between the metal layer and the ohmic contact region.
该器件还可以包括在金属层处与JB二极管和肖特基二极管共用的第一电端子;以及在与固态的前侧相对的后侧处的JB二极管和肖特基二极管共用的第二电端子。The device may also include a first electrical terminal common to the JB diode and the Schottky diode at the metal layer; and a second electrical terminal common to the JB diode and the Schottky diode at a back side opposite to the front side of the solid state.
电子设备可以是以下之一:合并的PiN肖特基MPS设备;结势垒肖特基JBS器件;MOSFET;IGBT;JFET;DMOS。The electronic device may be one of: a merged PiN Schottky MPS device; a junction barrier Schottky JBS device; a MOSFET; an IGBT; a JFET; or a DMOS.
本公开的一方面提供了一种用于制造电子器件的方法,方法包括:在具有第一导电性的4H-SiC的固态主体的前侧处形成具有与第一导电性相对的第二导电性的至少一个注入区域;利用激光束加热固态主体的前侧的至少一部分,至少达到4H-SiC材料的熔融温度;允许固态主体的所熔融的部分的冷却和结晶,从而形成叠加层的堆叠,叠加层的堆叠包括与固态主体接触的3C-SiC层、在3C-SiC层上的硅层、以及在硅层上的富碳层;将欧姆接触区域形成为穿过堆叠,直到到达注入区域为止;以及在富碳层上方、并且与富碳层直接接触地形成导电材料的第一电端子。One aspect of the present disclosure provides a method for manufacturing an electronic device, the method comprising: forming at least one implantation region having a second conductivity opposite to the first conductivity at a front side of a solid body of 4H-SiC having a first conductivity; heating at least a portion of the front side of the solid body using a laser beam to at least reach the melting temperature of the 4H-SiC material; allowing the melted portion of the solid body to cool and crystallize, thereby forming a stack of superimposed layers, the stack of superimposed layers comprising a 3C-SiC layer in contact with the solid body, a silicon layer on the 3C-SiC layer, and a carbon-rich layer on the silicon layer; forming an ohmic contact region to pass through the stack until reaching the implantation region; and forming a first electrical terminal of a conductive material above the carbon-rich layer and in direct contact with the carbon-rich layer.
根据一个或多个实施例,其中形成第一电端子的步骤包括在富碳层和欧姆接触区域上方、并且与富碳层和欧姆接触区域直接接触地沉积金属材料。According to one or more embodiments, wherein the step of forming the first electrical terminal includes depositing a metal material over and in direct contact with the carbon rich layer and the ohmic contact region.
根据一个或多个实施例,其中形成第一电端子包括同时形成在第一电端子与富碳层之间的肖特基二极管以及在第一电端子与欧姆接触区域之间的结势垒二极管。According to one or more embodiments, forming the first electrical terminal includes simultaneously forming a Schottky diode between the first electrical terminal and the carbon rich layer and a junction barrier diode between the first electrical terminal and the ohmic contact region.
根据一个或多个实施例,其中第一电端子为结势垒二极管和肖特基二极管所共用,方法还包括在与固态主体的前侧相对的后侧处形成结势垒二极管和肖特基二极管共用的第二电端子。According to one or more embodiments, wherein the first electrical terminal is common to the junction barrier diode and the Schottky diode, the method further includes forming a second electrical terminal common to the junction barrier diode and the Schottky diode at a rear side opposite to the front side of the solid body.
根据一个或多个实施例,方法还包括以下步骤:去除富碳层的横向延伸到注入区域的选择性部分,从而暴露下伏的硅层的相应部分;对硅层的暴露部分执行氧化,从而形成氧化部分;以及在硅层的氧化部分上方、并且与氧化部分接触地形成金属化。According to one or more embodiments, the method further includes the steps of removing a selective portion of the carbon-rich layer that extends laterally to the implantation region, thereby exposing a corresponding portion of the underlying silicon layer; performing oxidation on the exposed portion of the silicon layer, thereby forming an oxidized portion; and forming metallization over and in contact with the oxidized portion of the silicon layer.
根据一个或多个实施例,其中硅层的氧化部分和金属化形成电子器件的栅极端子。According to one or more embodiments, wherein the oxidized portion of the silicon layer and the metallization form a gate terminal of an electronic device.
根据一个或多个实施例,方法还包括:在固态主体的前侧处形成具有第二导电性的附加注入区域,附加注入区域在距注入区域一定距离处延伸,其中富碳层的所去除的选择性部分在注入区域与附加注入区域之间延伸,以及其中在注入区域与附加注入区域之间的一者容纳电子器件的导电源极区域,并且注入区域与附加注入区域之间的另一者容纳电子器件的导电漏极区域;以及在执行氧化步骤之前,去除硅层的除了在注入区域与附加注入区域之间延伸的硅层的部分。According to one or more embodiments, the method also includes: forming an additional implantation region having a second conductivity at the front side of the solid body, the additional implantation region extending at a distance from the implantation region, wherein the removed selective portion of the carbon-rich layer extends between the implantation region and the additional implantation region, and wherein one between the implantation region and the additional implantation region accommodates a conductive source region of the electronic device, and the other between the implantation region and the additional implantation region accommodates a conductive drain region of the electronic device; and before performing the oxidation step, removing a portion of the silicon layer except for the portion of the silicon layer extending between the implantation region and the additional implantation region.
本公开的另一方面提供了一种用于制造电子器件的方法,方法包括:在具有第一导电性的4H-SiC的固态主体的前侧处形成具有与第一导电性相对的第二导电性的至少一个注入区域;在前侧上形成3C-SiC层;在3C-SiC层中形成欧姆接触区域,欧姆接触区域延伸穿过3C-SiC层的整个厚度,直到到达注入区域,其中形成3C-SiC层包括:通过激光束加热固态主体的前侧的至少一部分,至少达到4H-SiC材料的熔融温度;以及使固态主体的所熔融的部分冷却和结晶,从而形成叠加层的堆叠,叠加层的堆叠包括:与固态主体接触的3C-SiC层,在3C-SiC层上的硅层,以及在硅层上的富碳层,去除富碳层,包括以下之一:执行氧化富碳层的步骤,以及蚀刻所氧化的富碳层的后续步骤,或执行蚀刻以选择性地去除富碳层。Another aspect of the present disclosure provides a method for manufacturing an electronic device, the method comprising: forming at least one implantation region having a second conductivity opposite to the first conductivity at a front side of a solid body of 4H-SiC having a first conductivity; forming a 3C-SiC layer on the front side; forming an ohmic contact region in the 3C-SiC layer, the ohmic contact region extending through the entire thickness of the 3C-SiC layer until reaching the implantation region, wherein forming the 3C-SiC layer comprises: heating at least a portion of the front side of the solid body by a laser beam to at least reach the melting temperature of the 4H-SiC material; and cooling and crystallizing the melted portion of the solid body to form a stack of superimposed layers, the stack of superimposed layers comprising: a 3C-SiC layer in contact with the solid body, a silicon layer on the 3C-SiC layer, and a carbon-rich layer on the silicon layer, removing the carbon-rich layer comprising one of the following: performing a step of oxidizing the carbon-rich layer, and a subsequent step of etching the oxidized carbon-rich layer, or performing etching to selectively remove the carbon-rich layer.
根据一个或多个实施例,方法还包括完全去除硅层,从而暴露3C-SiC层。According to one or more embodiments, the method further includes completely removing the silicon layer, thereby exposing the 3C-SiC layer.
根据一个或多个实施例,其中富碳层是石墨的,包括石墨,包括一个或多个石墨层,包括石墨烯,或包括石墨和石墨烯。According to one or more embodiments, wherein the carbon-rich layer is graphitic, includes graphite, includes one or more graphite layers, includes graphene, or includes graphite and graphene.
根据一个或多个实施例,方法包括具有富碳层的肖特基二极管和具有欧姆接触区域的结势垒二极管。In accordance with one or more embodiments, a method includes a Schottky diode having a carbon rich layer and a junction barrier diode having an ohmic contact region.
根据一个或多个实施例,其中第一电端子为结势垒二极管和肖特基二极管所共用,电子器件还包括在与固态主体的前侧相对的后侧处的为结势垒二极管和肖特基二极管所共用的第二电端子。According to one or more embodiments, wherein the first electrical terminal is common to the junction barrier diode and the Schottky diode, the electronic device further includes a second electrical terminal common to the junction barrier diode and the Schottky diode at a rear side opposite to the front side of the solid state body.
根据一个或多个实施例,其中电子器件是以下之一:合并PiN肖特基MPS器件;结势垒肖特基JBS器件;MOSFET;IGBT;JFET;或DMOS。According to one or more embodiments, the electronic device is one of: a Merged PiN Schottky MPS device; a Junction Barrier Schottky JBS device; a MOSFET; an IGBT; a JFET; or a DMOS.
根据本实用新型,提供了一种如所附权利要求中限定的用于制造电子器件的方法和电子器件。According to the present invention, there is provided a method for manufacturing an electronic device and an electronic device as defined in the accompanying claims.
在一个实施例中,用于制造电子器件的方法包括在具有第一电导性的4H-SiC固态主体的前侧形成具有与第一电导性相对的第二电导性的至少一个注入区域。该方法包括在前侧上形成3C-SiC层,以及在3C-SiC层中形成延伸穿过3C-SiC层的整个厚度直到到达注入区域的欧姆接触区域。In one embodiment, a method for manufacturing an electronic device includes forming at least one implanted region having a second conductivity opposite to the first conductivity on a front side of a 4H-SiC solid body having a first conductivity. The method includes forming a 3C-SiC layer on the front side, and forming an ohmic contact region in the 3C-SiC layer extending through the entire thickness of the 3C-SiC layer until reaching the implanted region.
在一个实施例中,电子器件包括具有第一电导性的4H-SiC固态主体。该电子器件包括至少一个注入区域,该注入区域具有在固态主体的前侧延伸的与第一电导性相对的第二电导性。该电子器件包括在前侧上的3C-SiC层和穿过3C-SiC层的整个厚度直到到达注入区域的欧姆接触区域。In one embodiment, an electronic device includes a 4H-SiC solid body having a first conductivity. The electronic device includes at least one implanted region having a second conductivity opposite to the first conductivity extending on a front side of the solid body. The electronic device includes a 3C-SiC layer on the front side and an ohmic contact region through the entire thickness of the 3C-SiC layer until reaching the implanted region.
根据以上详细描述,可以对实施例进行这些和其他改变。一般而言,在以下权利要求中,所使用的术语不应被解释为将权利要求限制于说明书和权利要求中公开的特定实施例,而是应被解释成包括所有可能的实施例以及这些权利要求所享有的等同物的全部范围。因此,权利要求不受本公开的限制。These and other changes can be made to the embodiments in light of the above detailed description. In general, in the following claims, the terms used should not be interpreted as limiting the claims to the specific embodiments disclosed in the specification and claims, but should be interpreted to include all possible embodiments and the full range of equivalents to which these claims are entitled. Therefore, the claims are not limited by the present disclosure.
Claims (10)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102022000005363 | 2022-03-18 | ||
US18/180,680 | 2023-03-08 | ||
US18/183,866 US20230299148A1 (en) | 2022-03-18 | 2023-03-14 | Forming an electronic device, such as a jbs or mps diode, based on 3c-sic, and 3c-sic electronic device |
US18/183,866 | 2023-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN221708719U true CN221708719U (en) | 2024-09-13 |
Family
ID=87990389
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202320529154.4U Active CN221708719U (en) | 2022-03-18 | 2023-03-17 | Electronic Devices |
CN202310262903.6A Pending CN116779659A (en) | 2022-03-18 | 2023-03-17 | Forming 3C-SiC based electronic devices and 3C-SiC electronic devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310262903.6A Pending CN116779659A (en) | 2022-03-18 | 2023-03-17 | Forming 3C-SiC based electronic devices and 3C-SiC electronic devices |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN221708719U (en) |
-
2023
- 2023-03-17 CN CN202320529154.4U patent/CN221708719U/en active Active
- 2023-03-17 CN CN202310262903.6A patent/CN116779659A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN116779659A (en) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101055894B (en) | Semiconductor device and manufacturing method thereof | |
CN104285301B (en) | Semiconductor device and its manufacture method | |
EP3896720A1 (en) | Ohmic contact formation in a sic-based electronic device, and electronic device | |
US12051725B2 (en) | Doping activation and ohmic contact formation in a SiC electronic device, and SiC electronic device | |
JP6222771B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP2000106371A (en) | Method for manufacturing silicon carbide semiconductor device | |
JP2001068428A (en) | Method for manufacturing silicon carbide semiconductor device | |
CN102576723A (en) | Semiconductor device and process for production thereof | |
US10453954B2 (en) | Semiconductor device having trenches in termination structure region thereof and method for manufacturing the same | |
JP5802492B2 (en) | Semiconductor device and manufacturing method thereof | |
JP6862782B2 (en) | Semiconductor devices and methods for manufacturing semiconductor devices | |
JP7310184B2 (en) | Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device | |
CN221708719U (en) | Electronic Devices | |
WO2015111177A1 (en) | Semiconductor device, power module, power conversion device, and railway vehicle | |
JP3635956B2 (en) | Method for manufacturing silicon carbide Schottky barrier diode | |
JP2010129628A (en) | Method of manufacturing silicon carbide semiconductor device | |
EP4246554A1 (en) | Forming an electronic device, such as a jbs or mps diode, based on 3c-sic, and 3c-sic electronic device | |
US20230299148A1 (en) | Forming an electronic device, such as a jbs or mps diode, based on 3c-sic, and 3c-sic electronic device | |
JP2021010027A (en) | Semiconductor devices and methods for manufacturing semiconductor devices | |
JP2000082810A (en) | Method for manufacturing silicon carbide trench type MOS semiconductor device and silicon carbide trench type MOS semiconductor device | |
US9728599B1 (en) | Semiconductor device | |
JP2008103392A (en) | Semiconductor device and manufacturing method of the semiconductor device | |
CN117995841B (en) | A LVFF silicon carbide field effect tube and its preparation process | |
JP2004247490A (en) | Silicon carbide semiconductor device | |
WO2024241706A1 (en) | Semiconductor device and manufacturing method for same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |