CN221688322U - Photovoltaic energy storage system - Google Patents
Photovoltaic energy storage system Download PDFInfo
- Publication number
- CN221688322U CN221688322U CN202323571308.5U CN202323571308U CN221688322U CN 221688322 U CN221688322 U CN 221688322U CN 202323571308 U CN202323571308 U CN 202323571308U CN 221688322 U CN221688322 U CN 221688322U
- Authority
- CN
- China
- Prior art keywords
- relay
- energy storage
- relay group
- inverter
- storage system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 59
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims description 24
- 230000002457 bidirectional effect Effects 0.000 claims description 9
- 238000007600 charging Methods 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 8
- 230000007935 neutral effect Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000003578 releasing effect Effects 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域Technical Field
本实用新型涉及电子与电工领域,特别涉及一种光伏储能系统。The utility model relates to the field of electronics and electrical engineering, and in particular to a photovoltaic energy storage system.
背景技术Background Art
光伏储能系统是将太阳能转化为电能,供给家用电器使用的同时,将多余的电能存储起来,供夜间或无市电情况下使用的设备和技术的组合。光伏储能系统的主要工作模式包括并网运行模式和离网运行模式。并网运行模式包括实现逆变器的能量流向输出负载,电网的能量流向输出负载。离网储能逆变器主要应用于离网储能逆变系统断开电网时的离网运行模式,可以控制离网逆变器能量流向输出负载以实现输出负载的不间断供电。在并网或离网运行模式下需要在储能逆变系统的网侧放置继电器网络,保证逆变器的正常工作。Photovoltaic energy storage system is a combination of equipment and technology that converts solar energy into electrical energy and supplies it to household appliances, while storing excess electrical energy for use at night or when there is no mains electricity. The main operating modes of photovoltaic energy storage systems include grid-connected operation mode and off-grid operation mode. The grid-connected operation mode includes realizing the energy flow of the inverter to the output load and the energy flow of the power grid to the output load. The off-grid energy storage inverter is mainly used in the off-grid operation mode when the off-grid energy storage inverter system is disconnected from the grid. It can control the energy flow of the off-grid inverter to the output load to achieve uninterrupted power supply to the output load. In the grid-connected or off-grid operation mode, a relay network needs to be placed on the grid side of the energy storage inverter system to ensure the normal operation of the inverter.
国外的TUV标准和我国的CGC标准都要求逆变器与电网之间所连接的继电器网络具有硬件故障自检功能,即在逆变器上电投入正常运行前,须对继电器电路中相应继电器能否正常工作进行检测,主要涉及继电器得电和失电后其触点是否能够做出相应的闭合或释放动作,即对继电器触点是否存在开路和短路故障进行检测。Both foreign TUV standards and my country's CGC standards require that the relay network connected between the inverter and the grid has a hardware fault self-detection function, that is, before the inverter is powered on and put into normal operation, it is necessary to detect whether the corresponding relay in the relay circuit can work normally. This mainly involves whether the contacts of the relay can make corresponding closing or releasing actions after the relay is energized or de-energized, that is, to detect whether there are open circuit and short circuit faults in the relay contacts.
现行的逆变器已具备成熟的继电器自检方案,但对于在我国刚兴起的光伏储能逆变器,特别是对储能系统中相对复杂的继电器拓扑网络的自检方法还不够重视。现在的技术主要侧重于不间断的输电,将继电器设计成可为输出负载提供不间断供电即可。很少考虑认证标准中所要求的高可靠性,即从继电器自身故障检测这一角度出发来设计网侧继电器拓扑,并给出相应自检控制方法。The current inverters have mature relay self-test solutions, but for the newly emerging photovoltaic energy storage inverters in my country, especially for the relatively complex relay topology network in the energy storage system, not enough attention has been paid to the self-test method. The current technology mainly focuses on uninterrupted power transmission, and the relay is designed to provide uninterrupted power supply to the output load. The high reliability required by the certification standards is rarely considered, that is, the grid-side relay topology is designed from the perspective of relay self-fault detection, and the corresponding self-test control method is given.
实用新型内容Utility Model Content
本实用新型是鉴于上述现有技术的状况而提出的,其目的在于提供一种能够方便对继电器自身故障进行检测的光伏储能系统。The utility model is proposed in view of the above-mentioned prior art conditions, and its purpose is to provide a photovoltaic energy storage system that can conveniently detect relay faults itself.
为此,本实用新型第一方面提供了一种光伏储能系统,所述光伏储能系统包括电网、输出负载、逆变器和发电机,所述电网、所述输出负载、所述逆变器、所述发电机之间分别通过一组传输线路相互连通,所述电网的一侧设置有第一继电器组,所述输出负载的一侧设置有第二继电器组,所述发电机的一侧设置有第三继电器组。To this end, the first aspect of the utility model provides a photovoltaic energy storage system, which includes a power grid, an output load, an inverter and a generator. The power grid, the output load, the inverter and the generator are interconnected through a group of transmission lines, a first relay group is provided on one side of the power grid, a second relay group is provided on one side of the output load, and a third relay group is provided on one side of the generator.
另外,在本实用新型所涉及的光伏储能系统中,可选地,在所述电网输入电网电压的情况下,根据所述第一继电器组、所述第二继电器组和所述第三继电器组中继电器的断开或闭合的状态、所述逆变器的输出波形状态、以及所述电网电压、所述输出负载的负载电压、所述逆变器的逆变器电压和所述发电机的发电机电压,判断所述第一继电器组、所述第二继电器组和所述第三继电器组中继电器的故障情况。In addition, in the photovoltaic energy storage system involved in the utility model, optionally, when the power grid inputs a grid voltage, the fault conditions of the relays in the first relay group, the second relay group and the third relay group are judged according to the open or closed state of the relays in the first relay group, the second relay group and the third relay group, the output waveform state of the inverter, and the grid voltage, the load voltage of the output load, the inverter voltage of the inverter and the generator voltage of the generator.
在这种情况下,电网的一侧的第一继电器组、输出负载的一侧的第二继电器组、发电机的一侧的第三继电器组能够形成继电器拓扑,本实用新型通过在电网输入电网电压的情况下,根据第一继电器组、第二继电器组和第三继电器组中继电器的断开或闭合的状态、逆变器的输出波形状态、以及电网电压、输出负载的负载电压、逆变器的逆变器电压和发电机的发电机电压,能够判断出第一继电器组、第二继电器组和第三继电器组中继电器的故障情况,进而实现继电器拓扑的故障自检。In this case, the first relay group on one side of the power grid, the second relay group on one side of the output load, and the third relay group on one side of the generator can form a relay topology. The utility model can determine the fault conditions of the relays in the first relay group, the second relay group, and the third relay group according to the open or closed state of the relays in the first relay group, the second relay group, and the third relay group, the output waveform state of the inverter, and the power grid voltage, the load voltage of the output load, the inverter voltage of the inverter, and the generator voltage of the generator when the power grid inputs the power grid voltage, thereby realizing fault self-detection of the relay topology.
另外,在本实用新型所涉及的光伏储能系统中,可选地,所述传输线路包括火线和零线,所述第一继电器组包括设置在所述火线上的第一继电器、以及设置在所述零线上的第三继电器,所述第二继电器组包括设置在所述火线上的第二继电器,所述第三继电器组包括设置在所述火线上的第四继电器组。在这种情况下,继电器拓扑由电网的一侧的第一继电器和第三继电器、输出负载一侧的第二继电器、发电机一侧的第四继电器所形成,通过本实用新型的继电器故障检测方法,能够方便检测出第一继电器、第二继电器、第三继电器和第四继电器的故障情况。In addition, in the photovoltaic energy storage system involved in the utility model, optionally, the transmission line includes a live line and a neutral line, the first relay group includes a first relay arranged on the live line, and a third relay arranged on the neutral line, the second relay group includes a second relay arranged on the live line, and the third relay group includes a fourth relay group arranged on the live line. In this case, the relay topology is formed by the first relay and the third relay on one side of the power grid, the second relay on the output load side, and the fourth relay on the generator side. Through the relay fault detection method of the utility model, it is possible to easily detect the fault conditions of the first relay, the second relay, the third relay, and the fourth relay.
另外,在本实用新型所涉及的光伏储能系统中,可选地,所述光伏储能系统还包括控制系统,所述控制系统配置为执行上述任一项的继电器故障检测方法。在这种情况下,能够方便通过控制系统执行继电器故障检测方法,进而对第一继电器组、第二继电器组、第三继电器组中的继电器进行故障检测。In addition, in the photovoltaic energy storage system involved in the utility model, optionally, the photovoltaic energy storage system also includes a control system, and the control system is configured to execute any of the above relay fault detection methods. In this case, it is convenient to execute the relay fault detection method through the control system, and then perform fault detection on the relays in the first relay group, the second relay group, and the third relay group.
另外,在本实用新型所涉及的光伏储能系统中,可选地,还包括光伏组件、最大功率跟踪控制器、储能设备和双向充放电路,所述光伏组件通过所述最大功率跟踪控制器连接所述逆变器,所述储能设备通过所述双向充放电路连接所述逆变器。In addition, in the photovoltaic energy storage system involved in the present invention, optionally, it also includes a photovoltaic component, a maximum power tracking controller, an energy storage device and a bidirectional charging and discharging circuit, the photovoltaic component is connected to the inverter through the maximum power tracking controller, and the energy storage device is connected to the inverter through the bidirectional charging and discharging circuit.
通过本实用新型,能够提供一种能够方便对继电器自身故障进行检测的光伏储能系统。The utility model provides a photovoltaic energy storage system which can conveniently detect faults of relays themselves.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
现在将仅通过参考附图的例子进一步详细地解释本实用新型,其中:The present invention will now be explained in further detail by way of example only with reference to the accompanying drawings, in which:
图1是示出了本实施方式示例所涉及的光伏储能系统一种实施例的结构示意图。FIG1 is a schematic structural diagram showing an embodiment of a photovoltaic energy storage system involved in this implementation example.
图2是示出了本实施方式示例所涉及的光伏储能系统另一种实施例的结构示意图。FIG. 2 is a schematic structural diagram showing another embodiment of a photovoltaic energy storage system according to the present embodiment.
附图标记说明Description of Reference Numerals
1…电网,2…输出负载,3…逆变器,4…发电机,5…控制系统,6…光伏组件,7…MPPT控制器,8…储能设备,9…双向充放电路,K1…第一继电器,K2…第二继电器,K3…第三继电器,K4…第四继电器。1…grid, 2…output load, 3…inverter, 4…generator, 5…control system, 6…photovoltaic panel, 7…MPPT controller, 8…energy storage device, 9…bidirectional charging and discharging circuit, K1…first relay, K2…second relay, K3…third relay, K4…fourth relay.
具体实施方式DETAILED DESCRIPTION
以下,参考附图,详细地说明本实用新型的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。Hereinafter, with reference to the accompanying drawings, the preferred embodiments of the present invention will be described in detail. In the following description, the same symbols are assigned to the same components, and repeated descriptions are omitted. In addition, the accompanying drawings are only schematic diagrams, and the ratio of the dimensions of the components or the shapes of the components may be different from the actual ones.
需要说明的是,本实用新型中的术语“包括”和“具有”以及它们的任何变形,例如所包括或所具有的一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括或具有没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "including" and "having" and any variations thereof in the present invention, such as a process, method, system, product or device that includes or has a series of steps or units, are not necessarily limited to those steps or units clearly listed, but may include or have other steps or units that are not clearly listed or inherent to these processes, methods, products or devices.
本实用新型的实施方式涉及一种光伏储能系统及光伏储能系统的继电器故障检测方法。具体地,本实用新型用于对光伏储能系统中的继电器拓扑中的继电器进行故障检测。The embodiments of the utility model relate to a photovoltaic energy storage system and a relay fault detection method of the photovoltaic energy storage system. Specifically, the utility model is used to detect faults of relays in a relay topology in a photovoltaic energy storage system.
图1是示出了本实施方式示例所涉及的光伏储能系统一种实施例的结构示意图。FIG1 is a schematic structural diagram showing an embodiment of a photovoltaic energy storage system involved in this implementation example.
参照图1,本实用新型第一方面提供了一种光伏储能系统的继电器故障检测方法。该光伏储能系统包括电网1、输出负载2、逆变器3和发电机4。1 , the first aspect of the present invention provides a relay fault detection method for a photovoltaic energy storage system. The photovoltaic energy storage system includes a power grid 1 , an output load 2 , an inverter 3 and a generator 4 .
在一些示例中,电网1、输出负载2、逆变器3、发电机4之间可以分别通过一组传输线路相互连通。In some examples, the power grid 1 , the output load 2 , the inverter 3 , and the generator 4 may be interconnected via a set of transmission lines.
在一些示例中,电网1的一侧可以设置有第一继电器组。In some examples, a first relay group may be provided at one side of the power grid 1 .
在一些示例中,输出负载2的一侧可以设置有第二继电器组。In some examples, a second relay group may be provided on one side of the output load 2 .
在一些示例中,发电机4的一侧可以设置有第三继电器组。In some examples, a third relay group may be provided on one side of the generator 4 .
在一些示例中,输出负载2可以为家用电器等。In some examples, the output load 2 may be a household appliance or the like.
在本实用新型中,针对上述第一继电器组、第二继电器组和第三继电器组的故障检测方法可以如下:在电网1输入电网电压Vi的情况下,根据第一继电器组、第二继电器组和第三继电器组中继电器的断开或闭合的状态、逆变器3的输出波形状态、以及电网电压Vi、输出负载2的负载电压Vo、逆变器3的逆变器电压Vinv(也即,逆变器交流输出端的电压)和发电机4的发电机电压Vg,进而可以判断第一继电器组、第二继电器组和第三继电器组中继电器的故障情况。In the utility model, the fault detection method for the above-mentioned first relay group, second relay group and third relay group can be as follows: when the grid voltage Vi is input to the grid 1, the fault conditions of the relays in the first relay group, the second relay group and the third relay group can be judged according to the open or closed state of the relays in the first relay group, the second relay group and the third relay group, the output waveform state of the inverter 3, and the grid voltage Vi, the load voltage Vo of the output load 2, the inverter voltage Vinv of the inverter 3 (that is, the voltage at the AC output end of the inverter) and the generator voltage Vg of the generator 4.
在这种情况下,电网1的一侧的第一继电器组、输出负载2的一侧的第二继电器组、发电机4的一侧的第三继电器组能够形成继电器拓扑,本实用新型通过在电网1输入电网电压Vi的情况下,根据第一继电器组、第二继电器组和第三继电器组中继电器的断开或闭合的状态、逆变器3的输出波形状态、以及电网电压Vi、输出负载2的负载电压Vo、逆变器3的逆变器电压Vi和发电机4的发电机电压Vg,能够判断出第一继电器组、第二继电器组和第三继电器组中继电器的故障情况,进而实现继电器拓扑的故障自检。In this case, the first relay group on one side of the power grid 1, the second relay group on one side of the output load 2, and the third relay group on one side of the generator 4 can form a relay topology. The utility model can determine the fault conditions of the relays in the first relay group, the second relay group and the third relay group according to the open or closed state of the relays in the first relay group, the second relay group and the third relay group, the output waveform state of the inverter 3, the power grid voltage Vi, the load voltage Vo of the output load 2, the inverter voltage Vi of the inverter 3 and the generator voltage Vg of the generator 4 when the power grid 1 is input with the power grid voltage Vi, thereby realizing fault self-detection of the relay topology.
在一些示例中,每组传输线路可以包括火线L和零线N。第一继电器组可以包括设置在火线L上的第一继电器K1、以及设置在零线N上的第三继电器K3。第二继电器组可以包括设置在火线L上的第二继电器K2。第三继电器组可以包括设置在火线L上的第四继电器K4。第一继电器K1可以用于控制电网1的一侧火线L的通断,三继电器K3可以用于控制电网1的一侧零线N的通断。第二继电器K2可以用于控制输出负载2的一侧火线L的通断。第四继电器K4可以用于控制发电机4的一侧火线L的通断。In some examples, each group of transmission lines may include a live line L and a neutral line N. The first relay group may include a first relay K1 disposed on the live line L, and a third relay K3 disposed on the neutral line N. The second relay group may include a second relay K2 disposed on the live line L. The third relay group may include a fourth relay K4 disposed on the live line L. The first relay K1 may be used to control the on-off of the live line L on one side of the power grid 1, and the third relay K3 may be used to control the on-off of the neutral line N on one side of the power grid 1. The second relay K2 may be used to control the on-off of the live line L on one side of the output load 2. The fourth relay K4 may be used to control the on-off of the live line L on one side of the generator 4.
在这种情况下,继电器拓扑能够由电网1的一侧的第一继电器K1和第三继电器K2、输出负载2的一侧的第二继电器K2、发电机4的一侧的第四继电器K4所形成,通过本实用新型的继电器故障检测方法,能够方便检测出第一继电器K1、第二继电器K2、第三继电器K3和第四继电器K4的故障情况。In this case, the relay topology can be formed by the first relay K1 and the third relay K2 on one side of the power grid 1, the second relay K2 on one side of the output load 2, and the fourth relay K4 on one side of the generator 4. Through the relay fault detection method of the utility model, the fault conditions of the first relay K1, the second relay K2, the third relay K3 and the fourth relay K4 can be easily detected.
以下,详细介绍第一继电器K1、第二继电器K2、第三继电器K3和第四继电器K4的故障检测方法。The following is a detailed description of the fault detection method of the first relay K1 , the second relay K2 , the third relay K3 , and the fourth relay K4 .
在一些示例中,第一继电器K1、第二继电器K2、第三继电器K3和第四继电器K4的故障可以包括短路故障和开路故障。In some examples, the failures of the first relay K1 , the second relay K2 , the third relay K3 , and the fourth relay K4 may include a short circuit failure and an open circuit failure.
在一些示例中,第一继电器K1、第二继电器K2、第三继电器K3和第四继电器K4的故障检测先后顺序没有特别限制。In some examples, the fault detection sequence of the first relay K1 , the second relay K2 , the third relay K3 , and the fourth relay K4 is not particularly limited.
在一些示例中,可以根据预设顺序依次对继电器拓扑中的继电器进行故障检测。In some examples, fault detection may be performed on relays in a relay topology in sequence according to a preset order.
在一些示例中,在电网1输入电网电压Vi的情况下,控制第一继电器K1、第二继电器K2和第四继电器K4断开,控制第三继电器K3闭合,逆变器3不输出波形,若逆变器电压Vinv等于电网电压Vi,则可以判断出第一继电器K1发生短路故障;若逆变器电压Vinv不等于电网电压Vi,则可以判断出第一继电器K1无短路故障。由此,能够方便检测出第一继电器K1是否发生短路故障。In some examples, when the grid 1 inputs the grid voltage Vi, the first relay K1, the second relay K2 and the fourth relay K4 are controlled to be disconnected, the third relay K3 is controlled to be closed, and the inverter 3 does not output a waveform. If the inverter voltage Vinv is equal to the grid voltage Vi, it can be determined that the first relay K1 has a short-circuit fault; if the inverter voltage Vinv is not equal to the grid voltage Vi, it can be determined that the first relay K1 has no short-circuit fault. In this way, it is convenient to detect whether the first relay K1 has a short-circuit fault.
在一些示例中,在电网输入电网电压Vi的情况下,控制第二继电器K2、第三继电器K3和第四继电器K4断开,控制第一继电器K1闭合,逆变器不输出波形,若逆变器电压Vinv等于电网电压Vi,则判断出第三继电器K3发生短路故障;若逆变器电压Vinv不等于电网电压Vi,则判断出第三继电器K3无短路故障。由此,能够方便检测出第三继电器K3是否发生短路故障。In some examples, when the grid voltage Vi is input to the grid, the second relay K2, the third relay K3 and the fourth relay K4 are controlled to be disconnected, the first relay K1 is controlled to be closed, and the inverter does not output a waveform. If the inverter voltage Vinv is equal to the grid voltage Vi, it is determined that the third relay K3 has a short-circuit fault; if the inverter voltage Vinv is not equal to the grid voltage Vi, it is determined that the third relay K3 has no short-circuit fault. In this way, it is convenient to detect whether the third relay K3 has a short-circuit fault.
在一些示例中,在电网输入电网电压Vi的情况下,控制第一继电器K1、第二继电器K2和第三继电器K3闭合,控制第四继电器K4断开,逆变器不输出波形,若发电机电压Vg不等于电网电压Vi,则判断出第四继电器K4发生短路故障;若逆变器电压Vinv不等于电网电压Vi,则判断出第四继电器K4无短路故障。由此,能够方便检测出第四继电器K4是否发生短路故障。In some examples, when the grid voltage Vi is input to the grid, the first relay K1, the second relay K2 and the third relay K3 are controlled to be closed, the fourth relay K4 is controlled to be disconnected, and the inverter does not output a waveform. If the generator voltage Vg is not equal to the grid voltage Vi, it is determined that the fourth relay K4 has a short circuit fault; if the inverter voltage Vinv is not equal to the grid voltage Vi, it is determined that the fourth relay K4 has no short circuit fault. In this way, it is convenient to detect whether the fourth relay K4 has a short circuit fault.
在一些示例中,在电网输入电网电压Vi的情况下,控制第一继电器K1、第三继电器K3和第四继电器K4闭合,控制第二继电器K2断开,逆变器不输出波形,若负载电压Vo等于电网电压Vi,则判断出第二继电器K2发生短路故障;若负载电压Vo不等于电网电压Vi,则判断出第二继电器K2无短路故障。由此,能够方便检测出第二继电器K2是否发生短路故障。In some examples, when the grid voltage Vi is input to the grid, the first relay K1, the third relay K3 and the fourth relay K4 are controlled to be closed, the second relay K2 is controlled to be disconnected, and the inverter does not output a waveform. If the load voltage Vo is equal to the grid voltage Vi, it is determined that the second relay K2 has a short circuit fault; if the load voltage Vo is not equal to the grid voltage Vi, it is determined that the second relay K2 has no short circuit fault. In this way, it is convenient to detect whether the second relay K2 has a short circuit fault.
在一些示例中,在电网输入电网电压Vi的情况下,控制第二继电器K2和第四继电器K4断开,控制第一继电器K1和第三继电器K3闭合,逆变器不输出波形,若逆变器电压Vinv不等于电网电压Vi,则判断出第一继电器K1和第三继电器K3发生开路故障;若逆变器电压Vinv不等于电网电压Vi,则判断出第一继电器K1和第三继电器K3无开路故障。由此,能够方便检测出第一继电器K1和第三继电器K3是否发生开路故障。In some examples, when the grid voltage Vi is input to the grid, the second relay K2 and the fourth relay K4 are controlled to be disconnected, the first relay K1 and the third relay K3 are controlled to be closed, and the inverter does not output a waveform. If the inverter voltage Vinv is not equal to the grid voltage Vi, it is determined that the first relay K1 and the third relay K3 have an open circuit fault; if the inverter voltage Vinv is not equal to the grid voltage Vi, it is determined that the first relay K1 and the third relay K3 do not have an open circuit fault. In this way, it is convenient to detect whether the first relay K1 and the third relay K3 have an open circuit fault.
在一些示例中,在电网输入电网电压Vi的情况下,控制第一继电器K1、第二继电器K2、第三继电器K3和第四继电器K4闭合,逆变器不输出波形,若负载电压Vo不等于电网电压Vi,则判断出第二继电器K2发生开路故障;若发电机电压Vg不等于电网电压Vi,则判断出第四继电器K4发生开路故障。由此,能够方便检测出第四继电器K4是否发生开路故障。In some examples, when the grid voltage Vi is input to the grid, the first relay K1, the second relay K2, the third relay K3 and the fourth relay K4 are controlled to be closed, and the inverter does not output a waveform. If the load voltage Vo is not equal to the grid voltage Vi, it is determined that the second relay K2 has an open circuit fault; if the generator voltage Vg is not equal to the grid voltage Vi, it is determined that the fourth relay K4 has an open circuit fault. In this way, it is convenient to detect whether the fourth relay K4 has an open circuit fault.
在一些示例中,光伏储能系统还包括控制系统5,控制系统5可以配置为执行上述的继电器故障检测方法。在这种情况下,能够方便通过控制系统5执行继电器故障检测方法。In some examples, the photovoltaic energy storage system further includes a control system 5 , and the control system 5 can be configured to execute the above-mentioned relay fault detection method. In this case, the relay fault detection method can be conveniently executed by the control system 5 .
本实用新型的继电器故障检测方法简单可靠,可应用到数字控制的储能逆变系统中,易于编程实现。The relay fault detection method of the utility model is simple and reliable, can be applied to a digitally controlled energy storage inverter system, and is easy to implement through programming.
在一些示例中,本实用新型的光伏储能系统可以是离网光伏储能系统。本实用新型可以是一种应用于离网光伏储能系统中的继电器拓扑的自检方法。在这种情况下,本实用新型的继电器故障检测方法可以有效的在离网模式下对输出负载2提供不间断的供电需求。In some examples, the photovoltaic energy storage system of the present invention may be an off-grid photovoltaic energy storage system. The present invention may be a self-test method for a relay topology applied to an off-grid photovoltaic energy storage system. In this case, the relay fault detection method of the present invention may effectively provide uninterrupted power supply requirements for the output load 2 in an off-grid mode.
在本实用新型中,因电网电压Vi、逆变器电压Vinv、负载电压Vo、发电机电压Vg,在光伏储能系统中本身就是进行数据采集后的信号,可以在程序中通过编程得到相应的有效值,故本实用新型的方法无需额外的硬件,具有低成本和高可靠性的优势,能够适用于工程应用。In the utility model, since the grid voltage Vi, the inverter voltage Vinv, the load voltage Vo, and the generator voltage Vg are signals after data collection in the photovoltaic energy storage system, the corresponding effective values can be obtained by programming in the program. Therefore, the method of the utility model does not require additional hardware, has the advantages of low cost and high reliability, and can be suitable for engineering applications.
在一些示例中,本实用新型的继电器故障检测方法不仅可以应用在光伏储能系统中,也可以应用在风力发电储能系统中。In some examples, the relay fault detection method of the present invention can be applied not only in photovoltaic energy storage systems, but also in wind power generation energy storage systems.
图2是示出了本实施方式示例所涉及的光伏储能系统另一种实施例的结构示意图。FIG. 2 is a schematic structural diagram showing another embodiment of a photovoltaic energy storage system according to the present embodiment.
参照图2,本实用新型第二方面提供了一种光伏储能系统,该光伏储能系统可以包括电网1、输出负载2、逆变器3、发电机4、控制系统5、第一继电器组、第二继电器组和第三继电器组。电网1、输出负载2、逆变器3、发电机4之间可以分别通过一组传输线路相互连通,电网1的一侧可以设置有第一继电器组,输出负载2的一侧可以设置有第二继电器组,发电机的一侧可以设置有第三继电器组,控制系统5可以配置为执行上述的光伏储能系统的继电器故障检测方法。在这种情况下,能够方便通过控制系统5执行本实用新型的继电器故障检测方法。Referring to Figure 2, the second aspect of the utility model provides a photovoltaic energy storage system, which may include a power grid 1, an output load 2, an inverter 3, a generator 4, a control system 5, a first relay group, a second relay group, and a third relay group. The power grid 1, the output load 2, the inverter 3, and the generator 4 can be interconnected through a group of transmission lines, respectively. A first relay group can be provided on one side of the power grid 1, a second relay group can be provided on one side of the output load 2, and a third relay group can be provided on one side of the generator. The control system 5 can be configured to execute the above-mentioned relay fault detection method of the photovoltaic energy storage system. In this case, the relay fault detection method of the utility model can be conveniently executed through the control system 5.
通过本实用新型,能够提供一种能够方便对继电器自身故障进行检测的光伏储能系统及其继电器故障检测方法。The utility model provides a photovoltaic energy storage system and a relay fault detection method thereof which can conveniently detect the fault of the relay itself.
在一些示例中,本实用新型的光伏储能系统还包括光伏组件6、最大功率跟踪(MPPT,Maximum Power Point Tracking)控制器7、储能设备8和双向充放电路9。光伏组件6可以通过最大功率跟踪控制器连接逆变器3,储能设备8可以通过双向充放电路9连接逆变器3。In some examples, the photovoltaic energy storage system of the present invention further includes a photovoltaic assembly 6, a maximum power point tracking (MPPT) controller 7, an energy storage device 8, and a bidirectional charging and discharging circuit 9. The photovoltaic assembly 6 can be connected to the inverter 3 through the maximum power point tracking controller, and the energy storage device 8 can be connected to the inverter 3 through the bidirectional charging and discharging circuit 9.
在一些示例中,光伏组件6可以包括多个光伏模块(也称太阳能板),光伏组件6可以负责捕获太阳光并将其转化为直流电后输出至最大功率跟踪控制器7。In some examples, the photovoltaic assembly 6 may include a plurality of photovoltaic modules (also called solar panels), and the photovoltaic assembly 6 may be responsible for capturing sunlight and converting it into direct current electricity and then outputting it to the maximum power tracking controller 7 .
在一些示例中,逆变器3可以用于将光伏组件6产生的直流电转化为交流电供给家用电器(输出负载2)使用,并可以将多余的电存储到储能设备8中。在一些示例中,当应用于并网光伏储能系统时,逆变器3也可将多余的电并入城市电网。In some examples, the inverter 3 can be used to convert the direct current generated by the photovoltaic assembly 6 into alternating current for use by household appliances (output load 2), and can store excess electricity in the energy storage device 8. In some examples, when applied to a grid-connected photovoltaic energy storage system, the inverter 3 can also connect excess electricity to the city power grid.
在一些示例中,储能设备8可以通过逆变器3将光伏组件6产生的但未立即使用的电能进行存储,供日后使用。在一些示例中,储能设备可以包括储能电池。In some examples, the energy storage device 8 can store the electrical energy generated by the photovoltaic assembly 6 but not used immediately through the inverter 3 for later use. In some examples, the energy storage device can include an energy storage battery.
在一些示例中,双向充放电路9可以用于控制电能的双向传输,也即,可以控制电能的存储和使用。In some examples, the bidirectional charging and discharging circuit 9 can be used to control the bidirectional transmission of electric energy, that is, the storage and use of electric energy can be controlled.
虽然以上结合附图和示例对本实用新型进行了具体说明,但是可以理解,上述说明不以任何形式限制本实用新型。本领域技术人员在不偏离本实用新型的实质精神和范围的情况下可以根据需要对本实用新型进行变形和变化,这些变形和变化均落入本实用新型的范围内。Although the present invention is specifically described above in conjunction with the accompanying drawings and examples, it is to be understood that the above description does not limit the present invention in any form. Those skilled in the art may modify and change the present invention as needed without departing from the spirit and scope of the present invention, and these modifications and changes all fall within the scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202323571308.5U CN221688322U (en) | 2023-12-26 | 2023-12-26 | Photovoltaic energy storage system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202323571308.5U CN221688322U (en) | 2023-12-26 | 2023-12-26 | Photovoltaic energy storage system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN221688322U true CN221688322U (en) | 2024-09-10 |
Family
ID=92631949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202323571308.5U Active CN221688322U (en) | 2023-12-26 | 2023-12-26 | Photovoltaic energy storage system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN221688322U (en) |
-
2023
- 2023-12-26 CN CN202323571308.5U patent/CN221688322U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2882952B2 (en) | Power generator | |
WO2021203592A1 (en) | Control system and method for photovoltaic medium-voltage distributed control system | |
Che et al. | Construction, operation and control of a laboratory-scale microgrid | |
CN103997058A (en) | Control method of wind, photovoltaic and storage micro grid system | |
CN103091604B (en) | A kind of island detection method of grid-connected photovoltaic system and pick-up unit | |
Danandeh et al. | Islanding detection using combined algorithm based on rate of change of reactive power and current THD techniques | |
CN105207263B (en) | The photovoltaic generating system and grid-connected control method of garbage incinerating power plant | |
CN204243785U (en) | A distributed photovoltaic power generation microgrid system | |
CN221688322U (en) | Photovoltaic energy storage system | |
Parseh et al. | Solid state transformer (SST) interfaced doubly fed induction generator (DFIG) wind turbine | |
CN108134404A (en) | High voltage ride through control method and device for wind generating set | |
Kumari et al. | Passive islanding detection approach for inverter based DG using harmonics analysis | |
CN110635472A (en) | Method for increasing carrying capacity of three-phase energy storage inversion system and three-phase energy storage inversion system applying same | |
Zhongmei et al. | Voltage sags/swells subsequent to islanding transition of PV-battery microgrids | |
Bouzidi et al. | Short and open circuit faults study in the PV system inverter | |
CN117833340A (en) | Photovoltaic energy storage system and relay fault detection method thereof | |
CN203491712U (en) | Isolated network operation and switching detection structure for photovoltaic power generation system | |
CN103904680B (en) | Power supply equipment, power generation unit and power generation system | |
Badruhisham et al. | Voltage control of hybrid energy sources for microgrid employing biomass-solar-wind | |
CN222464159U (en) | A power supply system | |
CN105024346B (en) | A kind of modeling method of micro-capacitance sensor protection system | |
Ravikumar et al. | A SPWM Full Bridge Inverter With Transformerless PV Grid Connected Inverter | |
CN214674379U (en) | Solar power generation system with grid-connected compensation function | |
Lodi et al. | GA optimized SHE and proportional resonant controller tuned integration of solar PV to the AC grid using packed U cell inverter | |
CN215267671U (en) | Control system with grid-connected compensation function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241217 Address after: No. 24 Dongkang Road, Dalingshan Town, Dongguan City, Guangdong Province 523000 Patentee after: Dongguan Haineng New Energy Technology Co.,Ltd. Country or region after: China Address before: No. 22 Dongkang Road, Dalingshan Town, Dongguan City, Guangdong Province, 523000 Patentee before: Dongguan Haineng Electronics Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |