CN220807391U - Movable robot milling platform - Google Patents
Movable robot milling platform Download PDFInfo
- Publication number
- CN220807391U CN220807391U CN202322581720.9U CN202322581720U CN220807391U CN 220807391 U CN220807391 U CN 220807391U CN 202322581720 U CN202322581720 U CN 202322581720U CN 220807391 U CN220807391 U CN 220807391U
- Authority
- CN
- China
- Prior art keywords
- platform
- processing
- robot
- vehicle body
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003801 milling Methods 0.000 title claims abstract description 48
- 238000012545 processing Methods 0.000 claims abstract description 150
- 238000005461 lubrication Methods 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 15
- 238000003754 machining Methods 0.000 claims description 11
- 239000007921 spray Substances 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Landscapes
- Manipulator (AREA)
Abstract
Description
技术领域Technical Field
本实用新型涉及机器人铣削加工技术领域,具体地,涉及一种移动式机器人铣削加工平台。The utility model relates to the technical field of robot milling processing, in particular to a mobile robot milling processing platform.
背景技术Background technique
机器人由于其易编程、易拓展的优势大量运用于工业生产,大大提高了工作效率。机器人辅助铣削加工装备柔性高、可加工零件尺寸范围广,近年来,大量用于品种多批量小的零件高柔性制造,对于机器人辅助铣削加工的运用来说,其末端高精度找位与自适应编程是主要关键,其基本原理是通过人工示教或者测量的方式校准机器人的移动寻位精度,克服机器人绝对定位精度差的缺陷,大大提高机器人加工轨迹寻位映射的精度。Robots are widely used in industrial production due to their advantages of easy programming and expansion, which greatly improves work efficiency. Robot-assisted milling equipment is highly flexible and can process a wide range of parts. In recent years, it has been widely used in the high-flexibility manufacturing of parts with a large variety and small batches. For the application of robot-assisted milling, high-precision positioning and adaptive programming at the end are the main keys. The basic principle is to calibrate the robot's mobile positioning accuracy through manual teaching or measurement, overcome the defect of poor absolute positioning accuracy of the robot, and greatly improve the accuracy of robot processing trajectory positioning mapping.
当前,针对大长型零件的加工主要采用大型龙门铣床或者多工位固定式加工机器人辅助加工的方式,成本高且不利于柔性拓展以及柔性生产,只能完成一定量的特定加工任务,无法适应机器人辅助铣削加工广泛应用的前景。At present, the processing of long and large parts mainly adopts large gantry milling machines or multi-station fixed processing robots to assist in processing. This method is costly and not conducive to flexible expansion and flexible production. It can only complete a certain amount of specific processing tasks and cannot adapt to the prospect of widespread application of robot-assisted milling.
公开号为CN206937333U的专利文献公开了一种机器人柔性曲面铣削加工生产装置,包括:上料仓、下料仓、工作台、工具支架、工业机器人组件以及控制系统,其中,上下料仓用于存放毛坯件和加工件,工作台用于装夹工件和完成加工任务,工具支架用于放置电主轴和真空吸盘;工业机器人通过真空吸盘实现多规格工件的自动上下料,通过电主轴完成曲面铣削加工。但是该专利文献仍然存在只能完成一定量的特定加工任务的缺陷。The patent document with publication number CN206937333U discloses a robot flexible curved surface milling production device, including: a loading bin, a lower bin, a workbench, a tool holder, an industrial robot component and a control system, wherein the upper and lower bins are used to store blanks and processed parts, the workbench is used to clamp workpieces and complete processing tasks, and the tool holder is used to place the electric spindle and vacuum suction cup; the industrial robot realizes automatic loading and unloading of multi-specification workpieces through the vacuum suction cup, and completes the curved surface milling processing through the electric spindle. However, the patent document still has the defect that it can only complete a certain amount of specific processing tasks.
实用新型内容Utility Model Content
针对现有技术中的缺陷,本实用新型的目的是提供一种移动式机器人铣削加工平台。In view of the defects in the prior art, the purpose of the utility model is to provide a mobile robot milling processing platform.
根据本实用新型提供的一种移动式机器人铣削加工平台,包括:AGV移动平台和可拓展柔性工装系统;A mobile robot milling processing platform provided by the utility model includes: an AGV mobile platform and an expandable flexible tooling system;
所述AGV移动平台包括平台车体、平台舵轮以及电控锁紧模块;所述平台舵轮和所述电控锁紧模块设置在所述平台车体上,所述平台车体通过所述平台舵轮移动,所述电控锁紧模块用于固定所述平台车体;所述平台车体上设置有加工装置;The AGV mobile platform includes a platform body, a platform steering wheel and an electric control locking module; the platform steering wheel and the electric control locking module are arranged on the platform body, the platform body moves through the platform steering wheel, and the electric control locking module is used to fix the platform body; a processing device is arranged on the platform body;
所述可拓展柔性工装系统包括可扩展定位工装、工位面标定模块以及工位面区域标识模块;所述工位面标定模块设置在所述可扩展定位工装上,所述工位面区域标识模块设置在所述可扩展定位工装的一侧,所述可扩展定位工装用于放置工件。The expandable flexible tooling system includes an expandable positioning tooling, a work surface calibration module and a work surface area identification module; the work surface calibration module is arranged on the expandable positioning tooling, the work surface area identification module is arranged on one side of the expandable positioning tooling, and the expandable positioning tooling is used to place workpieces.
优选的,所述加工装置包括基准底座和加工机器人;Preferably, the processing device includes a reference base and a processing robot;
所述加工机器人设置在所述基准底座上,所述基准底座设置在所述平台车体上。The processing robot is arranged on the reference base, and the reference base is arranged on the platform vehicle body.
优选的,所述加工装置还包括高速电主轴和刀具;Preferably, the processing device further comprises a high-speed electric spindle and a tool;
所述高速电主轴设置在所述加工机器人的加工端,所述刀具设置在所述高速电主轴上。The high-speed electric spindle is arranged at the processing end of the processing robot, and the tool is arranged on the high-speed electric spindle.
优选的,所述加工装置还包括辅助扫描测量头;Preferably, the processing device further comprises an auxiliary scanning measuring head;
所述辅助扫描测量头设置在所述加工机器人的加工端。The auxiliary scanning measuring head is arranged at the processing end of the processing robot.
优选的,所述加工装置还包括微量润滑喷头和微量润滑装置;Preferably, the processing device further comprises a micro-lubrication nozzle and a micro-lubrication device;
所述微量润滑喷头设置在所述加工机器人的加工端,所述微量润滑装置设置在所述平台车体上,所述微量润滑装置与所述微量润滑喷头连通设置。The micro-lubrication nozzle is arranged at the processing end of the processing robot, the micro-lubrication device is arranged on the platform body, and the micro-lubrication device is connected to the micro-lubrication nozzle.
优选的,所述加工装置还包括机器人控制器和车体运动控制器;Preferably, the processing device further comprises a robot controller and a vehicle body motion controller;
所述机器人控制器和所述车体运动控制器设置在所述平台车体上;The robot controller and the vehicle body motion controller are arranged on the platform vehicle body;
所述机器人控制器与所述加工机器人电连接,所述车体运动控制器与所述平台舵轮、所述电控锁紧模块电连接。The robot controller is electrically connected to the processing robot, and the vehicle body motion controller is electrically connected to the platform steering wheel and the electric-controlled locking module.
优选的,所述加工装置还包括控制中心组件;Preferably, the processing device further comprises a control center component;
所述控制中心组件与所述机器人控制器、所述车体运动控制器电连接。The control center component is electrically connected to the robot controller and the vehicle body motion controller.
优选的,所述加工装置还包括电控柜;Preferably, the processing device further includes an electric control cabinet;
所述电控柜与所述控制中心组件、所述机器人控制器、所述车体运动控制器电连接。The electric control cabinet is electrically connected to the control center component, the robot controller, and the vehicle body motion controller.
优选的,所述可扩展定位工装包括工位面区域标识模块标识的可吸附地面和标识线;Preferably, the expandable positioning tool includes an absorbable ground surface and a marking line marked by a workstation surface area marking module;
所述标识线设置在所述可吸附地面周围,所述标识线用于标识AGV移动平台的停位工作区域。The identification line is arranged around the adsorbable ground surface, and the identification line is used to identify the parking working area of the AGV mobile platform.
与现有技术相比,本实用新型具有如下的有益效果:Compared with the prior art, the utility model has the following beneficial effects:
1、本实用新型针对移动式铣削加工机器人加工精度低、依赖高精度定位底盘的瓶颈,提出一种移动式机器人铣削加工平台,在实现大长型零件高精度柔性多工位加工的同时大大降低了移动式机器人铣削加工平台的单机尺寸及制造成本;1. Aiming at the bottleneck of low processing precision and reliance on high-precision positioning chassis of mobile milling processing robots, the utility model proposes a mobile robot milling processing platform, which can realize high-precision flexible multi-station processing of long and large parts while greatly reducing the single machine size and manufacturing cost of the mobile robot milling processing platform;
2、本实用新型针对大长型零件加工提出一种柔性移动式机器人铣削加工平台,可布置加工位,适用于大型零件移动式加工,降低了专机尺寸和成本;2. The utility model proposes a flexible mobile robot milling processing platform for processing long and large parts, which can arrange processing positions and is suitable for mobile processing of large parts, reducing the size and cost of special machines;
3、本实用新型采用机器人末端扫描测量的辅助扫描测量头能够加工位的检测;本实用新型能够实现机器人当前加工位置的找正,不需要精度高的移动车体即可实现非精准定位下的加工平台找正,改变以绝对定位精度加工的方式,提高机器人铣削加工精度;本实用新型在提高移动式机器人加工精度的同时,可以大大降低单机成本;3. The utility model adopts the auxiliary scanning measuring head of the robot end scanning measurement to detect the processing position; the utility model can realize the alignment of the current processing position of the robot, and can realize the alignment of the processing platform under non-precise positioning without the need for a high-precision mobile body, changing the processing method with absolute positioning accuracy and improving the robot milling processing accuracy; the utility model can greatly reduce the cost of a single machine while improving the processing accuracy of the mobile robot;
4、本实用新型采用可拓展柔性工装系统组成,结合移动式AGV移动平台,可自由组合,适用不同大小零件的多工位加工;同时,由于移动式机器人铣削加工平台不需要精准定位,不依赖特定的轨道,可以大大提高柔性组线的效率。4. The utility model adopts an expandable flexible tooling system, combined with a mobile AGV mobile platform, which can be freely combined and is suitable for multi-station processing of parts of different sizes; at the same time, since the mobile robot milling processing platform does not require precise positioning and does not rely on specific tracks, the efficiency of flexible assembly lines can be greatly improved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过阅读参照以下附图对非限制性实施例所作的详细描述,本实用新型的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为本实用新型的移动式机器人铣削加工平台的结构示意图;FIG1 is a schematic structural diagram of a mobile robot milling processing platform of the present invention;
图2为本实用新型的AGV移动平台和可扩展定位工装的立体结构示意图。FIG. 2 is a schematic diagram of the three-dimensional structure of the AGV mobile platform and the expandable positioning tooling of the utility model.
图中示出:The figure shows:
AGV移动平台1 加工机器人302AGV mobile platform 1 Processing robot 302
平台车体101 高速电主轴303Platform body 101 High-speed electric spindle 303
平台舵轮102 刀具304Platform steering wheel 102 tool 304
电控锁紧模块103 辅助扫描测量头305Electronically controlled locking module 103 Auxiliary scanning measuring head 305
可拓展柔性工装系统2 微量润滑喷头306Expandable flexible tooling system 2 Micro-lubrication nozzle 306
可扩展定位工装201 微量润滑装置307Expandable positioning fixture 201 Micro-lubrication device 307
可吸附地面2011 机器人控制器308Adsorbable ground 2011 robot controller 308
标识线2012 车体运动控制器309Identification line 2012 Vehicle motion controller 309
工位面标定模块202 控制中心组件310Workstation surface calibration module 202 control center component 310
工位面区域标识模块203 电控柜311Workstation area identification module 203 Electric control cabinet 311
加工装置3 工件4Processing device 3 Workpiece 4
基准底座301Reference base 301
具体实施方式Detailed ways
下面结合具体实施例对本实用新型进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本实用新型,但不以任何形式限制本实用新型。应当指出的是,对本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变化和改进。这些都属于本实用新型的保护范围。The utility model is described in detail below in conjunction with specific embodiments. The following embodiments will help those skilled in the art to further understand the utility model, but do not limit the utility model in any form. It should be pointed out that for those of ordinary skill in the art, several changes and improvements can be made without departing from the concept of the utility model. These all belong to the protection scope of the utility model.
实施例1:Embodiment 1:
如图1和图2所示,本实施例提供一种移动式机器人铣削加工平台,包括:AGV移动平台1和可拓展柔性工装系统2,AGV移动平台1包括平台车体101、平台舵轮102以及电控锁紧模块103,平台舵轮102和电控锁紧模块103设置在平台车体101上,平台车体101通过平台舵轮102移动,电控锁紧模块103用于固定平台车体101,平台车体101上设置有加工装置3。As shown in Figures 1 and 2, this embodiment provides a mobile robot milling processing platform, including: an AGV mobile platform 1 and an expandable flexible tooling system 2, the AGV mobile platform 1 includes a platform body 101, a platform steering wheel 102 and an electric-controlled locking module 103, the platform steering wheel 102 and the electric-controlled locking module 103 are arranged on the platform body 101, the platform body 101 is moved by the platform steering wheel 102, the electric-controlled locking module 103 is used to fix the platform body 101, and a processing device 3 is arranged on the platform body 101.
可拓展柔性工装系统2包括可扩展定位工装201、工位面标定模块202以及工位面区域标识模块203;工位面标定模块202由刀具点位三向对标测量模块及空间立体扫描用标准体模块组成,用于校准和标定AGV移动平台1停位后加工装置3相对可拓展柔性工装系统2的位置;工位面标定模块202设置在可扩展定位工装201上,工位面区域标识模块203设置在可扩展定位工装201的一侧;工位面区域标识模块203由绘制在地面的区域框线和识别码组成,用于标识AGV移动平台1运动停位点位和工作位;工位面标定模块202与工位面区域标识模块203配对使用,分布于可扩展定位工装201周围;可扩展定位工装201用于放置工件4。The expandable flexible tooling system 2 includes an expandable positioning tooling 201, a work surface calibration module 202 and a work surface area identification module 203; the work surface calibration module 202 is composed of a three-dimensional calibration measurement module for tool points and a standard body module for spatial stereo scanning, and is used to calibrate and calibrate the position of the post-processing device 3 of the AGV mobile platform 1 relative to the expandable flexible tooling system 2; the work surface calibration module 202 is set on the expandable positioning tooling 201, and the work surface area identification module 203 is set on one side of the expandable positioning tooling 201; the work surface area identification module 203 is composed of an area frame line and an identification code drawn on the ground, and is used to identify the moving stop point and work position of the AGV mobile platform 1; the work surface calibration module 202 is used in pairs with the work surface area identification module 203, and is distributed around the expandable positioning tooling 201; the expandable positioning tooling 201 is used to place the workpiece 4.
可扩展定位工装201包括工位面区域标识模块203标识的可吸附地面2011和标识线2012,吸附地面2011由位于地面内的高精度水平工作台组成,标识线2012设置在可吸附地面2011周围,用于标识AGV移动平台1的停位工作区域。The expandable positioning tool 201 includes an adsorbable ground 2011 and an identification line 2012 marked by a work surface area identification module 203. The adsorbable ground 2011 is composed of a high-precision horizontal workbench located in the ground. The identification line 2012 is set around the adsorbable ground 2011 and is used to mark the parking work area of the AGV mobile platform 1.
加工装置3包括基准底座301和加工机器人302,加工机器人302设置在基准底座301上,基准底座301设置在平台车体101上。The processing device 3 includes a reference base 301 and a processing robot 302 . The processing robot 302 is disposed on the reference base 301 , and the reference base 301 is disposed on the platform vehicle body 101 .
加工装置3还包括高速电主轴303和刀具304,高速电主轴303设置在加工机器人302的加工端,刀具304设置在高速电主轴303上。加工装置3还包括辅助扫描测量头305,辅助扫描测量头305设置在加工机器人302的加工端。The processing device 3 further includes a high-speed electric spindle 303 and a tool 304. The high-speed electric spindle 303 is arranged at the processing end of the processing robot 302, and the tool 304 is arranged on the high-speed electric spindle 303. The processing device 3 further includes an auxiliary scanning measuring head 305. The auxiliary scanning measuring head 305 is arranged at the processing end of the processing robot 302.
加工装置3还包括机器人控制器308和车体运动控制器309,机器人控制器308和车体运动控制器309设置在平台车体101上,机器人控制器308与加工机器人302电连接,车体运动控制器309与平台舵轮102、电控锁紧模块103电连接。加工装置3还包括控制中心组件310,控制中心组件310与机器人控制器308、车体运动控制器309电连接。加工装置3还包括电控柜311,电控柜311与控制中心组件310、机器人控制器308、车体运动控制器309电连接。The processing device 3 further includes a robot controller 308 and a vehicle motion controller 309, which are arranged on the platform vehicle body 101, the robot controller 308 is electrically connected to the processing robot 302, and the vehicle motion controller 309 is electrically connected to the platform steering wheel 102 and the electric control locking module 103. The processing device 3 further includes a control center component 310, which is electrically connected to the robot controller 308 and the vehicle motion controller 309. The processing device 3 further includes an electric control cabinet 311, which is electrically connected to the control center component 310, the robot controller 308, and the vehicle motion controller 309.
加工装置3还包括微量润滑喷头306和微量润滑装置307,微量润滑喷头306设置在加工机器人302的加工端,微量润滑装置307设置在平台车体101上,微量润滑装置307与微量润滑喷头306连通设置。The processing device 3 also includes a micro-lubrication nozzle 306 and a micro-lubrication device 307 . The micro-lubrication nozzle 306 is arranged at the processing end of the processing robot 302 , and the micro-lubrication device 307 is arranged on the platform vehicle body 101 . The micro-lubrication device 307 is connected to the micro-lubrication nozzle 306 .
本实施例还提供一种移动式机器人铣削加工平台的控制方法,用于上述的移动式机器人铣削加工平台,具体包括如下步骤:This embodiment also provides a control method for a mobile robot milling processing platform, which is used for the above-mentioned mobile robot milling processing platform and specifically includes the following steps:
步骤1:通过加工装置3的控制中心组件310获取AGV移动平台1、可拓展柔性工装系统2以及工件4的数模,根据获取的数模制定AGV移动平台1的移动策略、加工装置3的加工机器人302的加工程序。Step 1: Obtain the digital models of the AGV mobile platform 1, the expandable flexible tooling system 2 and the workpiece 4 through the control center component 310 of the processing device 3, and formulate the movement strategy of the AGV mobile platform 1 and the processing program of the processing robot 302 of the processing device 3 according to the acquired digital models.
步骤2:根据步骤1中制定的AGV移动平台1的移动策略,通过加工装置3的控制中心组件310和车体运动控制器309控制平台舵轮102,通过平台舵轮102驱动AGV移动平台1移动至工位面区域标识模块203标定的加工停位区域。Step 2: According to the movement strategy of the AGV mobile platform 1 formulated in step 1, the platform steering wheel 102 is controlled by the control center component 310 of the processing device 3 and the vehicle motion controller 309, and the AGV mobile platform 1 is driven by the platform steering wheel 102 to move to the processing stop area marked by the workstation surface area identification module 203.
步骤3:在AGV移动平台1到达指定加工工位后,通过加工装置3的控制中心组件310和车体运动控制器309控制平台舵轮102,通过平台舵轮102将AGV移动平台1降下并放置于地面上,并控制电控锁紧模块103将AGV移动平台1自动锁紧在地面上;Step 3: After the AGV mobile platform 1 arrives at the designated processing station, the control center component 310 of the processing device 3 and the vehicle body motion controller 309 control the platform steering wheel 102, and the AGV mobile platform 1 is lowered and placed on the ground through the platform steering wheel 102, and the electric control locking module 103 is controlled to automatically lock the AGV mobile platform 1 on the ground;
AGV移动平台1停位精度校准和标定过程:首先,控制中心组件310依据工位面区域标识模块203标识的点位信息制定的AGV移动平台1的移动策略,控制AGV移动平台1运动至工位面区域标识模块203标识区域,实现初始定点停位;然后,控制中心组件310控制加工装置3的加工机器人302带动末端刀具304运动至工位面标定模块202中刀具点位三向对标测量模块的初始校准点位后停止;之后,控制中心组件310控制刀具点位三向对标测量模块分别测量当前刀具相对理论初始校准点位的三向偏移量,从而获得当前AGV移动平台1停位位置下加工装置3相对于工位面标定模块202的实际位置,加工机器人302依据测量的偏移量重置其相对于可扩展定位工装201及固结的工位面标定模块202的工作坐标系;由此,实现非精准移动AGV移动平台1加工点位的二次校准与标定。The process of AGV mobile platform 1 stop precision calibration and calibration: First, the control center component 310 formulates the movement strategy of the AGV mobile platform 1 according to the point information identified by the work surface area identification module 203, controls the AGV mobile platform 1 to move to the area identified by the work surface area identification module 203, and realizes the initial fixed-point stop; then, the control center component 310 controls the processing robot 302 of the processing device 3 to drive the end tool 304 to move to the initial calibration point of the tool point three-way calibration measurement module in the work surface calibration module 202 and then stop; thereafter, the control center component 310 controls the tool point three-way calibration measurement module to respectively measure the three-way offset of the current tool relative to the theoretical initial calibration point, so as to obtain the actual position of the processing device 3 relative to the work surface calibration module 202 at the current stop position of the AGV mobile platform 1, and the processing robot 302 resets its working coordinate system relative to the expandable positioning tooling 201 and the fixed work surface calibration module 202 according to the measured offset; thereby, the secondary calibration and calibration of the processing points of the non-precise mobile AGV mobile platform 1 are realized.
步骤4:当AGV移动平台1移动布置在当前加工位后,依据加工装置3的加工机器人302的加工程序,通过控制中心组件310控制加工装置3的机器人控制器308启动,通过机器人控制器308控制加工机器人302运动带动末端的加工装置3的辅助扫描测量头305移动到当前加工位对应的工位面标定模块202处,通过控制中心组件310控制辅助扫描测量头305启动扫描,并通过机器人控制器308控制加工机器人302运动带动末端的辅助扫描测量头306完成对当前加工位对应的工位面标定模块202及与工位面标定模块202相邻近工件4部分区域的扫描测量。Step 4: After the AGV mobile platform 1 is moved and arranged at the current processing position, according to the processing program of the processing robot 302 of the processing device 3, the robot controller 308 of the processing device 3 is controlled to start through the control center component 310, and the processing robot 302 is controlled by the robot controller 308 to move the auxiliary scanning measuring head 305 of the processing device 3 at the end to the work surface calibration module 202 corresponding to the current processing position, and the auxiliary scanning measuring head 305 is controlled by the control center component 310 to start scanning, and the processing robot 302 is controlled by the robot controller 308 to move to drive the auxiliary scanning measuring head 306 at the end to complete the scanning measurement of the work surface calibration module 202 corresponding to the current processing position and the partial area of the workpiece 4 adjacent to the work surface calibration module 202.
步骤5:通过控制中心组件310获取存储在扫描视界中的工位面标定模块202测量点云数据,通过工位面标定模块202测量点云数据与加工机器人302扫描测量程序对应的标定模块理论数模进行匹配,获取当前实物标定模块相对当前加工机器人302视界下标定模块理论数模的偏移量;由此获得当前可扩展定位工装201上放置的工件4相对工位面标定模块202的偏移量,实现测量工件位姿的校准。Step 5: Obtain the measurement point cloud data of the work surface calibration module 202 stored in the scanning field of view through the control center component 310, match the measurement point cloud data of the work surface calibration module 202 with the theoretical digital model of the calibration module corresponding to the scanning measurement program of the processing robot 302, and obtain the offset of the current physical calibration module relative to the theoretical digital model of the calibration module under the field of view of the current processing robot 302; thereby, the offset of the workpiece 4 placed on the current expandable positioning tooling 201 relative to the work surface calibration module 202 is obtained, and the calibration of the measured workpiece posture is realized.
步骤6:依据工装上的实物标定模块偏移量,通过控制中心组件310获得更新后的工件4加工位姿,并依据更新的工件4加工位姿修正加工机器人302的加工程序,根据修正后的加工程序对工件4进行加工;Step 6: According to the physical calibration module offset on the tooling, the updated machining posture of the workpiece 4 is obtained through the control center component 310, and the machining program of the machining robot 302 is corrected according to the updated machining posture of the workpiece 4, and the workpiece 4 is processed according to the corrected machining program;
步骤7:当前加工位加工完成后,通过控制中心组件310控制AGV移动平台1移动至下一加工位,通过对工位面标定模块202的扫描测量与加工机器人302位姿自主找正,更新当前加工位加工机器人302的铣削加工程序,控制加工机器人302完成下一加工位处的加工任务。Step 7: After the current processing position is completed, the control center component 310 controls the AGV mobile platform 1 to move to the next processing position. Through the scanning measurement of the work station surface calibration module 202 and the autonomous alignment of the processing robot 302, the milling processing program of the processing robot 302 at the current processing position is updated, and the processing robot 302 is controlled to complete the processing task at the next processing position.
实施例2:Embodiment 2:
本领域技术人员可以将本实施例理解为实施例1的更为具体的说明。Those skilled in the art may understand this embodiment as a more specific description of Embodiment 1.
本实施例提供一种移动式机器人铣削加工平台,包括AGV移动平台、可拓展柔性工装系统组成,其中,AGV移动平台包括AGV移动平台车体、AGV移动平台舵轮(可上下举升上方的加工平台,到位后,将加工平台放下置于地面)、电控锁紧模块(运动到位并放置地面后,自动锁紧加工平台)。The present embodiment provides a mobile robot milling processing platform, including an AGV mobile platform and an expandable flexible tooling system, wherein the AGV mobile platform includes an AGV mobile platform body, an AGV mobile platform steering wheel (which can lift the upper processing platform up and down, and when in place, lower the processing platform to the ground), and an electric-controlled locking module (which automatically locks the processing platform after it moves into place and is placed on the ground).
本实施例提供的移动式机器人铣削加工平台还包括移动平台车体上的加工平台基准底座、加工机器人、高速电主轴、刀具、辅助扫描测量头、微量润滑装置、微量润滑喷头、机器人控制器、车体运动控制中心、电控柜、控制中心;可拓展柔性工装系统包括可扩展定位工装、工位面标定模块、工件、工位面区域标识模块(包括可吸附地面、标识线)。The mobile robot milling processing platform provided in this embodiment also includes a processing platform reference base, a processing robot, a high-speed electric spindle, a tool, an auxiliary scanning measuring head, a micro-lubrication device, a micro-lubrication nozzle, a robot controller, a body motion control center, an electric control cabinet, and a control center on the mobile platform body; the expandable flexible tooling system includes an expandable positioning tooling, a work station surface calibration module, a workpiece, and a work station surface area identification module (including an adsorbable ground and identification lines).
本实施例还提供一种移动式机器人铣削加工平台及其智能控制方法,首先,加工准备阶段,机器人铣削加工平台控制中心获取AGV移动平台、柔性工装系统及工件数模,根据前述数模制定AGV移动平台移动策略以及初始机器人加工程序;然后,机器人铣削加工平台控制中心依据AGV移动平台移动策略,通过车体运动控制中心控制AGV移动平台舵轮驱动AGV移动平台移动至工位面区域标识模块标定的加工停位区域;到达指定加工工位后,车体运动控制中心控制AGV移动平台舵轮将AGV移动平台降下并放置于地面上,然后控制电控锁紧模块将加工平台自动锁紧在地面上,以保证加工时的定位可靠;由此实现移动式机器人铣削加工平台柔性自主移动寻位以及加工位初始定位。The present embodiment also provides a mobile robot milling processing platform and its intelligent control method. First, in the processing preparation stage, the robot milling processing platform control center obtains the AGV mobile platform, the flexible tooling system and the workpiece digital model, and formulates the AGV mobile platform movement strategy and the initial robot processing program according to the aforementioned digital model; then, the robot milling processing platform control center controls the AGV mobile platform steering wheel to drive the AGV mobile platform to move to the processing stop area marked by the workstation surface area identification module through the vehicle body motion control center according to the AGV mobile platform movement strategy; after arriving at the designated processing station, the vehicle body motion control center controls the AGV mobile platform steering wheel to lower the AGV mobile platform and place it on the ground, and then controls the electronically controlled locking module to automatically lock the processing platform on the ground to ensure reliable positioning during processing; thereby realizing the flexible and autonomous movement and positioning of the mobile robot milling processing platform and the initial positioning of the processing position.
加工过程中,当AGV移动平台移动布置在当前加工位后,机器人铣削加工平台控制中心依据机器人加工程序控制机器人控制器启动,首先,机器人控制器控制加工机器人运动带动末端的辅助扫描测量装置移动到当前加工位对应的工位面标定模块处;然后,平台控制中心控制辅助扫描测量装置启动扫描,并通过机器人控制器控制加工机器人运动带动末端的辅助扫描测量装置完成对当前加工位对应的工位面标定模块的扫描测量,从而完成非精准定位无预先标定下的标定模块扫描测量;机器人铣削加工平台控制中心获取存储在扫描视界中的标定模块测量点云数据,通过标定模块测量点云数据与机器人扫描测量程序对应的标定模块理论数模进行匹配,获得当前实物标定模块相对当前机器人视界下标定模块理论数模的偏移量,进而实现非精准定位加工机器人的位姿找正;在此基础上,机器人铣削加工平台控制中心依据工装上的实物标定模块偏移量,获得更新后的零件加工位姿,并依据更新的零件加工位姿修正初始机器人加工程序,由此实现非精确定位铣削加工机器人自主找正后的铣削加工程序更新。During the processing, when the AGV mobile platform moves and is arranged at the current processing position, the robot milling processing platform control center controls the robot controller to start according to the robot processing program. First, the robot controller controls the processing robot to move and drive the auxiliary scanning and measuring device at the end to move to the work surface calibration module corresponding to the current processing position; then, the platform control center controls the auxiliary scanning and measuring device to start scanning, and controls the processing robot to move through the robot controller to drive the auxiliary scanning and measuring device at the end to complete the scanning and measurement of the work surface calibration module corresponding to the current processing position, thereby completing the calibration module scanning and measurement under non-precise positioning and no pre-calibration; robot milling processing The platform control center obtains the calibration module measurement point cloud data stored in the scanning field of view, and matches the calibration module measurement point cloud data with the calibration module theoretical digital model corresponding to the robot scanning measurement program, thereby obtaining the offset of the current physical calibration module relative to the calibration module theoretical digital model under the current robot field of view, thereby realizing the posture alignment of the non-precise positioning processing robot; on this basis, the robot milling processing platform control center obtains the updated part processing posture according to the physical calibration module offset on the tooling, and corrects the initial robot processing program according to the updated part processing posture, thereby realizing the milling processing program update after the non-precise positioning milling processing robot autonomously aligns.
当前加工位加工完成后,机器人铣削加工平台控制中心控制AGV移动平台移动至下一加工位,通过标定模块的扫描测量与机器人位姿自主找正,更新当前加工位的铣削加工程序,进而控制加工机器人完成下一加工位处的加工任务,由此实现超大型零件的移动式机器人铣削高精度加工。After the current processing position is completed, the robot milling processing platform control center controls the AGV mobile platform to move to the next processing position. Through the scanning measurement of the calibration module and the autonomous alignment of the robot posture, the milling processing program of the current processing position is updated, and then the processing robot is controlled to complete the processing task at the next processing position, thereby realizing high-precision mobile robot milling processing of ultra-large parts.
本实用新型在实现大长型零件高精度柔性多工位加工的同时大大降低了移动式机器人铣削加工平台的单机尺寸及制造成本。The utility model realizes high-precision flexible multi-station processing of long and large parts and at the same time greatly reduces the unit size and manufacturing cost of the mobile robot milling processing platform.
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of the present application, it should be understood that the terms "upper", "lower", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", etc., indicating orientations or positional relationships, are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as a limitation on the present application.
以上对本实用新型的具体实施例进行了描述。需要理解的是,本实用新型并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本实用新型的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。The above describes the specific embodiments of the present invention. It should be understood that the present invention is not limited to the above specific embodiments, and those skilled in the art can make various changes or modifications within the scope of the claims, which does not affect the essence of the present invention. In the absence of conflict, the embodiments of the present application and the features in the embodiments can be combined with each other at will.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322581720.9U CN220807391U (en) | 2023-09-21 | 2023-09-21 | Movable robot milling platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202322581720.9U CN220807391U (en) | 2023-09-21 | 2023-09-21 | Movable robot milling platform |
Publications (1)
Publication Number | Publication Date |
---|---|
CN220807391U true CN220807391U (en) | 2024-04-19 |
Family
ID=90699304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202322581720.9U Active CN220807391U (en) | 2023-09-21 | 2023-09-21 | Movable robot milling platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN220807391U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117260717A (en) * | 2023-09-21 | 2023-12-22 | 上海交通大学 | Autonomous mobile robot milling platform and control method thereof |
-
2023
- 2023-09-21 CN CN202322581720.9U patent/CN220807391U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117260717A (en) * | 2023-09-21 | 2023-12-22 | 上海交通大学 | Autonomous mobile robot milling platform and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102765489A (en) | Method and device for folding and flexibly positioning body wallboard | |
US8016579B2 (en) | Superabrasive grain setting apparatus | |
CN104999122B (en) | Automatic high-precision edge milling device and method for aircraft skin | |
CN106852012A (en) | A kind of irregular component plug-in machine | |
CN220807391U (en) | Movable robot milling platform | |
CN102554595A (en) | Skin manufacturing assembly system for airplane | |
US20220314455A1 (en) | Production system | |
CN112873205A (en) | Industrial robot disordered grabbing method based on real-time switching of double clamps | |
CN210704907U (en) | Industrial robot end position detection device | |
CN106926057B (en) | Multi-station precision processing platform | |
CN114407548B (en) | Intelligent spraying method and device for vehicle body identification | |
CN110315412A (en) | Intelligent production line of glass carving machine | |
CN110773754A (en) | High-precision complex thin-walled part intelligent turning unit | |
CN107363296A (en) | A kind of autonomous creep bores riveting system and its operation method | |
CN217530907U (en) | A device for secondary precise positioning of AGV based on laser ranging | |
CN111070210B (en) | Workpiece positioning and calibrating method | |
CN215394026U (en) | Automatic feeding and discharging mechanical arm of numerical control machine tool | |
CN206525034U (en) | A kind of irregular component plug-in machine | |
CN117260717A (en) | Autonomous mobile robot milling platform and control method thereof | |
CN210012312U (en) | Automatic cylinder feeding system | |
CN106829459A (en) | A kind of heterotype element feeds pickup system | |
CN117300709A (en) | Robot loading and unloading system equipped with visual positioning and its control method | |
WO2022091767A1 (en) | Image processing method, image processing device, robot mounted-type conveyance device, and system | |
CN116441947A (en) | Plate chain plate processing production line and production process thereof | |
CN211101615U (en) | High-precision complex thin-walled part intelligent turning unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |