[go: up one dir, main page]

CN219085980U - Schottky diode element - Google Patents

Schottky diode element Download PDF

Info

Publication number
CN219085980U
CN219085980U CN202223292978.9U CN202223292978U CN219085980U CN 219085980 U CN219085980 U CN 219085980U CN 202223292978 U CN202223292978 U CN 202223292978U CN 219085980 U CN219085980 U CN 219085980U
Authority
CN
China
Prior art keywords
layer
dielectric material
doped region
schottky diode
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202223292978.9U
Other languages
Chinese (zh)
Inventor
袁禧霙
侯竣元
王惠东
张峻玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yingfeng Technology (Shenzhen) Co.,Ltd.
Original Assignee
Xinfeng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinfeng Technology Co ltd filed Critical Xinfeng Technology Co ltd
Priority to CN202223292978.9U priority Critical patent/CN219085980U/en
Application granted granted Critical
Publication of CN219085980U publication Critical patent/CN219085980U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

本实用新型提供一种肖特基二极管元件。肖特基二极管元件包括一基底、一第一电极层、一磊晶层、一金属硅化物层、一第二电极层以及一介电材料层。第一电极层形成在基底的底端上。磊晶层形成在基底的顶端上,其中磊晶层具有至少一掺杂区。金属硅化物层形成在磊晶层上且覆盖至少一掺杂区的一部分表面。第二电极层形成在金属硅化物层上。介电材料层从基底延伸到第二电极层。介电材料层覆盖至少一掺杂区的另一部分表面且覆盖第二电极层的一部分表面。藉此,以使得金属硅化物层能够相距介电材料层的侧切割面一预定距离,藉此以避免产生漏电的问题。

Figure 202223292978

The utility model provides a schottky diode element. The Schottky diode element includes a substrate, a first electrode layer, an epitaxial layer, a metal silicide layer, a second electrode layer and a dielectric material layer. The first electrode layer is formed on the bottom end of the substrate. An epitaxial layer is formed on the top of the substrate, wherein the epitaxial layer has at least one doped region. The metal silicide layer is formed on the epitaxial layer and covers a part of the surface of at least one doped region. The second electrode layer is formed on the metal silicide layer. A layer of dielectric material extends from the base to the second electrode layer. The dielectric material layer covers another part of the surface of at least one doped region and covers a part of the surface of the second electrode layer. Thereby, the metal silicide layer can be separated from the side cutting surface of the dielectric material layer by a predetermined distance, thereby avoiding the problem of electric leakage.

Figure 202223292978

Description

肖特基二极管元件Schottky diode element

技术领域technical field

本实用新型涉及一种二极管元件,特别是涉及一种肖特基二极管元件。The utility model relates to a diode element, in particular to a Schottky diode element.

背景技术Background technique

现有技术中,肖特基二极管(Schottky diode)是一种导通电压降较低且允许高速切换的二极管,是利用肖特基能障(Schottky barrier)特性而产生的电子组件。肖特基二极管的导通电压非常低。一般的二极管在电流流过时,会产生约0.7至1.7伏特的电压降,不过肖特基二极管的电压降只有0.15至0.45伏特,因此可以有效提升系统的效率。In the prior art, a Schottky diode is a diode with a low turn-on voltage drop and allows high-speed switching, and is an electronic component produced by utilizing the characteristics of a Schottky barrier. Schottky diodes have a very low turn-on voltage. A general diode will produce a voltage drop of about 0.7 to 1.7 volts when current flows, but the voltage drop of a Schottky diode is only 0.15 to 0.45 volts, so the efficiency of the system can be effectively improved.

再者,肖特基二极管是利用金属-半导体接面作为肖特基能障,以产生整流的效果,其与一般的二极管所采用由半导体-半导体接面产生的P-N接面不同。肖特基能障的特性使得肖特基二极管的导通电压降较低,而且可以提高切换的速度。Furthermore, the Schottky diode uses the metal-semiconductor junction as the Schottky energy barrier to produce a rectification effect, which is different from the P-N junction generated by the semiconductor-semiconductor junction used by general diodes. The characteristics of the Schottky energy barrier make the conduction voltage drop of the Schottky diode lower, and can increase the switching speed.

此外,肖特基二极管与一般的二极管最大的差异在于逆向恢复时间,也就是二极管由流过顺向电流的导通状态,切换到不导通状态所需的时间。对于一般的二极管,其逆向恢复时间大约是几百nS,若是高速二极管则会低于一百nS。然而,肖特基二极管没有逆向恢复时间,因此小信号的肖特基二极管切换的时间约为几十pS,特殊的大容量肖特基二极管切换的时间也才几十pS。一般的二极管在逆向恢复时间内,会因逆向电流而造成EMI噪声,然而肖特基二极管可以立即切换,没有逆向恢复时间以及反相电流的问题。In addition, the biggest difference between Schottky diodes and ordinary diodes is the reverse recovery time, that is, the time it takes for the diode to switch from the conduction state through the forward current to the non-conduction state. For ordinary diodes, the reverse recovery time is about several hundred nS, and for high-speed diodes, it is less than one hundred nS. However, Schottky diodes have no reverse recovery time, so the switching time of small-signal Schottky diodes is about tens of pS, and the switching time of special large-capacity Schottky diodes is only tens of pS. General diodes will cause EMI noise due to reverse current during the reverse recovery time, but Schottky diodes can switch immediately without the problems of reverse recovery time and reverse current.

另外,肖特基二极管是一种使用多数载流子的半导体组件。若肖特基二极管是使用N型半导体,其二极管的特性是由多数载流子(即电子)所产生。多数载流子快速地由半导体穿过接面,注入另一侧金属的传导带,由于此过程不涉及N型、P型载流子的结合(随机反应而且需要时间较长),因此肖特基二极管停止导通的速度会比传统的二极管速度还要快。这样的特性使得组件所需要的面积可以减少,又进一步的减少切换所需的时间。Also, a Schottky diode is a semiconductor component that uses majority carriers. If the Schottky diode uses an N-type semiconductor, its diode characteristics are generated by the majority of carriers (ie, electrons). Most carriers quickly pass through the junction from the semiconductor and inject into the conduction band of the metal on the other side. Since this process does not involve the combination of N-type and P-type carriers (random reaction and takes a long time), Schott The base diode will stop conducting faster than a conventional diode. Such a feature reduces the area required by the components and further reduces the time required for switching.

现有技术中,肖特基二极管最大的缺陷是其逆向偏压较低及逆向漏电流偏大,像使用硅及金属为材料的肖特基二极管,其逆向偏压额定耐压最高只到50V,而逆向漏电流值为正温度特性,容易随着温度升高而急剧变大,实务设计上需注意其热失控的隐忧。同时,在制造肖特基二极管过程中,需要使用多次的光罩制程,不只成本较高、制程繁复而且制造时间也拉长。In the prior art, the biggest defect of Schottky diodes is its low reverse bias voltage and large reverse leakage current. For Schottky diodes made of silicon and metal, their reverse bias rated withstand voltage is only up to 50V , and the reverse leakage current value has a positive temperature characteristic, which tends to increase sharply as the temperature rises. In practical design, it is necessary to pay attention to the hidden danger of thermal runaway. At the same time, in the process of manufacturing Schottky diodes, it is necessary to use multiple photomask processes, which not only has high cost, complicated process, but also prolongs the manufacturing time.

实用新型内容Utility model content

本实用新型所欲解决的问题在于,针对现有技术的不足提供一种肖特基二极管元件。The problem to be solved by the utility model is to provide a Schottky diode element for the deficiencies of the prior art.

为了解决上述的问题,本实用新型所采用的其中一技术手段是提供一种肖特基二极管元件,其包括:一基底、一第一电极层、一磊晶层、一金属硅化物层、一第二电极层以及一介电材料层。所述第一电极层形成在所述基底的底端上。所述磊晶层形成在所述基底的顶端上,其中所述磊晶层具有至少一掺杂区。所述金属硅化物层形成在所述磊晶层上且覆盖所述至少一掺杂区的一部分表面。所述第二电极层形成在所述金属硅化物层上。所述介电材料层从所述基底延伸到所述第二电极层。所述介电材料层覆盖所述至少一掺杂区的另一部分表面且覆盖所述第二电极层的一部分表面。In order to solve the above problems, one of the technical means adopted by the utility model is to provide a Schottky diode element, which includes: a substrate, a first electrode layer, an epitaxial layer, a metal silicide layer, a The second electrode layer and a dielectric material layer. The first electrode layer is formed on the bottom end of the substrate. The epitaxial layer is formed on top of the substrate, wherein the epitaxial layer has at least one doped region. The metal silicide layer is formed on the epitaxial layer and covers a part of the surface of the at least one doped region. The second electrode layer is formed on the metal silicide layer. The layer of dielectric material extends from the base to the second electrode layer. The dielectric material layer covers another part of the surface of the at least one doped region and covers a part of the surface of the second electrode layer.

在其中一可行的或者较佳的实施例中,所述基底与所述磊晶层的总厚度实质上介于250至300μm之间,且所述磊晶层的厚度实质上介于3至10μm之间;其中,所述第一电极层为包括有钛层、镍层、银层的一第一多层导电结构,且所述第二电极层为包括有钛层、镍层、银层的一第二多层导电结构;其中,所述金属硅化物层的厚度实质上介于10至90nm之间。In one feasible or preferred embodiment, the total thickness of the substrate and the epitaxial layer is substantially between 250 and 300 μm, and the thickness of the epitaxial layer is substantially between 3 and 10 μm. Between; wherein, the first electrode layer is a first multi-layer conductive structure including a titanium layer, a nickel layer, and a silver layer, and the second electrode layer is a layer that includes a titanium layer, a nickel layer, and a silver layer A second multi-layer conductive structure; wherein, the thickness of the metal silicide layer is substantially between 10 to 90 nm.

在其中一可行的或者较佳的实施例中,所述至少一掺杂区的厚度实质上介于1至3μm之间,且所述至少一掺杂区的宽度实质上介于70至90μm之间;其中,所述至少一掺杂区的一第一部分上表面被所述金属硅化物层所覆盖,且所述至少一掺杂区的一第二部分上表面以及一侧表面被所述介电材料层所覆盖。In one feasible or preferred embodiment, the thickness of the at least one doped region is substantially between 1 and 3 μm, and the width of the at least one doped region is substantially between 70 and 90 μm wherein, a first portion of the upper surface of the at least one doped region is covered by the metal silicide layer, and a second portion of the upper surface and one side surface of the at least one doped region are covered by the interlayer Covered by an electrical material layer.

在其中一可行的或者较佳的实施例中,所述介电材料层为具有聚酰亚胺或者硅胶的一水气阻隔层,且所述介电材料层的顶端相对于所述第二电极层的最小距离实质上介于3至20μm之间。In one of the feasible or preferred embodiments, the dielectric material layer is a moisture barrier layer with polyimide or silica gel, and the top of the dielectric material layer is opposite to the second electrode The minimum distance of the layers is substantially between 3 and 20 μm.

在其中一可行的或者较佳的实施例中,所述介电材料层具有一侧切割面,所述第二电极层相距所述介电材料层的所述侧切割面的最短距离大于5μm,所述金属硅化物层相距所述介电材料层的所述侧切割面的最短距离大于5μm,所述至少一掺杂区相距所述介电材料层的所述侧切割面的最短距离实质上介于5至20μm之间,且所述磊晶层相距所述介电材料层的所述侧切割面的最短距离实质上介于5至20μm之间。In one feasible or preferred embodiment, the dielectric material layer has a side cut surface, and the shortest distance between the second electrode layer and the side cut surface of the dielectric material layer is greater than 5 μm, The shortest distance between the metal silicide layer and the side cutting surface of the dielectric material layer is greater than 5 μm, and the shortest distance between the at least one doped region and the side cutting surface of the dielectric material layer is substantially between 5 and 20 μm, and the shortest distance between the epitaxial layer and the side cutting surface of the dielectric material layer is substantially between 5 and 20 μm.

在其中一可行的或者较佳的实施例中,所述切割槽的深度实质上介于20至50μm之间,且所述切割槽的宽度实质上介于60至80μm之间。In one feasible or preferred embodiment, the depth of the cutting groove is substantially between 20-50 μm, and the width of the cutting groove is substantially between 60-80 μm.

在其中一可行的或者较佳的实施例中,在切割所述初始介电材料层、所述初始基底以及所述初始第一电极层的步骤后,多个肖特基二极管元件被制作完成;其中,每一肖特基二极管元件包括所述基底、所述第一电极层、具有所述掺杂区的所述磊晶层、所述金属硅化物层、所述第二电极层以及所述介电材料层,所述第一电极层形成在所述基底的底端上,所述磊晶层形成在所述基底的顶端上,所述金属硅化物层形成在所述磊晶层上且覆盖所述掺杂区的一部分表面,所述第二电极层形成在所述金属硅化物层上,所述介电材料层从所述基底延伸到所述第二电极层,且所述介电材料层覆盖所述至少一掺杂区的另一部分表面且覆盖所述第二电极层的一部分表面。In one of the feasible or preferred embodiments, after the step of cutting the initial dielectric material layer, the initial substrate and the initial first electrode layer, a plurality of Schottky diode elements are fabricated; Wherein, each Schottky diode element includes the substrate, the first electrode layer, the epitaxial layer having the doped region, the metal silicide layer, the second electrode layer and the a dielectric material layer, the first electrode layer is formed on the bottom of the substrate, the epitaxial layer is formed on the top of the substrate, the metal silicide layer is formed on the epitaxial layer, and Covering a part of the surface of the doped region, the second electrode layer is formed on the metal silicide layer, the dielectric material layer extends from the base to the second electrode layer, and the dielectric material layer The material layer covers another part of the surface of the at least one doped region and covers a part of the surface of the second electrode layer.

本实用新型的其中一有益效果在于,本实用新型所提供的肖特基二极管元件,其能通过“所述金属硅化物层形成在所述磊晶层上且覆盖所述至少一掺杂区的一部分表面”以及“所述介电材料层覆盖所述至少一掺杂区的另一部分表面且覆盖所述第二电极层的一部分表面”的技术方案,以使得金属硅化物层能够相距所述介电材料层的所述侧切割面一预定距离,藉此以避免产生漏电的问题。One of the beneficial effects of the present invention is that the Schottky diode element provided by the present invention can pass through "the metal silicide layer is formed on the epitaxial layer and covers the at least one doped region." a part of the surface” and “the dielectric material layer covers another part of the surface of the at least one doped region and covers a part of the surface of the second electrode layer”, so that the metal silicide layer can be separated from the dielectric The side cutting surface of the electrical material layer has a predetermined distance, thereby avoiding the problem of electric leakage.

为使能进一步了解本实用新型的特征及技术内容,请参阅以下有关本实用新型的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本实用新型加以限制。In order to further understand the features and technical content of the present utility model, please refer to the following detailed description and accompanying drawings of the present utility model. However, the provided drawings are only for reference and description, and are not intended to limit the present utility model. .

附图说明Description of drawings

图1为本实用新型实施例所提供的肖特基二极管元件的制作方法的流程图。FIG. 1 is a flow chart of a method for manufacturing a Schottky diode element provided by an embodiment of the present invention.

图2为本实用新型实施例所提供的肖特基二极管元件的制作方法的步骤S100的示意图。FIG. 2 is a schematic diagram of step S100 of the manufacturing method of the Schottky diode element provided by the embodiment of the present invention.

图3为本实用新型实施例所提供的肖特基二极管元件的制作方法的步骤S102的示意图。FIG. 3 is a schematic diagram of step S102 of the manufacturing method of the Schottky diode element provided by the embodiment of the present invention.

图4为本实用新型实施例所提供的肖特基二极管元件的制作方法中将初始金属硅化物层形成于初始磊晶层上的示意图。FIG. 4 is a schematic diagram of forming an initial metal silicide layer on the initial epitaxial layer in the manufacturing method of the Schottky diode element provided by the embodiment of the present invention.

图5为本实用新型实施例所提供的肖特基二极管元件的制作方法的步骤S104的示意图。FIG. 5 is a schematic diagram of step S104 of the manufacturing method of the Schottky diode element provided by the embodiment of the present invention.

图6为本实用新型实施例所提供的肖特基二极管元件的制作方法的步骤S106的示意图。FIG. 6 is a schematic diagram of step S106 of the manufacturing method of the Schottky diode element provided by the embodiment of the present invention.

图7为本实用新型实施例所提供的肖特基二极管元件的制作方法的步骤S108的示意图。FIG. 7 is a schematic diagram of step S108 of the manufacturing method of the Schottky diode element provided by the embodiment of the present invention.

图8为本实用新型实施例所提供的肖特基二极管元件的制作方法的步骤S110的示意图。FIG. 8 is a schematic diagram of step S110 of the manufacturing method of the Schottky diode element provided by the embodiment of the present invention.

图9为本实用新型实施例所提供的肖特基二极管元件的侧视剖面示意图。FIG. 9 is a schematic side sectional view of the Schottky diode element provided by the embodiment of the present invention.

图10为本实用新型实施例所提供的肖特基二极管元件的俯视示意图。FIG. 10 is a schematic top view of the Schottky diode element provided by the embodiment of the present invention.

具体实施方式Detailed ways

以下是通过特定的具体实施例来说明本实用新型所公开有关“肖特基二极管元件”的实施方式,本领域技术人员可由本说明书所公开的内容了解本实用新型的优点与效果。本实用新型可通过其他不同的具体实施例加以实行或应用,本说明书中的各项细节也可基于不同观点与应用,在不背离本实用新型的构思下进行各种修改与变更。另外,需事先声明的是,本实用新型的附图仅为简单示意说明,并非依实际尺寸的描绘。以下的实施方式将进一步详细说明本实用新型的相关技术内容,但所公开的内容并非用以限制本实用新型的保护范围。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。The implementation of the "Schottky diode element" disclosed in the utility model is described below through specific specific examples. Those skilled in the art can understand the advantages and effects of the utility model from the content disclosed in this specification. The utility model can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the idea of the utility model. In addition, it should be stated in advance that the drawings of the present utility model are only for simple illustration, and are not drawn according to the actual size. The following embodiments will further describe the relevant technical content of the present utility model in detail, but the disclosed content is not intended to limit the protection scope of the present utility model. In addition, the term "or" used herein may include any one or a combination of more of the associated listed items depending on the actual situation.

[实施例][Example]

参阅图1至图10所示,本实用新型实施例提供一种肖特基二极管元件的制作方法,其至少包括下列步骤:(值得注意的是,本实用新型可以同时制作出多个肖特基二极管元件S,而为了简易说明制作过程,图2至图8只显示制作其中一个完整的肖特基二极管元件为例子做说明,图2至图8的两侧被截断以利图式的放大)。Referring to Fig. 1 to Fig. 10 shown, the utility model embodiment provides a kind of manufacturing method of Schottky diode element, it comprises the following steps at least: (it is worth noting that the utility model can make a plurality of Schottky Diode element S, and in order to simplify the production process, Figures 2 to 8 only show the production of a complete Schottky diode element as an example, and the two sides of Figures 2 to 8 are truncated to facilitate the enlarged diagram) .

首先,配合图1与图2所示,提供一结构层,结构层包括一初始基底1a(即进行后续加工制程之前的基底材料层)、形成在初始基底1a的底端上的一初始第一电极层2a(即进行后续加工制程之前的电极材料层)、形成在初始基底1a的顶端上的一初始磊晶层3a(即进行后续加工制程之前的磊晶材料层)(步骤S100)。举例来说,初始基底1a可以由半导体材料所制成(例如初始基底1a可为硅基板),并且初始基底1a可以掺杂有高浓度的受体或者施体离子(例如初始基底1a可以掺杂有高浓度的N+离子或者N-离子)。另外,初始磊晶层3a的掺杂形式可以如同初始基底1a,但其掺杂浓度较小(例如初始磊晶层3a可以掺杂有低浓度的N+离子或者N-离子)。此外,初始第一电极层2a可为包括有钛层、镍层、银层(Ti/Ni/Ag)的一第一多层导电结构,并且初始第一电极层2a可以通过化学气相沉积(Chemical VaporDeposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)或者其它任何的加工方式而制作完成。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。First, as shown in FIG. 1 and FIG. 2, a structural layer is provided, and the structural layer includes an initial substrate 1a (i.e., the base material layer before subsequent processing), an initial first layer formed on the bottom of the initial substrate 1a. The electrode layer 2a (ie, the electrode material layer before the subsequent processing process), and an initial epitaxial layer 3a (ie, the epitaxial material layer before the subsequent processing process) are formed on the top of the initial substrate 1a (step S100 ). For example, the initial substrate 1a can be made of a semiconductor material (for example, the initial substrate 1a can be a silicon substrate), and the initial substrate 1a can be doped with a high concentration of acceptor or donor ions (for example, the initial substrate 1a can be doped There are high concentrations of N+ ions or N- ions). In addition, the doping form of the initial epitaxial layer 3a can be the same as that of the initial substrate 1a, but the doping concentration is lower (for example, the initial epitaxial layer 3a can be doped with low concentration of N+ ions or N− ions). In addition, the initial first electrode layer 2a can be a first multi-layer conductive structure including a titanium layer, a nickel layer, and a silver layer (Ti/Ni/Ag), and the initial first electrode layer 2a can be deposited by chemical vapor deposition (Chemical Vapor Deposition). VaporDeposition, CVD), physical vapor deposition (Physical Vapor Deposition, PVD) or any other processing method. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

接着,配合图1、图2与图3所示,形成初始掺杂区30a(图3为剖面示意图,图3所显示的两个剖面区域30a实际上是由一围绕状的初始掺杂区经侧视剖面所得到的示意图)于初始磊晶层3a内(步骤S102)。举例来说,在形成初始掺杂区30a于初始磊晶层3a内的步骤S102之前,可以先通过光罩以使得氧化层L形成多个凹槽(图3以两个凹槽做为举例说明),而初始磊晶层3a的上表面可以通过具有多个凹槽的氧化层L的遮避而形成多个裸露表面(图3以两个裸露表面做为举例说明),然后再应用离子扩散(ion diffusion)或者离子布值(ionimplantation)的方式通过多个凹槽而在初始磊晶层3a的裸露表面掺杂杂质,以形成多个初始掺杂区30a。值得注意的是,初始掺杂区30a的导电形式与初始磊晶层3a的导电形式不相同。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。Next, as shown in FIG. 1, FIG. 2 and FIG. 3, an initial doping region 30a is formed (FIG. 3 is a schematic cross-sectional view, and the two cross-sectional regions 30a shown in FIG. The schematic diagram obtained from the side view section) is placed in the initial epitaxial layer 3 a (step S102 ). For example, before the step S102 of forming the initial doped region 30a in the initial epitaxial layer 3a, a photomask may be used to form a plurality of grooves in the oxide layer L (two grooves are used as an example in FIG. 3 ), and the upper surface of the initial epitaxial layer 3a can form a plurality of exposed surfaces by covering the oxide layer L with a plurality of grooves (Figure 3 uses two exposed surfaces as an example), and then apply ion diffusion The exposed surface of the initial epitaxial layer 3 a is doped with impurities by means of ion diffusion or ion implantation through a plurality of grooves, so as to form a plurality of initial doping regions 30 a. It should be noted that the conductive form of the initial doped region 30a is different from that of the initial epitaxial layer 3a. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

然后,配合图1、图3、图4与图5所示,形成多个金属硅化物层4于初始磊晶层3a上,每一金属硅化物层4覆盖初始掺杂区30a的一部分表面(步骤S104)。举例来说,在形成多个金属硅化物层4于初始磊晶层3a上的步骤S104之前,先要移除图3的氧化层L,然后再通过化学气相沉积(Chemical Vapor Deposition,CVD)或者物理气相沉积(Physical VaporDeposition,PVD)以形成一初始金属硅化物层4a于初始磊晶层3a上(如图4所示),接着再通过半导体制程将不要的部分移除,最后才会形成图5所显示的多个金属硅化物层4。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。Then, as shown in FIG. 1, FIG. 3, FIG. 4 and FIG. 5, a plurality of metal silicide layers 4 are formed on the initial epitaxial layer 3a, and each metal silicide layer 4 covers a part of the surface of the initial doped region 30a ( Step S104). For example, before the step S104 of forming a plurality of metal silicide layers 4 on the initial epitaxial layer 3a, the oxide layer L in FIG. Physical Vapor Deposition (Physical VaporDeposition, PVD) to form an initial metal silicide layer 4a on the initial epitaxial layer 3a (as shown in Figure 4), and then remove the unnecessary parts through the semiconductor process, and finally form the pattern 5 shows a plurality of metal silicide layers 4 . However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

接着,配合图1、图5与图6所示,形成多个第二电极层5,每一第二电极层5设置在相对应的金属硅化物层4上(步骤S106)。举例来说,第二电极层5可为包括有钛层、镍层、银层(Ti/Ni/Ag)的一第二多层导电结构,并且第二电极层5可以通过化学气相沉积(ChemicalVapor Deposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)或者其它任何的加工方式而制作完成。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。Next, as shown in FIG. 1 , FIG. 5 and FIG. 6 , a plurality of second electrode layers 5 are formed, and each second electrode layer 5 is disposed on a corresponding metal silicide layer 4 (step S106 ). For example, the second electrode layer 5 can be a second multi-layer conductive structure comprising a titanium layer, a nickel layer, and a silver layer (Ti/Ni/Ag), and the second electrode layer 5 can be deposited by chemical vapor deposition (Chemical Vapor Deposition, CVD), physical vapor deposition (Physical Vapor Deposition, PVD) or any other processing method. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

接下来,配合图1、图6与图7所示,形成切割槽G(从图7的侧视剖面示意图观看会有2个切割槽G,但实际上多个切割槽G会形成交错井字状,而使得多个切割槽G会彼此连通),以将初始掺杂区30a切割成彼此分离的多个掺杂区30(图7最靠近中间位置的2个掺杂区30实际上为1个围绕状的掺杂区30),并将初始磊晶层3a切割成彼此分离的多个磊晶层3(步骤S108)。举例来说,切割槽G的深度GH实质上可以介于20至50μm之间,并且切割槽G的宽度GW实质上可以介于60至80μm之间。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。Next, as shown in Fig. 1, Fig. 6 and Fig. 7, the cutting groove G is formed (from the side view cross-sectional schematic view of Fig. 7, there will be two cutting grooves G, but in fact, multiple cutting grooves G will form a staggered well shape, so that a plurality of cutting grooves G will communicate with each other), to cut the initial doped region 30a into a plurality of doped regions 30 separated from each other (the two doped regions 30 closest to the middle position in FIG. 7 are actually 1 a surrounding doped region 30), and cut the initial epitaxial layer 3a into a plurality of epitaxial layers 3 separated from each other (step S108). For example, the depth GH of the cutting groove G may be substantially between 20-50 μm, and the width GW of the cutting groove G may be substantially between 60-80 μm. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

然后,配合图1、图7与图8所示,形成初始介电材料层6a(从图7的侧视剖面示意图观看会有2个初始介电材料层6a,但实际上初始介电材料层6a会依沿着形成交错井字状的多个切割槽G而成形)于切割槽G内,以覆盖每一掺杂区30的一部分表面以及每一第二电极层5的一部分表面(步骤S110)。举例来说,初始介电材料层6a可以通过化学气相沉积(Chemical Vapor Deposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)或者其它任何的加工方式而制作完成。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。Then, as shown in FIG. 1, FIG. 7 and FIG. 8, an initial dielectric material layer 6a is formed (there are two initial dielectric material layers 6a from the side view schematic diagram of FIG. 7, but in fact the initial dielectric material layer 6a will be shaped according to a plurality of cutting grooves G formed along the staggered grid shape) in the cutting groove G to cover a part of the surface of each doped region 30 and a part of the surface of each second electrode layer 5 (step S110 ). For example, the initial dielectric material layer 6a may be fabricated by chemical vapor deposition (Chemical Vapor Deposition, CVD), physical vapor deposition (Physical Vapor Deposition, PVD) or any other processing methods. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

接着,配合图1、图8、图9与图10所示,沿着图8的切割线,切割初始介电材料层6a、初始基底1a以及初始第一电极层2a,以形成多个介电材料层6、多个基底1以及多个第一电极层2,进而完成多个肖特基二极管元件S的制作(步骤S112)。Next, as shown in FIG. 1, FIG. 8, FIG. 9 and FIG. 10, the initial dielectric material layer 6a, the initial substrate 1a, and the initial first electrode layer 2a are cut along the cutting line in FIG. The material layer 6 , the plurality of substrates 1 and the plurality of first electrode layers 2 , thereby completing the fabrication of a plurality of Schottky diode elements S (step S112 ).

值得注意的是,配合图8、图9与图10所示,在切割初始介电材料层6a、初始基底1a以及初始第一电极层2a的步骤S112后,多个肖特基二极管元件S被制作完成。其中,每一肖特基二极管元件包括基底1、第一电极层2(或者可做为肖基接口的一上金属层)、具有掺杂区30的磊晶层3、金属硅化物层4、第二电极层5(或者可做为奥姆接口的一下金属层)以及介电材料层6。It is worth noting that, as shown in FIG. 8, FIG. 9 and FIG. 10, after the step S112 of cutting the initial dielectric material layer 6a, the initial substrate 1a, and the initial first electrode layer 2a, a plurality of Schottky diode elements S are manufacture complete. Wherein, each Schottky diode element includes a substrate 1, a first electrode layer 2 (or an upper metal layer that can be used as a Schottky interface), an epitaxial layer 3 having a doped region 30, a metal silicide layer 4, The second electrode layer 5 (or the lower metal layer that can be used as the Ohmic interface) and the dielectric material layer 6 .

更进一步来说,配合图9与图10所示,第一电极层2形成在基底1的底端上,并且磊晶层3形成在基底1的顶端上。举例来说,基底1与磊晶层3的总厚度实质上可以介于250至300μm之间,第一电极层2可为包括有钛层、镍层、银层的一第一多层导电结构,并且磊晶层3的厚度3H实质上可以介于3至10μm之间。另外,至少一掺杂区30的厚度30H实质上可以介于1至3μm之间,并且至少一掺杂区30的宽度30W实质上可以介于70至90μm之间,借此可避免微裂痕(microcrack)而造成漏电的问题。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。Furthermore, as shown in FIG. 9 and FIG. 10 , the first electrode layer 2 is formed on the bottom of the substrate 1 , and the epitaxial layer 3 is formed on the top of the substrate 1 . For example, the total thickness of the substrate 1 and the epitaxial layer 3 can be substantially between 250 and 300 μm, and the first electrode layer 2 can be a first multi-layer conductive structure including a titanium layer, a nickel layer, and a silver layer. , and the thickness 3H of the epitaxial layer 3 may be substantially between 3 and 10 μm. In addition, the thickness 30H of the at least one doped region 30 may be substantially between 1 and 3 μm, and the width 30W of the at least one doped region 30 may be substantially between 70 and 90 μm, thereby avoiding microcracks ( microcrack) and cause leakage problems. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

更进一步来说,配合图9与图10所示,金属硅化物层4形成在磊晶层3上且覆盖掺杂区30的一部分表面,并且第二电极层5形成在金属硅化物层4上。举例来说,金属硅化物层4的厚度4H实质上可以介于10至90nm之间,并且第二电极层5可为包括有钛层、镍层、银层的一第二多层导电结构。另外,至少一掺杂区30的一第一部分上表面3001可以被金属硅化物层4所覆盖,并且至少一掺杂区30的一第二部分上表面3002以及一侧表面3003可以被介电材料层6所覆盖。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。Furthermore, as shown in FIG. 9 and FIG. 10 , the metal silicide layer 4 is formed on the epitaxial layer 3 and covers a part of the surface of the doped region 30 , and the second electrode layer 5 is formed on the metal silicide layer 4 . For example, the thickness 4H of the metal silicide layer 4 can be substantially between 10 to 90 nm, and the second electrode layer 5 can be a second multi-layer conductive structure including a titanium layer, a nickel layer, and a silver layer. In addition, a first part of the upper surface 3001 of at least one doped region 30 can be covered by the metal silicide layer 4, and a second part of the upper surface 3002 and one side surface 3003 of at least one doped region 30 can be covered by a dielectric material covered by layer 6. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

更进一步来说,配合图9与图10所示,介电材料层6可以从基底1延伸到第二电极层5,并且介电材料层6覆盖至少一掺杂区30的另一部分表面且覆盖第二电极层5的一部分表面。举例来说,介电材料层6可以为具有聚酰亚胺(polyimide)或者硅胶(silicone)的一水气阻隔层,以避免水气渗入肖特基二极管元件S的内部而造成损坏。此外,介电材料层6具有一侧切割面6000,并且介电材料层6的顶端相对于第二电极层5的最小距离6H实质上介于3至20μm之间。另外,第二电极层5相距介电材料层6的侧切割面6000的最短距离5L大于5μm,并且金属硅化物层4相距介电材料层6的侧切割面6000的最短距离4L大于5μm,借此以避免产生漏电的问题。此外,至少一掺杂区30相距介电材料层6的侧切割面6000的最短距离30L实质上介于5至20μm之间,并且磊晶层3相距介电材料层6的侧切割面6000的最短距离3L实质上介于5至20μm之间。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本实用新型。Furthermore, as shown in FIG. 9 and FIG. 10, the dielectric material layer 6 can extend from the substrate 1 to the second electrode layer 5, and the dielectric material layer 6 covers another part of the surface of at least one doped region 30 and covers Part of the surface of the second electrode layer 5 . For example, the dielectric material layer 6 can be a moisture barrier layer made of polyimide or silicone, so as to prevent moisture from penetrating into the interior of the Schottky diode element S and causing damage. In addition, the dielectric material layer 6 has a cut surface 6000 on one side, and the minimum distance 6H between the top of the dielectric material layer 6 and the second electrode layer 5 is substantially between 3 and 20 μm. In addition, the shortest distance 5L between the second electrode layer 5 and the side cutting surface 6000 of the dielectric material layer 6 is greater than 5 μm, and the shortest distance 4L between the metal silicide layer 4 and the side cutting surface 6000 of the dielectric material layer 6 is greater than 5 μm, by This avoids the problem of electric leakage. In addition, the shortest distance 30L between at least one doped region 30 and the side cutting surface 6000 of the dielectric material layer 6 is substantially between 5 and 20 μm, and the distance between the epitaxial layer 3 and the side cutting surface 6000 of the dielectric material layer 6 is The shortest distance 3L is substantially between 5 and 20 μm. However, the above-mentioned example is only one possible embodiment and is not intended to limit the present invention.

[实施例的有益效果][Advantageous Effects of Embodiment]

本实用新型的其中一有益效果在于,本实用新型所提供的肖特基二极管元件,其能通过“金属硅化物层4形成在磊晶层3上且覆盖至少一掺杂区30的一部分表面”以及“介电材料层6覆盖至少一掺杂区30的另一部分表面且覆盖第二电极层5的一部分表面”的技术方案,以使得金属硅化物层4能够相距介电材料层6的侧切割面6000一预定距离,借此以避免产生漏电的问题。One of the beneficial effects of the present invention is that the Schottky diode element provided by the present invention can be formed by "the metal silicide layer 4 is formed on the epitaxial layer 3 and covers a part of the surface of at least one doped region 30" And the technical scheme of "the dielectric material layer 6 covers another part of the surface of at least one doped region 30 and covers a part of the surface of the second electrode layer 5", so that the metal silicide layer 4 can be cut from the side of the dielectric material layer 6 The surface 6000 is at a predetermined distance, so as to avoid the problem of electric leakage.

本实用新型的另外一有益效果在于,本实用新型所提供的肖特基二极管元件的制作方法,其能通过“提供一结构层,结构层包括一初始基底1a、形成在初始基底1a的底端上的一初始第一电极层2a、形成在初始基底1a的顶端上的一初始磊晶层3a”、“形成初始掺杂区30a于初始磊晶层3a内”、“形成多个金属硅化物层4于初始磊晶层3a上,每一金属硅化物层4覆盖初始掺杂区30a的一部分表面”、“形成多个第二电极层5,每一第二电极层5设置在相对应的金属硅化物层4上”、“形成切割槽G,以将初始掺杂区30a切割成彼此分离的多个掺杂区30,并将初始磊晶层3a切割成彼此分离的多个磊晶层3”、“形成初始介电材料层6a于切割槽G内,以覆盖每一掺杂区30的一部分表面以及每一第二电极层5的一部分表面”、“切割初始介电材料层6a、初始基底1a以及初始第一电极层2a,以形成多个介电材料层6、多个基底1以及多个第一电极层2”的技术方案,以减少制作过程中光罩的使用数量。Another beneficial effect of the present utility model is that the manufacturing method of the Schottky diode element provided by the present utility model can pass through "providing a structural layer, the structural layer comprises an initial base 1a, is formed on the bottom of the initial base 1a An initial first electrode layer 2a on the initial substrate 1a, an initial epitaxial layer 3a formed on the top of the initial substrate 1a", "form an initial doped region 30a in the initial epitaxial layer 3a", "form a plurality of metal silicides Layer 4 is on the initial epitaxial layer 3a, and each metal silicide layer 4 covers a part of the surface of the initial doping region 30a", "forming a plurality of second electrode layers 5, and each second electrode layer 5 is arranged on a corresponding On the metal silicide layer 4 ", "form a cutting groove G to cut the initial doped region 30a into a plurality of doped regions 30 separated from each other, and cut the initial epitaxial layer 3a into a plurality of epitaxial layers separated from each other 3", "form the initial dielectric material layer 6a in the cutting groove G to cover a part of the surface of each doped region 30 and a part of the surface of each second electrode layer 5", "cut the initial dielectric material layer 6a, The initial substrate 1a and the initial first electrode layer 2a are used to form a plurality of dielectric material layers 6, a plurality of substrates 1 and a plurality of first electrode layers 2", so as to reduce the number of photomasks used in the manufacturing process.

以上所公开的内容仅为本实用新型的优选可行实施例,并非因此局限本实用新型的权利要求书的保护范围,所以凡是运用本实用新型说明书及附图内容所做的等效技术变化,均包含于本实用新型的权利要求书的保护范围内。The content disclosed above is only a preferred feasible embodiment of the utility model, and is not therefore limiting the protection scope of the claims of the utility model, so all equivalent technical changes made by using the utility model specification and accompanying drawings are all Included in the scope of protection of the claims of the present utility model.

Claims (5)

1. A schottky diode element, the schottky diode element comprising:
a substrate;
a first electrode layer formed on the bottom end of the substrate;
an epitaxial layer formed on the top of the substrate, wherein the epitaxial layer has at least one doped region;
a metal silicide layer formed on the epitaxial layer and covering a portion of the surface of the at least one doped region;
a second electrode layer formed on the metal silicide layer; and
a layer of dielectric material extending from the substrate to the second electrode layer, wherein the layer of dielectric material covers another portion of the surface of the at least one doped region and covers a portion of the surface of the second electrode layer.
2. The schottky diode device of claim 1 wherein the total thickness of the substrate and the epitaxial layer is substantially between 250 and 300 μιη and the thickness of the epitaxial layer is substantially between 3 and 10 μιη; the first electrode layer is a first multi-layer conductive structure comprising a titanium layer, a nickel layer and a silver layer, and the second electrode layer is a second multi-layer conductive structure comprising a titanium layer, a nickel layer and a silver layer; wherein the thickness of the metal silicide layer is substantially between 10 and 90 nm.
3. The schottky diode device of claim 1 wherein the thickness of the at least one doped region is substantially between 1 and 3 μm and the width of the at least one doped region is substantially between 70 and 90 μm; wherein a first portion of the upper surface of the at least one doped region is covered by the metal silicide layer, and a second portion of the upper surface and a side surface of the at least one doped region are covered by the dielectric material layer.
4. The schottky diode device of claim 1 wherein the dielectric material layer is a moisture barrier layer having polyimide or silicon gel and the minimum distance between the top of the dielectric material layer and the second electrode layer is substantially between 3 and 20 μm.
5. The schottky diode device of claim 1 wherein the dielectric material layer has a side cut surface, the second electrode layer has a shortest distance from the side cut surface of the dielectric material layer greater than 5 μιη, the metal silicide layer has a shortest distance from the side cut surface of the dielectric material layer greater than 5 μιη, the at least one doped region has a shortest distance from the side cut surface of the dielectric material layer substantially between 5 and 20 μιη, and the epitaxial layer has a shortest distance from the side cut surface of the dielectric material layer substantially between 5 and 20 μιη.
CN202223292978.9U 2022-12-08 2022-12-08 Schottky diode element Active CN219085980U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202223292978.9U CN219085980U (en) 2022-12-08 2022-12-08 Schottky diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202223292978.9U CN219085980U (en) 2022-12-08 2022-12-08 Schottky diode element

Publications (1)

Publication Number Publication Date
CN219085980U true CN219085980U (en) 2023-05-26

Family

ID=86391749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202223292978.9U Active CN219085980U (en) 2022-12-08 2022-12-08 Schottky diode element

Country Status (1)

Country Link
CN (1) CN219085980U (en)

Similar Documents

Publication Publication Date Title
US11038069B2 (en) Photovoltaic cell with passivating contact
KR100997113B1 (en) Solar cell and manufacturing method thereof
US7397102B2 (en) Junction barrier schottky with low forward drop and improved reverse block voltage
US10319595B2 (en) Reverse conducting IGBT device and manufacturing method therefor
TWI440096B (en) Chante base diode and manufacturing method
CN102916042B (en) Reverse conducting IGBT device structure and manufacturing method
CN105990465B (en) Heterojunction silicon crystal solar cell and manufacturing method thereof
CN110197853A (en) A kind of junction barrier schottky diode
CN219085980U (en) Schottky diode element
TWI867378B (en) Schottky diode device and method of manufacturing the same
TWM639799U (en) Schottky diode component
CN114388651B (en) SiC double HEJ-LTT with high-flux capability and manufacturing method
JP2007235064A (en) Schottky barrier semiconductor device and manufacturing method thereof
CN118173576A (en) Schottky diode element and manufacturing method thereof
CN110190029B (en) A kind of preparation method of power semiconductor device
CN208045506U (en) Outer-wrapping high-efficiency low-leakage-current Schottky diode structure
CN106910787B (en) Photovoltaic device
JP6628163B2 (en) Solar cell
CN206584933U (en) One kind has high performance semiconductor devices
CN218647945U (en) SiC metal electrode structure and SiC-based semiconductor device
CN100353509C (en) Schottky Diode Structure and Manufacturing Method
CN111613673A (en) MOSFET terminal structure and preparation method thereof
CN217588966U (en) a light emitting diode
KR101153378B1 (en) Back junction solar cells using a Floating junction and method for manufacturing thereof
TWI226709B (en) Two mask Schottky barrier diode with LOCOS structure

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250401

Address after: No. 105-21, 1st Floor, Building 2, Guodian Technology Modern Logistics Center, No. 3 Taohua Road, Fubao Community, Fubao Street, Futian District, Shenzhen City, Guangdong Province, 518000

Patentee after: Yingfeng Technology (Shenzhen) Co.,Ltd.

Country or region after: China

Address before: Miaoli County, Taiwan, China

Patentee before: Xinfeng Technology Co.,Ltd.

Country or region before: TaiWan, China