CN218120898U - A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation - Google Patents
A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation Download PDFInfo
- Publication number
- CN218120898U CN218120898U CN202220716068.XU CN202220716068U CN218120898U CN 218120898 U CN218120898 U CN 218120898U CN 202220716068 U CN202220716068 U CN 202220716068U CN 218120898 U CN218120898 U CN 218120898U
- Authority
- CN
- China
- Prior art keywords
- signal
- optical
- electro
- wavelength
- intensity modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009977 dual effect Effects 0.000 title claims description 10
- 239000000523 sample Substances 0.000 claims abstract description 59
- 239000013307 optical fiber Substances 0.000 claims abstract description 50
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- 238000012545 processing Methods 0.000 claims abstract description 26
- 239000000835 fiber Substances 0.000 claims abstract description 20
- 230000003750 conditioning effect Effects 0.000 claims abstract description 16
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims description 109
- 238000005259 measurement Methods 0.000 claims description 77
- 238000005516 engineering process Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000013507 mapping Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 21
- 230000003321 amplification Effects 0.000 description 9
- 238000003199 nucleic acid amplification method Methods 0.000 description 9
- 238000000691 measurement method Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
技术领域technical field
本实用新型属于非接触距离测量领域。具体地说,本实用新型涉及一种激光相位式距离在线测量装置,特别是一种利用电光调制器实现光信号幅度二次外差调制的距离在线测量装置。The utility model belongs to the field of non-contact distance measurement. Specifically, the utility model relates to a laser phase distance on-line measuring device, in particular to an on-line distance measuring device which uses an electro-optic modulator to realize secondary heterodyne modulation of the optical signal amplitude.
背景技术Background technique
精密测距技术在国防军工、航空航天等先进技术与前沿科学领域有着广泛的应用需求,尤其是在大型精密机械制造、重大旋转装备装配过程中发挥了重要作用。重大装备内部间隙的在线测量是装备健康管理的重要环节,是保证工作效率和运行安全的关键。典型的装备间隙包括轴向间隙与叶尖间隙,缓变、连续、较大量程的轴向间隙信号特征和脉冲、间断、较小量程的叶尖间隙信号特征对测量方法提出了不同要求。然而装备内部空间狭小、信号传输线缆的引入路径较长,传统的电容法、电涡流法、微波法等间隙测量方法的探头尺寸较大、长距离传输时信号衰减严重,难以满足装备间隙在线测量需求。光学法采用基于光纤的激光测量手段,探头及传输光纤的直径尺寸较小,具有小巧、柔性的特点,能有效伸入到重大装备内部,更适合装备间隙测量。Precision ranging technology has a wide range of application requirements in the fields of advanced technology and cutting-edge science such as national defense, aerospace and aerospace, especially in the manufacture of large-scale precision machinery and the assembly of major rotating equipment. On-line measurement of the internal clearance of major equipment is an important part of equipment health management and the key to ensuring work efficiency and operation safety. Typical equipment clearances include axial clearance and blade tip clearance. Slowly varying, continuous, and longer-range axial clearance signal characteristics and pulse, intermittent, and smaller-range blade tip clearance signal characteristics put forward different requirements for measurement methods. However, the internal space of the equipment is narrow, the lead-in path of the signal transmission cable is long, the probe size of the traditional capacitance method, eddy current method, microwave method and other gap measurement methods is large, and the signal attenuation is serious during long-distance transmission, which is difficult to meet the equipment gap on-line Measurement needs. The optical method adopts the laser measurement method based on optical fiber. The diameter of the probe and transmission optical fiber is small, which is compact and flexible. It can effectively penetrate into the interior of major equipment and is more suitable for equipment gap measurement.
按发射信号形式的不同,光学距离测量方法主要包括脉冲法、频率法和相位法。在传统距离测量方法中,脉冲法受收发切换时间限制,存在测距盲区,且测量精度无法满足精密测距要求;频率法的测量精度受频率调制频差限制,亚毫米距离时测距精度不高,并且受限于扫频速率,测量响应速度较低,难以应用于叶尖间隙测量;相位法将激光信号强度调制,通过比较测量光信号和参考光信号的相位,实现距离测量;前期提出的“基于相位式激光测距转静子轴向间隙动态测量装置和方法”(202110464019.1)采用电学下变频原理,利用光电转换器件直接接收回光信号,其光强调制频率在微波频段,该方案对光电转换器件的带宽性能要求极高,并且受前置放大器增益带宽积的约束,输出电信号的信噪比较差。According to the different forms of transmitted signals, the optical distance measurement methods mainly include pulse method, frequency method and phase method. In the traditional distance measurement method, the pulse method is limited by the switching time of transmitting and receiving, and there is a ranging blind zone, and the measurement accuracy cannot meet the requirements of precise ranging; the measurement accuracy of the frequency method is limited by the frequency difference of frequency modulation, and the ranging accuracy is not good at submillimeter distances. High, and limited by the sweep rate, the measurement response speed is low, and it is difficult to apply to the tip clearance measurement; the phase method modulates the intensity of the laser signal, and realizes the distance measurement by comparing the phase of the measurement optical signal and the reference optical signal; the previous proposal The "Dynamic Measuring Device and Method for Axial Gap of Rotor-Stator Based on Phase Laser Rangefinder" (202110464019.1) adopts the principle of electrical down-conversion, uses photoelectric conversion devices to directly receive the return light signal, and its light intensity modulation frequency is in the microwave frequency band. The bandwidth performance requirements of photoelectric conversion devices are extremely high, and due to the constraints of the gain-bandwidth product of the preamplifier, the signal-to-noise ratio of the output electrical signal is poor.
实用新型内容Utility model content
本实用新型的目的是为了克服现有技术中的不足,提供一种基于双电光外差调制的相位式距离测量装置。采用光学下变频原理,利用电光调制器进行光信号幅度二次外差调制,为光学法测量装备间隙提供一种可行方案。The purpose of the utility model is to provide a phase distance measuring device based on double electro-optic heterodyne modulation in order to overcome the deficiencies in the prior art. Using the principle of optical down-conversion, the electro-optic modulator is used to perform second-order heterodyne modulation of the optical signal amplitude, which provides a feasible solution for the optical method to measure the gap of equipment.
本实用新型的目的是通过以下技术方案实现的:The purpose of this utility model is achieved by the following technical solutions:
一种基于双电光外差调制的相位式距离测量装置,包括光路单元、信号产生模块、信号调理及采集模块和数字处理系统,所述光路单元包括激光器、第一电光强度调制器、环行器、光纤探头和第二电光强度调制器;所述激光器、第一电光强度调制器、环行器通过光纤依次相连;环行器通过光纤分别与光纤探头、第二电光强度调制器相连,光纤探头的出射方向正对待测目标;A phase-type distance measuring device based on double electro-optical heterodyne modulation, including an optical path unit, a signal generation module, a signal conditioning and acquisition module, and a digital processing system. The optical path unit includes a laser, a first electro-optic intensity modulator, a circulator, The fiber optic probe and the second electro-optic intensity modulator; the laser, the first electro-optic intensity modulator, and the circulator are connected in sequence through optical fibers; the circulator is connected with the fiber optic probe and the second electro-optical intensity modulator through optical fibers, the target under test;
信号产生模块分别与第一电光强度调制器、第二电光强度调制器和A/D模拟数字信号转化器相连;所述信号产生模块对第一电光强度调制器输出频率为fM1的正弦波调制信号,对第二电光强度调制器输出频率为fM2的正弦波调制信号,对A/D模拟数字信号转化器输出频率为fIM的正弦波中频信号,且fIM=|fM1-fM2|;The signal generation module is respectively connected with the first electro-optic intensity modulator, the second electro-optic intensity modulator and the A/D analog-to-digital signal converter; the signal generation module outputs a sine wave modulation of f M1 to the first electro-optic intensity modulator output frequency Signal, the second electro-optical intensity modulator output frequency is the sine wave modulation signal of f M2 , and the sine wave intermediate frequency signal of f IM to the A/D analog-to-digital signal converter output frequency, and f IM =|f M1 -f M2 |;
光路单元中,激光器产生光信号,经光纤传输到第一电光强度调制器,光信号在第一电光强度调制器内被频率为fM1的正弦波调制信号调制后经光纤依次传输到环行器和光纤探头,光纤探头投射光信号至待测目标并接收自待测目标反射的回光信号,回光信号经光纤依次传输到环行器和第二电光强度调制器,并在第二电光强度调制器内被频率为fM2的正弦波调制信号进行外差调制;In the optical circuit unit, the laser generates an optical signal, which is transmitted to the first electro-optical intensity modulator through an optical fiber, and the optical signal is modulated by a sine wave modulation signal with a frequency of f M1 in the first electro-optical intensity modulator, and then transmitted to the circulator and Optical fiber probe, the optical fiber probe projects the optical signal to the target to be measured and receives the return light signal reflected from the target to be measured, the return light signal is transmitted to the circulator and the second electro-optical intensity modulator in sequence through the optical fiber, and is transmitted to the second electro-optical intensity modulator Heterodyne modulation is performed by a sinusoidal modulation signal with frequency f M2 ;
信号调理及采集模块包括依次相连的光电转换器件、放大电路、滤波电路、A/D模拟数字信号转化器;光电转换器件将外差调制后的回光信号转换为电信号,先后经过放大电路放大、滤波电路滤波,与频率为fIM的正弦波中频信号一并被A/D模拟数字信号转化器采集,生成的数字信号传输到数字处理系统进行相位鉴别和比较,产生与待测距离成一一映射关系的相位差;The signal conditioning and acquisition module includes a photoelectric conversion device, an amplifier circuit, a filter circuit, and an A/D analog-to-digital signal converter connected in sequence; the photoelectric conversion device converts the heterodyne modulated return light signal into an electrical signal, which is amplified by the amplifier circuit successively , filter circuit filtering, and the sine wave intermediate frequency signal with frequency f IM is collected by the A/D analog-to-digital signal converter, and the generated digital signal is transmitted to the digital processing system for phase identification and comparison, and the generated signal is equal to the distance to be measured A phase difference of the mapping relationship;
数字处理系统利用获得的相位差数据,基于相位测距原理,求解被测距离。The digital processing system uses the obtained phase difference data to solve the measured distance based on the principle of phase distance measurement.
进一步的,所述光路单元采用单波长或双波长结构。Further, the optical path unit adopts a single-wavelength or dual-wavelength structure.
进一步的,光路单元为单波长结构时,只设置一个第一激光器用于产生波长为λ0的激光作为测量光。Further, when the optical path unit has a single-wavelength structure, only one first laser is provided to generate laser light with a wavelength of λ0 as the measurement light.
进一步的,光路单元为双波长结构时,还设置有第二激光器和耦合器,第一激光器产生波长为λ0的激光作为测量光,第二激光器产生波长为λ1的激光作为参考光,测量光与参考光通过耦合器合为一路双波长光束,第一电光强度调制器同时对双波长光信号进行调制,第二电光强度调制器同时对双波长光信号进行外差调制,光纤探头(8)的端面进行镀膜处理,该膜对波长为λ0的激光全透射,对波长为λ1的激光全反射,测量光投射到待测目标并被反射,参考光在光纤探头的端面直接反射。Further, when the optical path unit is a dual-wavelength structure, it is also provided with a second laser and a coupler, the first laser produces a laser with a wavelength of λ0 as the measurement light, and the second laser produces a laser with a wavelength of λ1 as a reference light, and the measurement The light and the reference light are combined into a dual-wavelength beam through a coupler. The first electro-optic intensity modulator simultaneously modulates the dual-wavelength optical signal, and the second electro-optic intensity modulator simultaneously performs heterodyne modulation on the dual-wavelength optical signal. The fiber optic probe (8 ) is coated on the end face, the film completely transmits the laser with a wavelength of λ0 , and totally reflects the laser with a wavelength of λ1. The measurement light is projected onto the target to be measured and reflected, and the reference light is directly reflected on the end face of the fiber optic probe.
进一步的,当光路单元为双波长结构时,光纤探头采用双测头结构或共光路结构;光纤探头采用双测头结构时,通过第二波分复用器将双波长光信号分成两路光束,第一测头发射测量光并接收待测目标的回光信号,第二测头将参考光全部反射并接收反射的回光信号;光纤探头采用共光路结构时,双波长光信号到达探头端面后,分成测量光与参考光两路光束,测量光投射到待测目标并被反射,参考光在探头端面直接反射,光纤探头接收反射的回光信号。Further, when the optical path unit has a dual-wavelength structure, the optical fiber probe adopts a dual-probe structure or a common optical-path structure; when the optical fiber probe adopts a dual-probe structure, the dual-wavelength optical signal is divided into two beams by the second wavelength division multiplexer , the first measuring head emits measuring light and receives the light return signal of the target to be measured, the second measuring head reflects all the reference light and receives the reflected light return signal; when the optical fiber probe adopts a common optical path structure, the dual-wavelength optical signal reaches the end face of the probe Finally, it is divided into two beams of measurement light and reference light. The measurement light is projected onto the target to be measured and reflected. The reference light is directly reflected on the end face of the probe, and the fiber optic probe receives the reflected return light signal.
进一步的,当光路单元为双波长结构时,信号调理及采集模块包括第一光电转换器件、第一放大电路、第一滤波电路、第二光电转换器件、第二放大电路、第二滤波电路、A/D模拟数字信号转化器和第一波分复用器;通过第一波分复用器将双波长光信号分成测量光信号和参考光信号两路光束;测量光信号依次经第一光电转换器件、第一放大电路、第一滤波电路传输至A/D模拟数字信号转化器;参考光信号依次经第二光电转换器件、第二放大电路、第二滤波电路传输至A/D模拟数字信号转化器。Further, when the optical path unit has a dual-wavelength structure, the signal conditioning and acquisition module includes a first photoelectric conversion device, a first amplification circuit, a first filter circuit, a second photoelectric conversion device, a second amplification circuit, a second filter circuit, A/D analog-to-digital signal converter and first wavelength division multiplexer; through the first wavelength division multiplexer, the dual-wavelength optical signal is divided into two beams of measurement optical signal and reference optical signal; the measurement optical signal is sequentially passed through the first photoelectric The conversion device, the first amplification circuit, and the first filter circuit are transmitted to the A/D analog-digital signal converter; the reference optical signal is transmitted to the A/D analog-digital signal through the second photoelectric conversion device, the second amplification circuit, and the second filter circuit in turn. signal converter.
进一步的,信号产生模块的信号产生方式选用模拟式频率合成技术或者直接数字式频率合成技术或者锁相环频率合成技术。Further, the signal generating mode of the signal generating module adopts analog frequency synthesis technology, direct digital frequency synthesis technology or phase-locked loop frequency synthesis technology.
进一步的,所述正弦波调制信号的频率为8~10GHz,正弦波中频信号的频率为3~7MHz。Further, the frequency of the sine wave modulation signal is 8-10 GHz, and the frequency of the sine wave intermediate frequency signal is 3-7 MHz.
与现有技术相比,本实用新型的技术方案所带来的有益效果是:Compared with the prior art, the beneficial effects brought by the technical solution of the utility model are:
1.克服传统的距离测量装置难以实现狭窄空间下装备间隙在线测量的缺点,避免电容法、电涡流法、微波法等方法的探头尺寸较大、长距离传输时信号衰减严重等问题,本实用新型提供的基于光纤的装备间隙测量装置,利用光纤尺寸小巧、结构柔性的特点,能有效伸入到重大装备内部,实现狭窄工作空间下的装备间隙在线测量。1. To overcome the shortcomings of traditional distance measurement devices that are difficult to realize online measurement of equipment gaps in narrow spaces, and to avoid problems such as large probe sizes and serious signal attenuation during long-distance transmission in capacitance methods, eddy current methods, and microwave methods, this practical The newly provided equipment gap measurement device based on optical fiber can effectively penetrate into the interior of major equipment by taking advantage of the characteristics of small size and flexible structure of optical fiber, and realize online measurement of equipment gap in narrow working space.
2.克服传统的光学距离测量方法中脉冲法、频率法不能满足精密测距要求的缺点,解决前期基于电学下变频的相位式激光测距法对器件性能要求极高、信噪比较差的问题,本实用新型提供的基于双电光外差调制的相位式距离测量装置,利用双电光调制器进行光信号幅度的两次调制,光学下变频后调理及采集,提高接收信号信噪比。2. Overcome the shortcomings of the pulse method and frequency method in the traditional optical distance measurement method that cannot meet the requirements of precise distance measurement, and solve the problem that the phase laser distance measurement method based on electrical down-conversion in the early stage has extremely high requirements on device performance and poor signal-to-noise ratio Problem, the phase distance measuring device based on dual electro-optical heterodyne modulation provided by the utility model uses dual electro-optic modulators to perform two modulations of the optical signal amplitude, and adjusts and collects after optical down-conversion to improve the signal-to-noise ratio of the received signal.
3.调制信号的频率fM1和fM2可以根据待测距离范围进行选择,在保证调制信号半波长大于量程的条件下,调制信号频率越高测距精度越高;中频信号的频率fIM根据测量装置的动态响应性能要求进行选择,在保证中频信号能被A/D模拟数字信号转化器不失真采样的条件下,中频信号频率越高测量装置的动态响应速度越快,实现灵活精确的调制和测量。3. The frequencies f M1 and f M2 of the modulation signal can be selected according to the range of the distance to be measured. Under the condition that the half-wavelength of the modulation signal is greater than the range, the higher the frequency of the modulation signal, the higher the accuracy of the distance measurement; the frequency f IM of the intermediate frequency signal is based on The dynamic response performance of the measurement device requires selection. Under the condition that the intermediate frequency signal can be sampled by the A/D analog-to-digital signal converter without distortion, the higher the frequency of the intermediate frequency signal, the faster the dynamic response of the measurement device, realizing flexible and accurate modulation and measure.
4.数字处理系统采用数字鉴相算法,同时提取测量电信号和参考电信号的相位,并获得二者的相位差;当测量装置的结构、测量环境不变时,测量电信号和参考电信号的相位差仅随待测距离的改变实时发生变化;本实用新型提供的双波长结构的光路单元,能进一步使测量电信号和参考电信号的相位差克服环境温度变化、振动的影响,保证距离测量装置在高温、振动环境下的测量精度。4. The digital processing system uses a digital phase detection algorithm to simultaneously extract the phases of the measurement electrical signal and the reference electrical signal, and obtain the phase difference between the two; when the structure of the measuring device and the measurement environment remain unchanged, the measurement electrical signal and the reference electrical signal The phase difference only changes in real time with the change of the distance to be measured; the optical path unit of the dual-wavelength structure provided by the utility model can further make the phase difference between the measurement electrical signal and the reference electrical signal overcome the influence of environmental temperature changes and vibrations, and ensure the distance The measurement accuracy of the measuring device under high temperature and vibration environment.
附图说明Description of drawings
图1是本实用新型的相位式距离测量装置中光路单元采用单波长结构时的结构示意图。Fig. 1 is a structural schematic diagram of the phase-type distance measuring device of the present invention when the optical path unit adopts a single-wavelength structure.
图2是本实用新型的相位式距离测量装置中光路单元采用双波长结构时的结构示意图。Fig. 2 is a structural schematic diagram of the phase-type distance measuring device of the present invention when the optical path unit adopts a dual-wavelength structure.
图3是本实用新型的光纤探头采用双测头时的结构示意图。Fig. 3 is a structural schematic view of the optical fiber probe of the present invention when dual probes are used.
附图标记:1-光路单元,2-信号产生模块,3-信号调理及采集模块,4-数字处理系统,5-激光器,6-电光强度调制器,7-环行器,8-光纤探头,9-电光强度调制器,10-光电转换器件,11-放大电路,12-滤波电路,13-A/D模拟数字信号转化器,14-激光器,15-耦合器,16-波分复用器,17-光电转换器件,18-放大电路,19-滤波电路,20-波分复用器,21-测头,22-测头。Reference signs: 1-optical path unit, 2-signal generation module, 3-signal conditioning and acquisition module, 4-digital processing system, 5-laser, 6-electro-optic intensity modulator, 7-circulator, 8-fiber probe, 9-electro-optic intensity modulator, 10-photoelectric conversion device, 11-amplifying circuit, 12-filtering circuit, 13-A/D analog-to-digital signal converter, 14-laser, 15-coupler, 16-wavelength division multiplexer , 17-photoelectric conversion device, 18-amplifying circuit, 19-filtering circuit, 20-wavelength division multiplexer, 21-probe, 22-probe.
具体实施方式detailed description
以下结合附图和具体实施例对本实用新型作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本实用新型,并不用于限定本实用新型。Below in conjunction with accompanying drawing and specific embodiment the utility model is described in further detail. It should be understood that the specific embodiments described here are only used to explain the utility model, and are not intended to limit the utility model.
实施例1Example 1
本实施例提供的一种基于双电光外差调制的相位式距离测量装置中,光路单元1采用单波长结构,只有测量光,没有参考光,如图1所示,测量装置主要包括:光路单元1、信号产生模块2、信号调理及采集模块3和数字处理系统4;其中,光路单元1主要包括激光器5、电光强度调制器6、环行器7、光纤探头8、电光强度调制器9;信号调理及采集模块3主要包括依次相连的光电转换器件10、放大电路11、滤波电路12、A/D模拟数字信号转化器13;激光器5、电光强度调制器6、环行器7通过光纤依次相连;环行器7通过光纤分别与光纤探头8、电光强度调制器9相连,光纤探头8的出射方向正对待测目标;信号产生模块2分别与电光强度调制器6、电光强度调制器9和A/D模拟数字信号转化器13相连。In the phase-type distance measuring device based on double electro-optic heterodyne modulation provided in this embodiment, the
信号产生模块2输出一路频率为fM1的正弦波调制信号、另一路频率为fM2的正弦波调制信号以及频率为fIM的正弦波中频信号,且fIM=|fM1-fM2|。The signal generating
在光路单元1中,激光器5产生光信号,经光纤传输到电光强度调制器6,在电光强度调制器6处被频率为fM1的信号调制,经光纤传输到环行器7后,由光纤探头8发射并接收光信号,回光信号经光纤传输到环行器7后,再传输到电光强度调制器9,在电光强度调制器9处被频率为fM2的信号进行外差调制。In the
在信号调理及采集模块3中,光电转换器件10将外差调制后的测量回光信号的强度转换为测量电信号,测量电信号先后经过放大电路11放大、滤波电路12滤波,提升信噪比;将频率为fIM的正弦波中频信号作为参考电信号,测量电信号与参考电信号一并被A/D模拟数字信号转化器13采集,并生成数字信号传输到数字处理系统4进行相位鉴别和比较,产生与待测距离成一一映射关系的相位差。In the signal conditioning and acquisition module 3, the
数字处理系统4利用相位差数据及标定曲线,实时在线获取距离测量值,同时系统的软件具有在线显示、离线分析等功能。The digital processing system 4 uses the phase difference data and the calibration curve to obtain the distance measurement value online in real time, and the system software has functions such as online display and offline analysis.
实施例2Example 2
本实施例提供的一种基于双电光外差调制的相位式距离测量装置中,光路单元1采用双波长结构,既有测量光又有参考光,如图2所示,测量装置主要包括:In the phase-type distance measuring device based on dual electro-optical heterodyne modulation provided in this embodiment, the
光路单元1、信号产生模块2、信号调理及采集模块3和数字处理系统4;其中,光路单元1主要包括激光器5、激光器14、耦合器15、电光强度调制器6、环行器7、光纤探头8、电光强度调制器9;信号调理及采集模块3包括波分复用器16、光电转换器件10、光电转换器件17、放大电路11、放大电路18、滤波电路12、滤波电路19、A/D模拟数字信号转化器13;激光器5、激光器14通过光纤与耦合器15连接,耦合器15通过光纤依次与电光强度调制器6、环行器7相连;环行器7通过光纤分别与光纤探头8、电光强度调制器9相连,光纤探头8的出射方向正对待测目标;信号产生模块2分别与电光强度调制器6、电光强度调制器9和A/D模拟数字信号转化器13相连。电光强度调制器9与波分复用器16连接,波分复用器16输出端分为两路,一路为依次相连的光电转换器件10、放大电路11、滤波电路12、A/D模拟数字信号转化器13相连;另一路为依次相连的光电转换器件17、放大电路18、滤波电路19、A/D模拟数字信号转化器13。
光路单元1采用双波长结构时,光纤探头8可采用双测头结构或共光路结构;对于双测头结构(见图3),波分复用器20将双波长光信号分成两路光束,测头21发射测量光并接收转子端面的回光信号,测头22在其端面反射参考光;对于共光路结构(见图2),光纤探头端面进行镀膜处理,所镀膜使波长为λ0的激光全透射,使波长为λ1的激光全反射;镀膜可选用λ0波段的增透膜及λ1波段的反射膜。When the
信号产生模块2输出一路频率为fM1的正弦波调制信号、另一路频率为fM2的正弦波调制信号以及频率为fIM的正弦波中频信号,且fIM=|fM1-fM2|。The
对于光路单元1采用双波长结构的测量装置,激光器5产生波长为λ0的激光作为测量光,激光器14产生波长为λ1的激光作为参考光,测量光与参考光在耦合器15合为一路双波长的光束,电光强度调制器6同时对双波长光信号调制,电光强度调制器9同时对双波长光信号进行外差调制,测量光投射到待测端面即转子端面并被反射,参考光在光纤探头端面直接反射。由于参考光和测量光同时存在,波分复用器16将双波长光信号分成测量光信号和参考光信号两路光束。For
对于测量光信号的处理,光电转换器件10将测量光信号的强度转换为测量电信号,测量电信号先后经过放大电路11放大、滤波电路12滤波处理,提升信噪比;For the processing of the measurement optical signal, the
对于参考光信号的处理,光电转换器件17将参考光信号的强度转换为参考电信号,参考电信号先后经过放大电路18放大、滤波电路19滤波处理,提升信噪比;测量电信号、参考电信号及中频信号由A/D模拟数字信号转化器13采集后,并生成数字信号传输到数字处理系统4进行相位鉴别和比较。For the processing of the reference optical signal, the
数字处理系统4利用相位差数据及标定曲线,实时在线获取距离测量值,同时系统的软件具有在线显示、离线分析等功能。The digital processing system 4 uses the phase difference data and the calibration curve to obtain the distance measurement value online in real time, and the system software has functions such as online display and offline analysis.
进一步的,上述两个实施例中:Further, in the above two embodiments:
信号产生模块2的信号产生方式可以选用模拟式频率合成技术或者直接数字式频率合成技术或者锁相环频率合成技术;本实施例中信号产生模块2可以是锁相环,由控制器、时钟基准、鉴相器、环路滤波器、压控振荡器、分频器等组成;控制器可选用STM32系列单片机;时钟基准为系统提供稳定的频率参考,可以选用频率稳定度较高的温度补偿晶体振荡器;环路滤波器起到抑制相位噪声和杂散噪声的作用,可以选用无源滤波器或者有源滤波器;信号产生模块2产生两路调制信号和一路中频信号,调制信号的频率越高,测距精度越高,但调制信号的半波长要大于量程,以避免相位测距模糊问题;例如15mm的量程,可选择8~10GHz的调制信号频率;中频信号的频率选取需要考虑其对相位式距离测量系统的动态响应性能的影响,即相位测量一般需3~5个信号周期,以装备叶尖间隙测量为例,中频信号的频率选取下限要保证叶片端面通过传感器时能获得有效测量;中频信号的频率选取上限要兼顾A/D模拟数字信号转化器13的采样速度,避免欠采样,例如选择5MHz的中频信号频率。The signal generating mode of
激光器5和激光器14可选用半导体蝶形封装激光器;耦合器15可选用3dB光纤耦合器;环行器7可选用三端口光纤环行器;所有光路的光纤可选用石英保偏光纤;电光强度调制器6和电光强度调制器9可选用铌酸锂马赫-曾德尔型强度调制器;从环行器7到电光强度调制器9之间的光路上可以设置光纤放大器以提高信号信噪比。Laser 5 and
波分复用器16和波分复用器20可选用粗波分复用器或者密集波分复用器;光电转换器件10和光电转换器件17可选用雪崩光电二极管或者PIN型光电二极管;放大电路11和放大电路18可选用跨阻放大器。The wavelength division multiplexer 16 and the
数字处理系统4可以包括下位机和上位机,下位机可选用现场可编程门阵列(FPGA),上位机可选用计算机或者工控机;下位机利用基于PCI/PCIE/USB3.0通讯总线的高速数据传输方法,将数据从下位机上传到上位机;上位机的软件具有在线显示、数据存储、数据回显、离线分析等功能。The digital processing system 4 can include a lower computer and an upper computer, the lower computer can select a field programmable gate array (FPGA), and the upper computer can use a computer or an industrial computer; the lower computer utilizes high-speed data based on the PCI/PCIE/USB3.0 communication bus The transmission method is to upload data from the lower computer to the upper computer; the software of the upper computer has functions such as online display, data storage, data echo, and offline analysis.
具体的,结合上述两个实施例提供的测量装置,以转子端面作为待测目标,对利用电光调制器实现光信号幅度二次外差调制的在线距离测量方法的具体内容如下:Specifically, in combination with the measurement devices provided in the above two embodiments, and with the rotor end face as the target to be measured, the specific content of the online distance measurement method using the electro-optic modulator to realize the second-order heterodyne modulation of the optical signal amplitude is as follows:
首先,信号产生模块产生正弦波形式的调制信号和中频信号;两路调制信号,分别由式(1)和式(2)表示:First, the signal generation module generates a modulating signal and an intermediate frequency signal in the form of a sine wave; the two modulating signals are expressed by formula (1) and formula (2) respectively:
其中,AM1和AM2表示调制信号的幅值,fM1和fM2表示调制信号的频率,和表示调制信号的初相位;Among them, A M1 and A M2 represent the amplitude of the modulation signal, f M1 and f M2 represent the frequency of the modulation signal, and Indicates the initial phase of the modulating signal;
一路中频信号,由式(3)表示:One channel of intermediate frequency signal is represented by equation (3):
其中,AIM表示中频信号的幅值,fIM表示中频信号的频率,表示中频信号的初相位;Wherein, A IM represents the amplitude of the intermediate frequency signal, f IM represents the frequency of the intermediate frequency signal, Indicates the initial phase of the intermediate frequency signal;
fM1和fM2根据待测距离范围进行选择,在保证调制信号半波长大于量程的条件下,调制信号频率越高测距精度越高;fIM根据测量系统的动态响应性能要求进行选择,在保证中频信号能被A/D模拟数字信号转化器13不失真采样的条件下,中频信号频率越高系统动态响应速度越快;f M1 and f M2 are selected according to the range of the distance to be measured. Under the condition that the half-wavelength of the modulated signal is greater than the range, the higher the frequency of the modulated signal, the higher the ranging accuracy; f IM is selected according to the dynamic response performance requirements of the measurement system. Under the condition that the intermediate frequency signal can be sampled by the A/D analog-to-
进一步的,光路单元1以光信号为载波,利用电光调制原理,被频率为fM1和fM2的信号两次调制;光路单元1采用单波长结构时,激光器5产生波长为λ0的激光作为测量光,无参考光;光路单元1采用双波长结构时,激光器14产生波长为λ1的激光作为参考光,测量光与参考光在耦合器15合为一路光束,电光强度调制器6同时对双波长光信号调制,电光强度调制器9同时对双波长光信号外差调制,光纤探头8的端面进行镀膜处理,该膜对波长为λ0的激光全透射,对波长为λ1的激光全反射,测量光投射到转子端面并被反射,参考光在光纤探头端面直接反射。Further, the
测量光和参考光在电光强度调制器6调制后的光强分别由式(4)和式(5)表示:The light intensities of the measuring light and the reference light modulated by the electro-
其中,Aλ0和Aλ1分别表示测量光和参考光强度变化幅度,和分别表示测量光和参考光的初始相位。Among them, A λ0 and A λ1 represent the intensity variation range of the measuring light and the reference light respectively, and denote the initial phases of the measurement light and the reference light, respectively.
第一次调制后的测量光和参考光在经历不同传播过程之后,引入不同的相位变化,沿原光路返回到达环行器,然后到达电光强度调制器9,此时测量光和参考光的光强分别由式(6)和式(7)表示:After the first modulated measurement light and reference light undergo different propagation processes, different phase changes are introduced, return to the circulator along the original optical path, and then reach the electro-optical intensity modulator 9, at this time the light intensity of the measurement light and reference light Respectively represented by formula (6) and formula (7):
其中,和分别为测量光和参考光在到达电光强度调制器9之前,在光纤、光学器件中传播引入的相位变化,为测量光在光纤探头与待测目标之间的间隙空间中传播引入的相位变化;测量光和参考光在电光强度调制器9内经过第二次调制后,光强分别由式(8)和式(9)表示:in, and Respectively, before the measurement light and the reference light reach the electro-optic intensity modulator 9, the phase changes introduced by the propagation in the optical fiber and the optical device, In order to measure the phase change introduced by the propagation of light in the gap space between the optical fiber probe and the target to be measured; after the measurement light and the reference light are modulated for the second time in the electro-optic intensity modulator 9, the light intensity is respectively expressed by formula (8) and Formula (9) expresses:
其中,和分别为测量光和参考光在经过电光强度调制器9之后,到达光电转换器件之前,在光纤、光学器件中传播引入的相位变化。in, and Respectively, after the measuring light and the reference light pass through the electro-optical intensity modulator 9 and before reaching the photoelectric conversion device, the phase changes introduced by propagating in the optical fiber and the optical device are introduced.
进一步的,光纤探头8既负责向转子方向投射光信号,又负责接收转子端面反射的光信号;当光路单元1采用双波长结构时,光纤探头8可采用双测头结构或共光路结构;对于双测头结构(见图3),波分复用器20将双波长光信号分成两路光束,测头21发射测量光并接收转子端面的回光信号,测头22在其端面反射参考光;对于共光路结构(见图2),双波长光信号到达探头端面后,分成测量光与参考光两路光束,测量光投射到待测目标并被反射,参考光在探头端面直接反射,光纤探头8接收反射的回光信号。Further, the
进一步的,信号调理及采集模块3用于实现光电转换、信号放大滤波、模拟信号采集等功能;光电转换器件接收的信号是中频强度调制的光信号,信号调理及采集模块3只需对频率为fIM的中频信号进行处理;Further, the signal conditioning and acquisition module 3 is used to realize functions such as photoelectric conversion, signal amplification and filtering, and analog signal acquisition; the signal received by the photoelectric conversion device is an optical signal modulated by an intermediate frequency intensity, and the signal conditioning and acquisition module 3 only needs to perform an optical signal with a frequency of The intermediate frequency signal of f IM is processed;
当光路单元1采用单波长结构时,见图1,没有参考光信号,光电转换器件10将测量光信号的强度I”λ0(t)转换为测量电信号IFm(t),由式(10)表示:When the
信号IFm(t)先后经过放大电路11、滤波电路12的处理,提升信噪比;此时,IFm(t)作为测量电信号,信号产生模块2产生的中频信号IF(t)作为参考电信号;测量电信号与参考电信号由A/D模拟数字信号转化器13采集后,传输到数字处理系统4;The signal IF m (t) is successively processed by the
当光路单元1采用双波长结构时,见图2,参考光和测量光同时存在,波分复用器16将双波长光信号分成测量光信号和参考光信号两路光束;对于参考光信号的处理,光电转换器件17将参考光信号的强度I”λ1(t)转换为参考电信号IFr(t),由式(11)表示:When the
信号IFr(t)先后经过放大电路18、滤波电路19的处理,提升信噪比;此时,IFm(t)作为测量电信号,IFr(t)作为参考电信号;测量电信号、参考电信号及中频信号IF(t)由A/D模拟数字信号转化器13采集后,传输到数字处理系统4。The signal IF r (t) is successively processed by the
进一步的,数字处理系统4用于实现测量电信号与参考电信号两路信号的数字鉴相及相位比较,并基于相位差数据进行距离计算,可实现测量距离的在线显示、数据存储、数据回显、离线分析等功能;数字处理系统4可以利用中频信号IF(t)的倍频信号,控制A/D模拟数字信号转化器13对测量电信号和参考电信号同步采样。Further, the digital processing system 4 is used to realize the digital phase detection and phase comparison of the two signals of the measurement electrical signal and the reference electrical signal, and calculate the distance based on the phase difference data, which can realize the online display, data storage, and data return of the measurement distance. functions such as display and offline analysis; the digital processing system 4 can use the frequency multiplied signal of the intermediate frequency signal IF(t) to control the A/D analog-to-
数字处理系统4采用数字鉴相算法,同时提取测量电信号和参考电信号的相位,并获得二者的相位差;对于单波长结构,相位差由式(12)表示;对于双波长结构,相位差由式(13)表示:The digital processing system 4 adopts a digital phase detection algorithm to simultaneously extract the phases of the measurement electrical signal and the reference electrical signal, and obtain the phase difference between the two; for the single-wavelength structure, the phase difference is represented by formula (12); for the dual-wavelength structure, the phase The difference is represented by formula (13):
式(12)和式(13)等式的右侧,仅随待测距离实时发生变化,当系统结构、测量环境不变时,其他相位量不发生改变;与单波长结构相比,双波长结构利用测量光与参考光在同一光路中传输的特点,受环境温度变化、振动影响导致和的变化几乎一致,可以相互抵消,提升环境适应性。The right side of equation (12) and equation (13), only It changes in real time with the distance to be measured. When the system structure and measurement environment remain unchanged, other phase quantities do not change; Changes in ambient temperature and vibration and The changes are almost the same, which can offset each other and improve environmental adaptability.
数字处理系统利用相位差数据,基于相位测距原理,求解被测距离,表示为式(14):The digital processing system uses the phase difference data to solve the measured distance based on the principle of phase ranging, which is expressed as formula (14):
采用等间隔遍历待测距离的标定技术,获得量程内各距离值对应的相位差数据,利用曲线拟合方法,建立相位差与待测距离的映射关系,获得距离标定曲线;本实用新型利用相位差测量结果及标定曲线,可以实现装备间隙在线测量。The calibration technology of traversing the distance to be measured at equal intervals is used to obtain the phase difference data corresponding to each distance value in the range, and the curve fitting method is used to establish the mapping relationship between the phase difference and the distance to be measured to obtain the distance calibration curve; the utility model uses phase Differential measurement results and calibration curves can realize online measurement of equipment clearance.
本实用新型并不限于上文描述的实施方式。以上对具体实施方式的描述旨在描述和说明本实用新型的技术方案,上述的具体实施方式仅仅是示意性的,并不是限制性的。在不脱离本实用新型宗旨和权利要求所保护的范围情况下,本领域的普通技术人员在本实用新型的启示下还可做出很多形式的具体变换,这些均属于本实用新型的保护范围之内。The present invention is not limited to the embodiments described above. The above description of specific embodiments is intended to describe and illustrate the technical solution of the present utility model, and the above specific embodiments are only illustrative and not restrictive. Without departing from the purpose of the utility model and the scope protected by the claims, those skilled in the art can also make many forms of specific transformations under the inspiration of the utility model, and these all belong to the protection scope of the utility model Inside.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220716068.XU CN218120898U (en) | 2022-03-30 | 2022-03-30 | A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220716068.XU CN218120898U (en) | 2022-03-30 | 2022-03-30 | A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN218120898U true CN218120898U (en) | 2022-12-23 |
Family
ID=84494490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220716068.XU Active CN218120898U (en) | 2022-03-30 | 2022-03-30 | A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN218120898U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114754689A (en) * | 2022-03-30 | 2022-07-15 | 天津大学 | Phase type distance measuring device and method based on double-electro-optical heterodyne modulation |
CN119043199A (en) * | 2024-10-30 | 2024-11-29 | 善测(天津)科技有限公司 | Rotor-stator gap measurement system and method based on multi-wavelength multiplexing and multi-frequency microwave photon mixing |
-
2022
- 2022-03-30 CN CN202220716068.XU patent/CN218120898U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114754689A (en) * | 2022-03-30 | 2022-07-15 | 天津大学 | Phase type distance measuring device and method based on double-electro-optical heterodyne modulation |
CN119043199A (en) * | 2024-10-30 | 2024-11-29 | 善测(天津)科技有限公司 | Rotor-stator gap measurement system and method based on multi-wavelength multiplexing and multi-frequency microwave photon mixing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104330104B (en) | Measuring device for interferential sensor arm length difference | |
CN114754689A (en) | Phase type distance measuring device and method based on double-electro-optical heterodyne modulation | |
WO2021057025A1 (en) | Frequency mixing-based frequency response measurement method and device for photodetector | |
CN218120898U (en) | A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation | |
CN112363146A (en) | Double-modulation common-path linear frequency modulation continuous wave distance and speed measuring method and device | |
CN113108707B (en) | Rotor and stator axial clearance dynamic measurement device and method based on phase type laser ranging | |
CN104199044A (en) | Dual-mode superspeed moving object movement speed measurement device and method | |
CN101625279A (en) | Device for positioning optical fiber breakpoints and method for confirming breakpoint positions | |
CN114415201B (en) | Laser radar distance and speed measurement device based on frequency shift interferometry | |
CN112129491A (en) | Optical fiber time delay measurement method and device based on single optical frequency comb interference | |
CN113391136B (en) | A microwave photon frequency measurement device and method based on fixed low-frequency detection | |
CN114414993B (en) | A method for testing the frequency response of an electro-optical intensity modulator chip | |
CN106707292A (en) | Doppler velocity measurement system based on optoelectronic oscillation | |
CN114488082A (en) | Atmospheric Greenhouse Gas Measurement Lidar System Based on Electro-optic Modulation Dual Optical Combs | |
CN106772415B (en) | A phase distance measuring device and a distance measuring method thereof | |
CN106908803B (en) | Ultra wide band scalariform FM/CW laser velocimeter system based on double parallel MZM | |
CN108007307B (en) | Optical fiber measuring method and measuring device | |
CN102841355A (en) | Device and method for measuring data of femtosecond range laser radar based on microwave photonics | |
CN116755077A (en) | Doppler frequency shift/speed measurement system based on microwave photon mixing | |
CN211905692U (en) | A Frequency Modulated Continuous Wave Lidar Velocity Measurement System in the Form of Triangular Waves | |
CN110849586B (en) | Optical fiber interferometer parameter measurement method and device | |
CN112147628B (en) | Remote displacement measuring device and method based on photoelectric oscillator | |
CN111238550B (en) | A digital modulation frequency sweep optical frequency domain reflectometry system | |
CN214704000U (en) | A High Precision Frequency Modulated Continuous Wave Lidar System Based on FDML Technology | |
CN114353685A (en) | High-frequency dynamic strain measurement device and method based on chaotic Brillouin phase spectrum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |