CN217817509U - Double-heat-pump complementary heat supply system based on solar energy coupling molten salt heat storage - Google Patents
Double-heat-pump complementary heat supply system based on solar energy coupling molten salt heat storage Download PDFInfo
- Publication number
- CN217817509U CN217817509U CN202221454813.4U CN202221454813U CN217817509U CN 217817509 U CN217817509 U CN 217817509U CN 202221454813 U CN202221454813 U CN 202221454813U CN 217817509 U CN217817509 U CN 217817509U
- Authority
- CN
- China
- Prior art keywords
- heat
- molten salt
- solar
- module
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000003839 salts Chemical class 0.000 title claims abstract description 180
- 238000005338 heat storage Methods 0.000 title claims abstract description 82
- 230000000295 complement effect Effects 0.000 title claims abstract description 29
- 230000008878 coupling Effects 0.000 title claims description 8
- 238000010168 coupling process Methods 0.000 title claims description 8
- 238000005859 coupling reaction Methods 0.000 title claims description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 78
- 238000010521 absorption reaction Methods 0.000 claims abstract description 40
- 230000006835 compression Effects 0.000 claims abstract description 38
- 238000007906 compression Methods 0.000 claims abstract description 38
- 230000009977 dual effect Effects 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 20
- 238000010248 power generation Methods 0.000 claims description 14
- 238000009825 accumulation Methods 0.000 claims 2
- 230000009102 absorption Effects 0.000 description 33
- 239000006096 absorbing agent Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 239000003507 refrigerant Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
本实用新型公开了一种基于太阳能耦合熔融盐储热的双热泵互补供热系统,包括:太阳能集热模块、熔融盐蓄放热模块、热泵供热模块和微电网模块。太阳能集热模块用于将收集的太阳能转化为热能;熔融盐蓄放热模块与太阳能集热模块相连用于将太阳能集热模块的热量储存在熔融盐中;热泵供热模块包括吸收式热泵和压缩式热泵,熔融盐蓄放热模块还用于利用高温熔融盐驱动吸收式热泵以供热;微电网模块用于向熔融盐蓄放热模块供电以加热熔融盐,还用于驱动压缩式热泵供热。本实用新型实施例提出的供热系统,提高太阳能利用率,实现能量梯级利用,使太阳能与波动的用户热负荷之间的匹配关系达到有效平衡,充分利用新能源保证供热系统的安全可靠性。
The utility model discloses a dual heat pump complementary heat supply system based on solar energy coupled molten salt heat storage, comprising: a solar heat collection module, a molten salt heat storage and release module, a heat pump heat supply module and a micro grid module. The solar heat collection module is used to convert the collected solar energy into heat energy; the molten salt heat storage and release module is connected with the solar heat collection module to store the heat of the solar heat collection module in molten salt; the heat pump heating module includes absorption heat pump and The compression heat pump, the molten salt heat storage module is also used to drive the absorption heat pump with high temperature molten salt for heating; the micro grid module is used to supply power to the molten salt heat storage module to heat the molten salt, and is also used to drive the compression heat pump heating. The heating system proposed by the embodiment of the utility model improves the utilization rate of solar energy, realizes energy cascade utilization, makes the matching relationship between solar energy and fluctuating user heat loads reach an effective balance, and makes full use of new energy sources to ensure the safety and reliability of the heating system .
Description
技术领域technical field
本实用新型属于清洁供热技术领域,尤其涉及一种基于太阳能耦合熔融盐储热的双热泵互补供热系统。The utility model belongs to the technical field of clean heat supply, in particular to a dual heat pump complementary heat supply system based on solar energy coupled with molten salt heat storage.
背景技术Background technique
太阳能是一种无污染的可再生能源,供热行业内涌现出“太阳能+”清洁采暖利用模式,“太阳能+”清洁采暖模式主要包括光伏、光热两种。但是太阳能资源仅在日间集中丰富,具有整日波动性的缺点,所以太阳能制热量无法完全满足用户热负荷需求。仅使用太阳能作为能量来源会产生以下问题,例如储热温度不足、随负荷波动适应性差、供热能力与负荷需求特性相反等,导致系统建设成本过高、供热效果不佳。Solar energy is a non-polluting renewable energy. The "solar energy +" clean heating utilization mode has emerged in the heating industry. The "solar energy +" clean heating mode mainly includes photovoltaic and photothermal. However, solar energy resources are only concentrated and abundant during the day, and have the disadvantage of fluctuation throughout the day, so the heating capacity of solar energy cannot fully meet the heat load demand of users. Only using solar energy as an energy source will cause the following problems, such as insufficient heat storage temperature, poor adaptability to load fluctuations, and opposite characteristics of heating capacity and load demand, etc., resulting in high system construction costs and poor heating effects.
实用新型内容Utility model content
本实用新型旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本实用新型的实施例提出一种基于太阳能耦合熔融盐储热的双热泵互补供热系统。The utility model aims to solve one of the technical problems in the related art at least to a certain extent. For this reason, the embodiment of the utility model proposes a dual heat pump complementary heating system based on solar energy coupled with molten salt heat storage.
本实用新型实施例的基于太阳能耦合熔融盐储热的双热泵互补供热系统包括:太阳能集热模块、熔融盐蓄放热模块、热泵供热模块和微电网模块;The dual heat pump complementary heating system based on solar energy coupled molten salt heat storage in the embodiment of the utility model includes: a solar heat collection module, a molten salt heat storage and release module, a heat pump heating module and a microgrid module;
所述太阳能集热模块用于将收集的太阳能转化为热能;The solar heat collection module is used to convert the collected solar energy into thermal energy;
所述熔融盐蓄放热模块与所述太阳能集热模块相连用于将所述太阳能集热模块的热量储存在熔融盐中;The molten salt heat storage and release module is connected to the solar heat collection module for storing the heat of the solar heat collection module in the molten salt;
所述热泵供热模块包括吸收式热泵和压缩式热泵,所述熔融盐蓄放热模块还用于利用高温熔融盐驱动所述吸收式热泵以供热;The heat pump heating module includes an absorption heat pump and a compression heat pump, and the molten salt heat storage and release module is also used to drive the absorption heat pump to supply heat by using high-temperature molten salt;
所述微电网模块用于向所述熔融盐蓄放热模块供电以加热熔融盐,还用于驱动所述压缩式热泵供热,所述微电网模块与电网相连。The micro-grid module is used to supply power to the molten salt heat storage and release module to heat the molten salt, and is also used to drive the compression heat pump to supply heat, and the micro-grid module is connected to the grid.
本实用新型实施例提出的基于太阳能耦合熔融盐储热的双热泵互补供热系统将太阳能光热转化,同时配以熔融盐储热,使太阳能可铺展开在24小时利用,提高太阳能利用率。吸收式热泵和压缩式热泵的驱动能源不同,将吸收式热泵和压缩式热泵互补,实现能量梯级利用,提高系统运行调节灵活性的同时提高系统的供热能力。本系统使用密度高、成本低、热效率高、设备占地面积小的熔融盐储热模块进行余热的跨时段储热调节,降低系统造价,提高运行可靠性。通过太阳能集热模块、熔融盐蓄放热模块、热泵供热模块和微电网模块的耦合,使波动性高的太阳能与逐时波动的用户热负荷之间的匹配关系达到有效平衡,充分利用新能源保证供热系统的安全可靠性。The dual heat pump complementary heating system based on solar energy coupled with molten salt heat storage proposed by the embodiment of the utility model converts solar light to heat, and at the same time is equipped with molten salt heat storage, so that the solar energy can be spread and utilized for 24 hours, and the utilization rate of solar energy is improved. The driving energy of the absorption heat pump and the compression heat pump are different, and the absorption heat pump and the compression heat pump are complementary to realize energy cascade utilization, improve the flexibility of system operation adjustment and improve the heating capacity of the system at the same time. This system uses a molten salt heat storage module with high density, low cost, high thermal efficiency, and a small equipment footprint for inter-period heat storage and regulation of waste heat, reducing system cost and improving operational reliability. Through the coupling of solar heat collection module, molten salt heat storage and release module, heat pump heating module and micro grid module, the matching relationship between the highly fluctuating solar energy and the hourly fluctuating user heat load can be effectively balanced, and the new energy can be fully utilized. Energy guarantees the safety and reliability of the heating system.
在一些实施例中,所述微电网模块包括新能源发电装置,所述新能源发电装置与所述熔融盐蓄放热模块和所述压缩式热泵均电连。In some embodiments, the microgrid module includes a new energy power generation device, and the new energy power generation device is electrically connected to both the molten salt heat storage and release module and the compression heat pump.
在一些实施例中,所述新能源发电装置为太阳能光伏板,所述微电网模块还包括光伏逆变器和配电箱,所述太阳能光伏板与所述光伏逆变器电连,所述光伏逆变器用于将电能转换为交流电并输出,所述光伏逆变器和所述电网均与所述配电箱电连,所述配电箱用于向所述熔融盐蓄放热模块和所述压缩式热泵配电。In some embodiments, the new energy power generation device is a solar photovoltaic panel, the micro grid module further includes a photovoltaic inverter and a distribution box, the solar photovoltaic panel is electrically connected to the photovoltaic inverter, and the The photovoltaic inverter is used to convert electrical energy into alternating current and output it. Both the photovoltaic inverter and the grid are electrically connected to the distribution box, and the distribution box is used to store and release heat to the molten salt module and The compression heat pump distributes electricity.
在一些实施例中,所述太阳能集热模块包括换热回路和连接在所述换热回路中的太阳能集热器和换热器,所述熔融盐蓄放热模块与所述换热器的冷侧连通,所述换热器用于通过所述换热回路中的换热介质将所述太阳能集热模块的热量传递至熔融盐。In some embodiments, the solar heat collection module includes a heat exchange loop and a solar heat collector and a heat exchanger connected in the heat exchange loop, and the molten salt heat storage and release module is connected to the heat exchanger The cold side is connected, and the heat exchanger is used to transfer the heat of the solar heat collection module to the molten salt through the heat exchange medium in the heat exchange circuit.
在一些实施例中,所述换热介质为导热油,所述太阳能集热模块还包括串联在所述换热回路中的导热油膨胀罐和导热油泵。In some embodiments, the heat exchange medium is heat conduction oil, and the solar heat collection module further includes a heat conduction oil expansion tank and a heat conduction oil pump connected in series in the heat exchange circuit.
在一些实施例中,所述太阳能集热器为槽式太阳能集热器。In some embodiments, the solar collector is a trough solar collector.
在一些实施例中,所述熔融盐蓄放热模块包括熔融盐加热器、低温熔融盐罐和高温熔融盐罐,所述熔融盐加热器与所述换热器并联在所述低温熔融盐罐的出口和所述高温熔融盐罐的入口之间,所述微电网模块与所述熔融盐加热器电连,所述热泵供热模块连接在所述高温熔融盐罐的出口与所述低温熔融盐罐的入口之间。In some embodiments, the molten salt heat storage and release module includes a molten salt heater, a low-temperature molten salt tank and a high-temperature molten salt tank, and the molten salt heater is connected in parallel with the heat exchanger in the low-temperature molten salt tank Between the outlet of the high-temperature molten salt tank and the inlet of the high-temperature molten salt tank, the micro-grid module is electrically connected to the molten salt heater, and the heat pump heating module is connected between the outlet of the high-temperature molten salt tank and the low-temperature molten salt tank. Between the entrances to the salt shakers.
在一些实施例中,包括热网循环水回路,所述热泵供热模块连入所述热网循环水回路用于加热循环水。In some embodiments, a heat network circulating water circuit is included, and the heat pump heating module is connected to the heat network circulating water circuit for heating the circulating water.
在一些实施例中,所述热网循环水回路包括热水回水管和热水供水管,所述吸收式热泵和所述压缩式热泵并联在所述热水回水管和所述热水供水管之间,所述热水供水管用于向用户侧提供热水。In some embodiments, the circulating water circuit of the heating network includes a hot water return pipe and a hot water supply pipe, and the absorption heat pump and the compression heat pump are connected in parallel between the hot water return pipe and the hot water supply pipe Between, the hot water supply pipe is used to provide hot water to the user side.
在一些实施例中,所述吸收式热泵为溴化锂吸收式热泵。In some embodiments, the absorption heat pump is a lithium bromide absorption heat pump.
附图说明Description of drawings
图1是本实用新型实施例提出的基于太阳能耦合熔融盐储热的双热泵互补供热系统的结构示意图。Fig. 1 is a schematic structural diagram of a dual heat pump complementary heating system based on solar energy coupled with molten salt heat storage proposed by an embodiment of the present invention.
附图标记:Reference signs:
供热系统100;光伏板10;逆变器11;市电12;集中配电箱13;换热回路20;太阳能集热器21;换热器22;导热油膨胀罐23;导热油泵24;熔融盐回路30;低温熔融盐罐31;高温熔融盐罐32;低温熔盐泵33;高温熔盐泵34;熔融盐加热器35;第一蒸发器40;吸收器41;溶液热交换器42;发生器43;溶液泵44;第一冷凝器45;压缩机50;第二蒸发器51;第二冷凝器52;热泵环路54;膨胀阀55;热水回水管60;热水供水管61。
具体实施方式Detailed ways
下面详细描述本实用新型的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本实用新型,而不能理解为对本实用新型的限制。Embodiments of the invention are described in detail below, examples of which are illustrated in the accompanying drawings. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention, but should not be construed as limiting the present invention.
下面根据图1描述本实用新型实施例的基于太阳能耦合熔融盐储热的双热泵互补供热系统100,供热系统100包括:太阳能集热模块、熔融盐蓄放热模块、热泵供热模块和微电网模块。The following describes the dual heat pump
太阳能集热模块用于将收集的太阳能转化为热能。熔融盐蓄放热模块与太阳能集热模块相连,用于将太阳能集热模块的热量储存在熔融盐蓄放热模块的熔融盐中,也就是说,太阳能集热模块利用太阳能中的光热提升熔融盐蓄放热模块中熔融盐的温度,将光热转化为热能储存在熔融盐中。The solar collector module is used to convert the collected solar energy into thermal energy. The molten salt heat storage and release module is connected with the solar heat collection module, which is used to store the heat of the solar heat collection module in the molten salt of the molten salt heat storage and release module, that is, the solar heat collection module uses the light and heat in the solar energy to increase The temperature of the molten salt in the molten salt heat storage and release module converts light and heat into thermal energy and stores it in the molten salt.
热泵供热模块包括吸收式热泵和压缩式热泵,熔融盐蓄放热模块还用于利用高温熔融盐驱动吸收式热泵以供热,也就是说,熔融盐蓄放热模块使用熔融盐中储存的热能作为吸收式热泵提供高温热源,驱动吸收式热泵对供热系统的热网循环水路中的回水进行加热。The heat pump heating module includes absorption heat pumps and compression heat pumps, and the molten salt heat storage and release module is also used to drive the absorption heat pump with high-temperature molten salt for heat supply, that is to say, the molten salt heat storage and release module uses the energy stored in the molten salt The thermal energy is used as an absorption heat pump to provide a high-temperature heat source, and the absorption heat pump is driven to heat the return water in the heat network circulation channel of the heating system.
微电网模块用于向熔融盐蓄放热模块供电以加热熔融盐,还用于驱动压缩式热泵供热,微电网模块与电网相连,可以理解的是,微电网模块为系统中所需要供电的设备提供电能。The micro-grid module is used to supply power to the molten salt heat storage and release module to heat the molten salt, and is also used to drive the compression heat pump to supply heat. The micro-grid module is connected to the grid. The device provides electrical energy.
本实用新型实施例提出的基于太阳能耦合熔融盐储热的双热泵互补供热系统100的运行方式如下:The operation mode of the dual heat pump
太阳能集热模块用于吸收太阳能中的光热,并用热能加热熔融盐蓄放热模块中的熔融盐,即将热能储存储存至熔融盐中。当系统开启时,熔融盐蓄放热模块用熔融盐中的热能驱动热泵供热模块中的吸收式热泵,吸收式热泵加热热网循环水路中的水为用户供热。当用户热负荷增加或熔融盐蓄放热模块蓄热量不足时,微电网模块通过电网驱动压缩式热泵参与加热热网循环水路中的水为用户供热,以满足用户的热负荷需求。The solar thermal collection module is used to absorb the light and heat in the solar energy, and heat the molten salt in the molten salt heat storage and release module with thermal energy, that is, store the thermal energy in the molten salt. When the system is turned on, the molten salt heat storage and release module uses the heat energy in the molten salt to drive the absorption heat pump in the heat pump heating module, and the absorption heat pump heats the water in the heat network circulating waterway to provide heat for users. When the heat load of the user increases or the heat storage capacity of the molten salt heat storage and release module is insufficient, the microgrid module drives the compression heat pump through the grid to participate in heating the water in the circulating water circuit of the heat network to provide heat for the user to meet the heat load demand of the user.
本实用新型实施例提出的基于太阳能耦合熔融盐储热的双热泵互补供热系统将太阳能光热转化,同时配以熔融盐储热,使太阳能可铺展开在24小时利用,提高太阳能利用率。吸收式热泵和压缩式热泵的驱动能源不同,将吸收式热泵和压缩式热泵互补,实现能量梯级利用,提高系统运行调节灵活性的同时提高系统的供热能力。本系统使用密度高、成本低、热效率高、设备占地面积小的熔融盐储热模块进行余热的跨时段储热调节,降低系统造价,提高运行可靠性。通过太阳能集热模块、熔融盐蓄放热模块、热泵供热模块和微电网模块的耦合,使波动性高的太阳能与逐时波动的用户热负荷之间的匹配关系达到有效平衡,充分利用新能源保证供热系统的安全可靠性。The dual heat pump complementary heating system based on solar energy coupled with molten salt heat storage proposed by the embodiment of the utility model converts solar light to heat, and at the same time is equipped with molten salt heat storage, so that the solar energy can be spread and utilized for 24 hours, and the utilization rate of solar energy is improved. The driving energy of the absorption heat pump and the compression heat pump are different, and the absorption heat pump and the compression heat pump are complementary to realize energy cascade utilization, improve the flexibility of system operation adjustment and improve the heating capacity of the system at the same time. This system uses a molten salt heat storage module with high density, low cost, high thermal efficiency, and a small equipment footprint for inter-period heat storage and regulation of waste heat, reducing system cost and improving operational reliability. Through the coupling of solar heat collection module, molten salt heat storage and release module, heat pump heating module and micro grid module, the matching relationship between the highly fluctuating solar energy and the hourly fluctuating user heat load can be effectively balanced, and the new energy can be fully utilized. Energy guarantees the safety and reliability of the heating system.
下面根据图1描述本实用新型提供的一个具体实施例中的基于太阳能耦合熔融盐储热的双热泵互补供热系统100。如图1所示,供热系统100包括太阳能集热模块、熔融盐蓄放热模块、热泵供热模块和微电网模块。其中,太阳能集热模块和微电网模块为供热系统中起到加热热网循环水路的热泵供热模块提供能量,熔融盐蓄放热模块用于储存太阳能集热模块和微电网模块中的能量,使供热系统100可以平衡波动性高的太阳能与逐时波动的用户热负荷。The following describes a dual heat pump
微电网模块包括新能源发电装置,新能源发电装置与熔融盐蓄放热模块和压缩式热泵均电连,新能源发电装置利用新能源发电,节能环保。可选地,新能源发电装置可以为利用太阳能发电的太阳能光伏板10,也可以为利用风能发电的风电机组等,本实用新型对此不做限制。The micro-grid module includes a new energy power generation device, which is electrically connected to the molten salt heat storage and release module and a compression heat pump. The new energy power generation device uses new energy to generate electricity, which is energy-saving and environmentally friendly. Optionally, the new energy power generation device may be a solar
具体地,在本实施例中,新能源发电装置为太阳能光伏板10,光伏板10在太阳的照射下,将太阳能转化为电能,对太阳能完成光电转化。光伏板10光电转化的直流电可以通过逆变器11转化为设备可以利用的交流电。为了满足微电网供电的平稳性,克服太阳能发电的波动性,市电12(电网)与太阳能发电设备同时接入集中配电箱13,集中配电箱13与熔融盐蓄放热模块和压缩式热泵均电连,为熔融盐蓄放热模块和压缩式热泵提供电能。Specifically, in this embodiment, the new energy power generation device is a solar
如图1所示,太阳能集热模块包括换热回路20和连接在换热回路20中的太阳能集热器21和换热器22,换热回路20中流通有换热介质。太阳能集热器21用于收集太阳能并将太阳能转化为热量,换言之,太阳能集热器21吸收太阳能中的热能用于加热换热回路20中的换热介质,对太阳能完成光热转化。As shown in FIG. 1 , the solar heat collection module includes a
进一步地,换热器22的热侧接入换热回路20,换热器22的冷侧与熔融盐蓄放热模块连通。换热器22用于通过换热回路20中的换热介质将太阳能集热模块的热量传递至熔融盐蓄放热模块中的熔融盐,也就是说,换热回路21中流通的换热介质将太阳能集热器21中的热量传送至换热器22的热侧,并经过换热器22将热量传递给换热器22冷侧的熔融盐,实现太阳能集热模块对熔融盐蓄放热模块的供热。Further, the hot side of the
具体地,太阳能集热模块中的换热介质可以为导热油,太阳能集热模块还包括串联在换热回路20中的导热油膨胀罐23和导热油泵24。导热油膨胀罐23可以保护导热油换热回路20,延长导热油的寿命,也间接保护换热器22、导热油泵24等设备。导热油泵24为换热回路20中导热油提供循环动力。Specifically, the heat exchange medium in the solar heat collection module may be heat transfer oil, and the solar heat collection module further includes a heat transfer
可选地,太阳能集热模块中太阳能集热器21可以为槽式太阳能集热器、平板式太阳能集热器,本实用新型对此不做限制。Optionally, the
在太阳能集热模块中,导热油通过导热油泵24的作用在换热回路20中循环流动,导热油通过太阳能集热器21时吸收太阳能集热器21收集的光热,导热油通过换热器22时作为热源在换热器22中将热量传递给熔融盐蓄放热模块。In the solar heat collection module, the heat conduction oil circulates in the
在本实用新型实施例中,熔融盐蓄放热模块用于储存热能,熔融盐蓄放热模块包括熔融盐回路30、熔融盐加热器35、低温熔融盐罐31和高温熔融盐罐32。低温熔融盐罐31和高温熔融盐罐32分别用于储存放热后的低温熔融盐和换热后的高温熔融盐。熔融盐加热器30与换热器22并联在低温熔融盐罐31的出口和高温熔融盐罐32的入口之间,可以理解的是,熔融盐加热器30与换热器22的作用都为对熔融盐蓄放热模块中的熔融盐进行加热,在实际工作中,熔融盐加热器30与换热器22的一者可以单独对熔融盐蓄放热模块中的熔融盐进行加热,二者也可以同时对熔融盐进行加热。熔融盐加热器30与微电网模块电连,微电网模块为熔融盐加热器30提供电能。微电网的新能源发电装置产生的多余电能,用于给熔融盐加热器30供电,使电能可以转化为可以储存的熔融盐放热模块中的热能。In the embodiment of the utility model, the molten salt heat storage and release module is used to store heat energy, and the molten salt heat storage and release module includes a
如图1所示,在熔融盐蓄放热模块中,还包括低温熔盐泵33和高温熔盐泵34,低温熔盐泵33和高温熔盐泵34用于驱动熔融盐在熔融盐蓄放热模块中循环。在熔融盐加热器30与换热器22的各自的并联支路中,每条支路中还包括若干截止阀和电动调节阀,截止阀和电动调节阀用于控制并联支路中熔融盐的流动,保护熔融盐蓄放热模块中各装置的稳定性。As shown in Figure 1, in the molten salt heat storage and release module, a low-temperature
本实用新型实施例提出的基于太阳能耦合熔融盐储热的双热泵互补供热系统100还包括热泵供热模块和热网循环水回路,热泵供热模块连入热网循环水回路并加热热网循环水回路中的热水,也就是说,在供热系统100中热泵供热模块具有对热网循环水回路加热的功能。如图1所示,热网循环水回路包括热水回水管60和热水供水管61。The dual heat pump
进一步地,热泵供热模块包括吸收式热泵和压缩式热泵,吸收式热泵和压缩式热泵并联在热网循环水回路中,使得吸收式热泵和压缩式热泵均可以加热热网循环水回路中的热水,并且二者可以单独加热,也可以同时加热热网循环水回路。具体地,如图1所示,热水回水管60与吸收式热泵和压缩式热泵中的每一者连通,水经加热后,通过与吸收式热泵和压缩式热泵中的每一者连通的热水供水管61流向用户侧。Further, the heat pump heating module includes an absorption heat pump and a compression heat pump, and the absorption heat pump and the compression heat pump are connected in parallel in the circulating water circuit of the heat network, so that both the absorption heat pump and the compression heat pump can heat the water in the circulating water circuit of the heat network. Hot water, and the two can be heated separately, or they can heat the circulating water circuit of the heating network at the same time. Specifically, as shown in Figure 1, the hot
具体地,在本实用新型实施例中,如图1所示,吸收式热泵为溴化锂吸收式热泵。溴化锂吸收式热泵主要包括蒸发器40、吸收器41、溶液热交换器42、发生器43、溶液泵44和冷凝器45。Specifically, in the embodiment of the present utility model, as shown in FIG. 1 , the absorption heat pump is a lithium bromide absorption heat pump. The lithium bromide absorption heat pump mainly includes an
溴化锂吸收式热泵的工作原理如下:首先,由于蒸发器40内为负压,蒸发器40中的冷剂,即水,在较低温度下也可以在蒸发器40中蒸发,从而吸收空气中的余热。然后,吸收器41中溴化锂浓溶液吸收来自蒸发器40的冷剂,即蒸发器40产生的蒸汽,冷剂在溴化锂溶液中液化放热,并将潜热释放给吸收器41内的热网循环水回路中的热网水,热网水实现第一次升温,同时,在吸收器41内浓溶液将变成稀溶液,经过溶液热交换器42升温后在溶液泵44的作用下进入发生器43。然后,发生器43中驱动热源蒸汽加热溴化锂溶液,水蒸汽蒸发,溴化锂溶液变为浓溶液,浓溶液经溶液热交换器42后进入吸收器41重新进行吸收。最后,发生器43中蒸发的冷剂,即蒸汽,进入冷凝器45液化放热,加热管内热网循环水回路中的热网水,实现热网水的二次升温,冷剂蒸汽在冷凝器45中冷凝成液态冷剂水后进入蒸发器40。如此反复,实现吸收式热泵循环运行。吸收式热泵机组的发生器43接入熔融盐蓄放热模块中的熔融盐回路30,并位于高温熔融盐罐32出口和低温熔融盐罐31入口之间,高温熔融盐罐32中的高温熔融盐为发生器43提供热源,加热吸收式热泵中的溴化锂溶液,推动吸收式热泵的循环运行。The working principle of the lithium bromide absorption heat pump is as follows: First, due to the negative pressure in the
本实用新型实施例中的压缩式热泵包括:工质、压缩机50、蒸发器51、冷凝器52、热泵环路54和膨胀阀55,工质在压缩式热泵环路54中循环。压缩式热泵的工作原理如下:首先,低温低压的工质通过蒸发器51,在低位热源环境下吸收热量汽化;工质进入压缩机50,在压缩机50的作用下形成高温高压的蒸汽;然后进入冷凝器52液化放热,将潜热释放至热网循环水回路中的热网水,最后经膨胀阀55恢复成低温低压液体,形成循环。压缩式热泵的压缩机50与微电网模块相连,微电网模块为压缩机50提供电能。The compression heat pump in the embodiment of the utility model includes: a working fluid, a
本实用新型实施例提出的基于太阳能耦合熔融盐储热的双热泵互补供热系统100进行供热时,随热负荷从小到大依次采用不同运行方式,具体如下:When the dual heat pump
在日间,太阳能光伏板10发电,并经逆变器11输出为可用交流电,经配电箱13供给压缩式热泵,驱动压缩式热泵提取空气中低品位热能加热热网循环水回路,从而对外供热。在满足用户热负荷前提下,光伏板10产生的冗余发电量,为熔融盐加热器35供电,熔融盐加热器35加热熔融盐回路30中的熔融盐,并将热量以高温熔融盐的方式储存在高温熔融盐储存罐32。During the daytime, the solar
同时在日间,太阳能集热器21收集太阳能将太阳能转化为热能,并加热换热环路20中的导热油,并通过换热器22将热量传递给熔融盐回路30中的熔融盐,将热量以高温熔融盐的方式储存在高温熔融盐储存罐32。At the same time during the day, the
随热用户热负荷逐渐上升和/或太阳能辐照强度下降,光伏发电量驱动的压缩式热泵无法满足用户热负荷时,利用高温熔盐驱动吸收式热泵提取空气中低品位热能参与供热。As the heat load of heat users increases gradually and/or the intensity of solar radiation decreases, when the compression heat pump driven by photovoltaic power generation cannot meet the heat load of users, high-temperature molten salt-driven absorption heat pumps are used to extract low-grade heat energy in the air to participate in heating.
当光照强度进一步下降和/或夜间无光照时,利用光伏板10的发电量驱动的压缩式热泵无法满足用户热负荷,熔融盐蓄放热模块开始放热,利用高温熔融盐驱动吸收式热泵提取空气中的低品位热能参与供热,此时的供热模式可以为双热泵互补供热。When the light intensity drops further and/or there is no light at night, the compression heat pump driven by the power generated by the
随着光照强度进一步下降或当夜间无光照时,光伏板10发电量不足以支撑压缩式热泵运作。双热泵互补供热模式逐渐转换为熔融盐驱动吸收式热泵独立参与供热。As the light intensity drops further or when there is no light at night, the power generated by the
当熔融盐蓄放热模块中储存的热量不足以满足用户热负荷时,吸收式热泵停止运作,利用市电12驱动压缩式热泵单独供热。When the heat stored in the molten salt heat storage and release module is not enough to meet the heat load of the user, the absorption heat pump stops operating, and the
遇极端天气无光照且熔盐储热量不足,并且市电12驱动压缩式热泵独立工作仍无法满足用户热负荷时,供热系统100可以利用市电12为熔融盐加热器35供电,熔融盐加热器35加热熔融盐驱动吸收式热泵共同参与供热,以在极端工况下满足用户热负荷需求。When there is no light in extreme weather and the heat storage capacity of the molten salt is insufficient, and the compression heat pump driven by the
本实用新型实施例提出的基于太阳能耦合熔融盐储热的双热泵互补供热系统100具有以下优点:The dual heat pump
将光热转化和光电转化两种太阳能利用方式高效耦合,使用熔融盐储存系统从太阳能获得的能量,利用熔融盐储热方式作为系统中平衡太阳能集热量与热负荷之间关系与电热转换的媒介,将逐时波动的太阳能输出热电功率与用户逐时波动的热负荷良好平衡衔接,使集中于日间的太阳能可铺展开在24小时利用,提高太阳能利用率,降低供热成本和污染物排放。Efficiently couple the two solar energy utilization methods of photothermal conversion and photoelectric conversion, use the molten salt storage system to obtain energy from solar energy, and use the molten salt heat storage method as a medium to balance the relationship between solar energy collection and heat load and electrothermal conversion in the system , to balance the hourly fluctuating solar thermal output power with the user’s hourly fluctuating heat load, so that the solar energy concentrated during the day can be spread out for 24 hours of utilization, improving the utilization rate of solar energy, reducing heating costs and pollutant emissions .
将驱动能源不同的吸收式热泵和压缩式热泵互补,提高系统运行调节灵活性的同时提高供热能力,实现能量梯级利用,进一步促进新能源消纳。同时应对随机波动的太阳能集热与发电设备良好响应共同提供持续稳定的热量输出,保证用户侧热负荷需求。使波动性高的太阳能与逐时波动的用户热负荷之间的匹配关系达到有效平衡,充分利用新能源保证供热系统的安全可靠性。Complementary absorption heat pumps and compression heat pumps with different driving energies will improve the flexibility of system operation and adjustment while improving heating capacity, realize energy cascade utilization, and further promote new energy consumption. At the same time, it responds well to the random fluctuations of solar heat collection and power generation equipment to provide continuous and stable heat output to ensure the heat load demand on the user side. The matching relationship between the highly volatile solar energy and the hourly fluctuating user heat load can be effectively balanced, and the new energy can be fully utilized to ensure the safety and reliability of the heating system.
本实用新型配置储能密度高、成本低、热效率高、设备占地面积小的熔融盐储热罐进行余热的跨时段储热调节,降低系统造价,提高运行可靠性,还可消纳冗余光伏发电量。The utility model is configured with a molten salt heat storage tank with high energy storage density, low cost, high thermal efficiency, and a small equipment footprint to adjust waste heat across time intervals, reduce system cost, improve operation reliability, and can also eliminate redundancy Photovoltaic power generation.
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", "Back", "Left", "Right", "Vertical", "Horizontal", "Top", "Bottom", "Inner", "Outer", "Clockwise", "Counterclockwise", "Axial" The orientation or positional relationship indicated by , "radial", "circumferential", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the utility model and simplifying the description, rather than indicating or implying the referred device Or elements must have a specific orientation, be constructed and operate in a specific orientation, and thus should not be construed as limiting the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present utility model, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。In this utility model, unless otherwise specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrated; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components , unless expressly defined otherwise. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present utility model according to specific situations.
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, the first feature may be in direct contact with the first feature or the first feature and the second feature through an intermediary indirect contact. Moreover, "above", "above" and "above" the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below", "beneath" and "beneath" the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
在本实用新型中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In this disclosure, the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean specific features, structures, materials described in connection with the embodiment or example Or features are included in at least one embodiment or example of the invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above-mentioned embodiments are exemplary, and should not be construed as limitations of the present invention, and those of ordinary skill in the art are within the scope of the present invention. Variations, modifications, substitutions and variations can be made to the above-described embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221454813.4U CN217817509U (en) | 2022-06-10 | 2022-06-10 | Double-heat-pump complementary heat supply system based on solar energy coupling molten salt heat storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221454813.4U CN217817509U (en) | 2022-06-10 | 2022-06-10 | Double-heat-pump complementary heat supply system based on solar energy coupling molten salt heat storage |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217817509U true CN217817509U (en) | 2022-11-15 |
Family
ID=83989073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202221454813.4U Active CN217817509U (en) | 2022-06-10 | 2022-06-10 | Double-heat-pump complementary heat supply system based on solar energy coupling molten salt heat storage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217817509U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116007038A (en) * | 2022-12-19 | 2023-04-25 | 大唐东北电力试验研究院有限公司 | Solar energy coupling molten salt heat storage driven ground source heat pump heating system |
CN116085850A (en) * | 2023-01-16 | 2023-05-09 | 中国核电工程有限公司 | Combined heat and power generation system based on nuclear energy and solar energy and heating network |
CN116292101A (en) * | 2023-02-27 | 2023-06-23 | 西安热工研究院有限公司 | Wind power plant centralized heat supply system with redundant wind energy and solar energy coupled |
-
2022
- 2022-06-10 CN CN202221454813.4U patent/CN217817509U/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116007038A (en) * | 2022-12-19 | 2023-04-25 | 大唐东北电力试验研究院有限公司 | Solar energy coupling molten salt heat storage driven ground source heat pump heating system |
CN116085850A (en) * | 2023-01-16 | 2023-05-09 | 中国核电工程有限公司 | Combined heat and power generation system based on nuclear energy and solar energy and heating network |
CN116292101A (en) * | 2023-02-27 | 2023-06-23 | 西安热工研究院有限公司 | Wind power plant centralized heat supply system with redundant wind energy and solar energy coupled |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN217817509U (en) | Double-heat-pump complementary heat supply system based on solar energy coupling molten salt heat storage | |
CN113669039B (en) | Steam-assisted heavy oil thermal recovery system | |
CN101964606B (en) | Solar energy combined energy supply system and method | |
CN101825073A (en) | Distributed solar energy cascade utilization system | |
CN114413503B (en) | A zero-carbon and efficient distributed energy supply system driven by renewable energy and its operation method | |
CN115013096B (en) | A thermal power generation, photothermal power generation and supercritical carbon dioxide coupled power generation system and method | |
CN108282023A (en) | A kind of data center's energy comprehensive utilization system | |
CN114244274B (en) | Photovoltaic photo-thermal and thermoelectric power generation coupling system with combined heat and power generation | |
CN112814860B (en) | Circulating complementary cogeneration system of tower type solar photo-thermal power generation refrigerator and operation method thereof | |
CN114739048A (en) | PVT light and heat storage type water source heat pump system and operation method | |
CN114264000B (en) | A distributed energy center application system | |
CN114278404B (en) | Energy storage-based high-wind-power-permeability regional wind power consumption and clean heating system | |
CN208028655U (en) | A data center energy comprehensive utilization system | |
CN112539145B (en) | Solar thermal power generation system based on composite energy storage of sensible heat and phase change latent heat | |
CN115076752A (en) | A heating system with dual heat sources and high and low temperature independent heat storage tanks | |
CN217818305U (en) | Internal combustion engine heat and power cogeneration system combining molten salt heat storage with wind, light and geothermal energy | |
CN116292200B (en) | Photo-thermal, compressed air and organic Rankine cycle comprehensive energy system | |
CN217388579U (en) | PVT light and heat storage type water source heat pump system | |
CN207132579U (en) | Family's thermoelectricity energy conserving system based on photovoltaic and photothermal | |
CN115727384A (en) | Heat supply system for realizing peak regulation and cross-season heat storage of thermoelectric unit and operation method | |
CN114963274A (en) | Wind, light, electricity and ground thermal coupling distributed heating system and method | |
CN114877539A (en) | Concentrating solar-geothermal integrated system combining adjustable frequency division and absorption heat pump technology | |
CN209639302U (en) | A kind of domestic freezing heating electricity combined supply system that scene gas phase combines | |
CN114719450A (en) | Wind-solar-energy-storage combined heating system under multi-mode | |
CN217876067U (en) | Heat storage equipment coupled with clean energy heating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |