CN217717578U - Experimental device for testing flow heat transfer in high-temperature and high-pressure carbon dioxide pipe - Google Patents
Experimental device for testing flow heat transfer in high-temperature and high-pressure carbon dioxide pipe Download PDFInfo
- Publication number
- CN217717578U CN217717578U CN202220136686.7U CN202220136686U CN217717578U CN 217717578 U CN217717578 U CN 217717578U CN 202220136686 U CN202220136686 U CN 202220136686U CN 217717578 U CN217717578 U CN 217717578U
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- pressure
- temperature
- regenerator
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 222
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 112
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 109
- 238000012360 testing method Methods 0.000 title claims abstract description 33
- 238000012546 transfer Methods 0.000 title claims abstract description 28
- 238000003860 storage Methods 0.000 claims abstract description 66
- 238000001816 cooling Methods 0.000 claims abstract description 44
- 239000007788 liquid Substances 0.000 claims abstract description 43
- 238000009833 condensation Methods 0.000 claims abstract description 21
- 230000005494 condensation Effects 0.000 claims abstract description 20
- 238000002347 injection Methods 0.000 claims abstract description 19
- 239000007924 injection Substances 0.000 claims abstract description 19
- 230000001105 regulatory effect Effects 0.000 claims abstract description 15
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000005086 pumping Methods 0.000 claims abstract description 12
- 238000005485 electric heating Methods 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 25
- 229910052802 copper Inorganic materials 0.000 claims description 24
- 239000010949 copper Substances 0.000 claims description 24
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 21
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 21
- 238000007906 compression Methods 0.000 claims description 19
- 230000006835 compression Effects 0.000 claims description 18
- 239000000498 cooling water Substances 0.000 claims description 17
- 229910001220 stainless steel Inorganic materials 0.000 claims description 17
- 239000010935 stainless steel Substances 0.000 claims description 17
- -1 polytetrafluoroethylene Polymers 0.000 claims description 12
- 238000007789 sealing Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 238000010248 power generation Methods 0.000 abstract description 6
- 239000012530 fluid Substances 0.000 description 35
- 238000010586 diagram Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
本实用新型提供了一种高温高压二氧化碳管内流动传热测试实验装置,属于二氧化碳热工水力测试领域,用于解决现有超临界二氧化碳发电系统的气冷壁和换热器难以有效测量问题。包括依次连接的高压二氧化碳泵、压力传感器、主管安全阀、气囊式稳压器、系统流量计、回热器、主管铠装热电偶、压力调节阀、系统截止阀和过滤器,回热器分别连接有预热系统、实验段测量系统和冷却系统,冷却系统连接在回热器和主管铠装热电偶之间,压力调节阀和系统截止阀之间连接有相互连通的抽真空注液系统和冷凝储液系统,冷凝储液系统连接有支路;本实用新型可进行不同压力、温度、管径、加热功率的超临界二氧化碳流动传热及不稳定性测试。
The utility model provides a high-temperature and high-pressure carbon dioxide inner flow heat transfer test experimental device, which belongs to the field of carbon dioxide thermal hydraulic testing and is used to solve the problem that the existing supercritical carbon dioxide power generation system is difficult to effectively measure the air-cooled wall and heat exchanger. Including high-pressure carbon dioxide pump, pressure sensor, main safety valve, airbag type regulator, system flow meter, regenerator, main armored thermocouple, pressure regulating valve, system shut-off valve and filter connected in sequence, and the regenerator is respectively The preheating system, the measurement system in the experimental section and the cooling system are connected. The cooling system is connected between the regenerator and the main armored thermocouple. The pressure regulating valve and the system shut-off valve are connected with the interconnected vacuum pumping and liquid injection system and The condensation liquid storage system is connected with a branch circuit; the utility model can perform supercritical carbon dioxide flow heat transfer and instability tests with different pressures, temperatures, pipe diameters and heating powers.
Description
技术领域technical field
本实用新型属于于二氧化碳热工水力测试技术领域,涉及一种流动传热测试实验装置,特别是一种高温高压二氧化碳管内流动传热测试实验装置。The utility model belongs to the technical field of thermal hydraulic testing of carbon dioxide, and relates to a flow heat transfer test experimental device, in particular to a flow heat transfer test experimental device in a high-temperature and high-pressure carbon dioxide tube.
背景技术Background technique
超临界流体,是指超出物质气液的临界温度、临界压力、临界容积状态的流体。狭义而言,是指超出临界温度状态的气体或流体。超临界二氧化碳(scCO2)是其中一种超临界流体,其动力循环发电以超高参数二氧化碳为循环工质,采用布雷顿循环及可能的复合循环,实现高效热功转换,当蒸气温度高于550 oC时,scCO2的热效率高于水蒸汽朗肯循环。Supercritical fluid refers to a fluid that exceeds the critical temperature, critical pressure, and critical volume state of the gas-liquid of the substance. In a narrow sense, it refers to a gas or fluid that exceeds the critical temperature state. Supercritical carbon dioxide (scCO 2 ) is one of the supercritical fluids. Its power cycle power generation uses carbon dioxide with ultra-high parameters as the circulating working medium, adopts Brayton cycle and possible compound cycle, and realizes high-efficiency thermal power conversion. When the steam temperature is higher than At 550 o C, the thermal efficiency of scCO2 is higher than that of the water vapor Rankine cycle.
该发电系统运行在超临界压力,二氧化碳通流能力大,成倍减小发电系统尺寸,是近年来能源领域变革性技术,并被认为是未来清洁能源领域最具潜力的技术方案之一。在上述应用领域中,二氧化碳传热发生在加热器、回热器、冷却器等各种换热器中,全面了解二氧化碳的流动传热规律是系统和部件设计的基础。The power generation system operates at supercritical pressure, has a large carbon dioxide flow capacity, and doubles the size of the power generation system. It is a transformative technology in the energy field in recent years and is considered to be one of the most potential technical solutions in the future clean energy field. In the above application fields, carbon dioxide heat transfer occurs in various heat exchangers such as heaters, regenerators, and coolers. A comprehensive understanding of the flow and heat transfer laws of carbon dioxide is the basis for system and component design.
基于此,我们提出了一种高温高压二氧化碳管内流动传热测试实验装置,属于阻力、对流换热系数和流动不稳定性测试技术领域。该实验装置由抽真空注液系统、冷凝储液装置、预热电加热系统、冷却回路、CO2工质回路、实验段组成,上述系统和装置共同作用将低温低压的CO2转换成高温高压的超临界态CO2,同时为了减小实验台总加热功率,实验段流出的高温高压CO2的热量被回热器内的低温CO2工质充分吸收,回热器采用套管式或印刷电路板式换热器;可进行不同压力(1~30 MPa)、不同温度(~600 oC)、不同管径(2-30 mm)、不同加热功率(1-500 kW)的流动传热以及不稳定性测试。该实验装置解决了超临界CO2发电系统气冷壁、换热器等设计过程中存在的数据空白和无关联式参考等问题,对发展新一代发电技术具有重要意义。Based on this, we propose an experimental device for testing flow and heat transfer in a high-temperature and high-pressure carbon dioxide tube, which belongs to the technical field of resistance, convective heat transfer coefficient and flow instability testing. The experimental device consists of a vacuum injection system, a condensing liquid storage device, a preheating electric heating system, a cooling circuit, a CO2 working medium circuit, and an experimental section. The above-mentioned systems and devices work together to convert low-temperature and low-pressure CO2 into high-temperature and high-pressure Supercritical CO 2 , and in order to reduce the total heating power of the test bench, the heat of high-temperature and high-pressure CO 2 flowing out of the experimental section is fully absorbed by the low-temperature CO 2 working fluid in the regenerator. The regenerator adopts sleeve type or printed Circuit plate heat exchanger; it can carry out flow heat transfer of different pressures (1~30 MPa), different temperatures (~600 o C), different pipe diameters (2-30 mm), different heating power (1-500 kW) and Instability testing. The experimental device solves the problems of data gaps and unrelated references in the design process of the air-cooled wall and heat exchanger of the supercritical CO2 power generation system, which is of great significance to the development of a new generation of power generation technology.
实用新型内容Utility model content
本实用新型的目的是针对现有的技术存在上述问题,提出了一种高温高压二氧化碳管内流动传热测试实验装置,本实用新型要解决的技术问题是:如何实现在不同压力、温度、管径、加热功率下进行超临界二氧化碳的流动传热及不稳定性测试。The purpose of this utility model is to solve the above-mentioned problems in the existing technology, and proposes a flow heat transfer test device in a high-temperature and high-pressure carbon dioxide tube. The technical problem to be solved by this utility model is: how to realize , Heat transfer and instability tests of supercritical carbon dioxide under heating power.
本实用新型的目的可通过下列技术方案来实现:The purpose of this utility model can be achieved through the following technical solutions:
一种高温高压二氧化碳管内流动传热测试实验装置,包括依次连接的高压二氧化碳泵、压力传感器、主管安全阀、气囊式稳压器、系统流量计、回热器、主管铠装热电偶、压力调节阀、系统截止阀和过滤器,所述回热器分别连接有预热系统、实验段测量系统和冷却系统,其中冷却系统连接在回热器和主管铠装热电偶之间,压力调节阀和系统截止阀之间连接有相互连通的抽真空注液系统和冷凝储液系统,其中冷凝储液系统连接有支路,支路连接在主管安全阀和气囊式稳压器之间。A high-temperature and high-pressure carbon dioxide pipe flow heat transfer test experimental device, including a high-pressure carbon dioxide pump, a pressure sensor, a main pipe safety valve, an air bag regulator, a system flow meter, a regenerator, a main pipe armored thermocouple, and a pressure regulator connected in sequence Valve, system shut-off valve and filter, the regenerator is respectively connected with the preheating system, the measurement system of the experimental section and the cooling system, wherein the cooling system is connected between the regenerator and the main pipe armored thermocouple, the pressure regulating valve and The system shut-off valve is connected with a vacuum pumping liquid injection system and a condensate liquid storage system connected with each other, wherein the condensate liquid storage system is connected with a branch circuit, and the branch circuit is connected between the main safety valve and the air bag type regulator.
所述高压二氧化碳泵为柱塞式计量泵,回热器为套管式换热器,回热器的内管外管都由不锈钢材料制作而成。The high-pressure carbon dioxide pump is a plunger-type metering pump, the regenerator is a sleeve-type heat exchanger, and the inner and outer pipes of the regenerator are made of stainless steel.
采用以上结构,高压二氧化碳泵一方面为二氧化碳流体提供动力,配合压力调节阀调节系统所需压力,另一方面可以通过变频控制实现对系统流量进行精确控制,气囊式稳压器用来平稳回路二氧化碳流体的流量和压力波动,回热器的内管外管都由不锈钢材料制作而成,价格低,稳定性高、安全性强。With the above structure, on the one hand, the high-pressure carbon dioxide pump provides power for the carbon dioxide fluid, and cooperates with the pressure regulating valve to adjust the pressure required by the system. On the other hand, it can realize precise control of the system flow through frequency conversion control. The inner and outer tubes of the regenerator are made of stainless steel, with low price, high stability and strong safety.
所述抽真空注液系统包括汇流排和真空泵,汇流排和真空泵分别与压力调节阀连通,汇流排上连接有若干二氧化碳气瓶,二氧化碳气瓶与汇流排之间均设有真空截止阀,二氧化碳气瓶上均设有电加热套。The vacuum pumping liquid injection system includes a busbar and a vacuum pump, the busbar and the vacuum pump are connected to the pressure regulating valve respectively, a number of carbon dioxide gas cylinders are connected to the busbar, and a vacuum stop valve is arranged between the carbon dioxide gas cylinders and the busbar. There are electric heating jackets on the gas cylinders.
采用以上结构,抽真空注液系统的特点是在充装二氧化碳前,为了避免不凝性气体对测量的影响,保证回路处于通路,开启真空泵将整个回路抽真空,直至整个系统的真空度达到 30 Pa以下关闭真空泵,装二氧化碳气瓶的压力通常在8 MPa左右,当二氧化碳气瓶的压力和系统压力相等时,二氧化碳气瓶里多余的二氧化碳则不能继续充进系统,为了提高充装速度和减小二氧化碳的浪费,在二氧化碳气瓶外加装电加热套将二氧化碳的温度升高,从而增大二氧化碳气瓶的压力,实现快速充装。With the above structure, the characteristic of the vacuum injection liquid injection system is that before filling carbon dioxide, in order to avoid the influence of non-condensable gas on the measurement, to ensure that the circuit is in the path, turn on the vacuum pump to vacuum the entire circuit until the vacuum degree of the entire system reaches 30 The vacuum pump is turned off below Pa, and the pressure of the carbon dioxide cylinder is usually about 8 MPa. When the pressure of the carbon dioxide cylinder is equal to the system pressure, the excess carbon dioxide in the carbon dioxide cylinder cannot continue to be filled into the system. To minimize the waste of carbon dioxide, an electric heating jacket is installed outside the carbon dioxide cylinder to increase the temperature of carbon dioxide, thereby increasing the pressure of the carbon dioxide cylinder and realizing rapid filling.
所述冷凝储液系统包括工业冷水机和冷凝储罐,工业冷水机的进口端及出口端和冷凝储罐之间分别设有第一流量计和第一离心泵以及第一截止阀,冷凝储罐与抽真空注液系统连接,冷凝储罐上连接有第一铠装热电偶、第一压力变送器和储罐安全阀,冷凝储罐与系统截止阀之间连接有排气阀,工业冷水机依次连接有第一冷却塔、第一储水桶、第二离心泵和第二流量计,冷凝储罐为冷凝器和储液罐组成的一体式罐体,由冷却水筒体、二氧化碳储液罐、冷凝盘管和低温冷水喷管组成。The condensate liquid storage system includes an industrial chiller and a condensate storage tank. A first flow meter, a first centrifugal pump, and a first shut-off valve are respectively arranged between the inlet and outlet ends of the industrial chiller and the condensate storage tank. The tank is connected to the vacuum injection system, the first armored thermocouple, the first pressure transmitter and the safety valve of the storage tank are connected to the condensate storage tank, and the exhaust valve is connected between the condensate storage tank and the system shut-off valve, industrial The water chiller is connected with the first cooling tower, the first water storage tank, the second centrifugal pump and the second flow meter in turn. The condensation storage tank is an integrated tank composed of a condenser and a liquid storage tank. It consists of a cooling water cylinder, a carbon dioxide storage liquid It consists of a tank, a condensing coil and a low-temperature cold water nozzle.
采用以上结构,二氧化碳储液罐在冷却水筒体内,冷凝盘管在储液罐和冷却水筒体中间,低温冷水喷管连接冷水机冷侧出口,冷水机冷侧出口温度为摄氏度左右,冷水喷管竖直放置,自下而上流动,冷水喷管管壁轴向和周向方向开设了一定数量的通孔,用来增强换热,通过第二离心泵将第一储水桶内部的冷却水,经由第二流量计注入工业冷水机内部,进行换热,得到的热水,进入第一冷却塔进行冷却,形成循环冷却机制,换热后得到低温的介质通过第一离心泵注入冷凝储罐,对冷凝储罐内部的系统主管进行降温,从而对系统主管内部的二氧化碳流体进行降温。With the above structure, the carbon dioxide liquid storage tank is in the cooling water cylinder, the condensation coil is in the middle of the liquid storage tank and the cooling water cylinder, the low-temperature cold water nozzle is connected to the cold side outlet of the chiller, the temperature of the cold side outlet of the chiller is about 100 degrees Celsius, and the cold water nozzle Placed vertically and flowing from bottom to top, a certain number of through holes are opened in the axial and circumferential directions of the cold water nozzle pipe wall to enhance heat exchange. It is injected into the industrial chiller through the second flowmeter for heat exchange, and the obtained hot water enters the first cooling tower for cooling to form a circulating cooling mechanism. After heat exchange, the low-temperature medium is injected into the condensation storage tank through the first centrifugal pump. Cool down the system main line inside the condensate storage tank, thereby cooling the carbon dioxide fluid inside the system main line.
所述预热系统包括第一电流调压器和U型管电加热预热器,U型管电加热预热器与回热器连接,U型管电加热预热器上设有若干第一铜电极板,第一电流调压器与若干第一铜电极板之间均通过第一铜辫线连接,U型管电加热预热器由不锈钢管制作而成,第一电流调压器为可控硅低压大电流调压器。The preheating system includes a first current regulator and a U-shaped tube electric heating preheater, the U-shaped tube electric heating preheater is connected to the regenerator, and several first Copper electrode plates, the first current regulator and several first copper electrode plates are connected by first copper braids, the U-shaped tube electric heating preheater is made of stainless steel tubes, and the first current regulator is Thyristor low voltage high current voltage regulator.
采用以上结构,通过接入电源,由U型管电加热预热器的不锈钢管自身的电阻发热加热二氧化碳流体,制作过程中在其入口段、中间段和出口段分别用银钎焊焊接结束将铜电极板焊接上去,为了防止电加热漏电影响系统仪器仪表的测量,传统的电绝缘法兰或者绝缘接头在高温高压系统中的难实现,本实施例采用三点加热法,所谓三点加热法就是将直流低压大电流变压器的正极引出两条线,一条接入口段电极板,另一头接出口段电极板,负极直接接中间段电极板,电流在U型管电加热预热器内部形成回路,有效的防止了漏电,第一电流调压器连接低压大电流变压器,通过连续调节第一电流调压器电压,可以改变预热器电加热功率,从而达到实验所需要的温度。With the above structure, by connecting to the power supply, the carbon dioxide fluid is heated by the resistance heating of the stainless steel tube of the U-shaped tube electric heating preheater. During the production process, the inlet section, middle section and outlet section are respectively soldered with silver brazing The copper electrode plate is welded. In order to prevent electric heating leakage from affecting the measurement of system instruments and meters, traditional electrical insulating flanges or insulating joints are difficult to realize in high-temperature and high-pressure systems. This embodiment adopts a three-point heating method, the so-called three-point heating method It is to lead out two wires from the positive pole of the DC low-voltage high-current transformer, one end is connected to the electrode plate of the inlet section, the other end is connected to the electrode plate of the outlet section, and the negative pole is directly connected to the electrode plate of the middle section, and the current forms a loop inside the U-shaped tube electric heating preheater , Effectively prevent leakage, the first current regulator is connected to a low-voltage high-current transformer, by continuously adjusting the voltage of the first current regulator, the electric heating power of the preheater can be changed, so as to reach the temperature required by the experiment.
所述实验段测试系统包括实验段和第二电流调压器,实验段进口端和出口端分别与U型管电加热预热器以及回热器连接,实验段的两端分别通过高压密封热电偶座设有两个第二铠装热电偶,实验段上设有若干壁面热电偶丝和若干第二铜电极板,实验段上设有两个绝缘接头,两个绝缘接头上通过引压管连接有压差变送器,引压管上分别设有第二压力变送器和第三压力变送器,若干第二铜电极板与第二电流调和压器通过第二铜辫线电性连接,第二铠装热电偶的套管采用316L不锈钢材料,壁面热电偶丝为K型热电偶。The test system of the experimental section includes an experimental section and a second current regulator. The inlet and outlet ends of the experimental section are respectively connected to the U-shaped tube electric heating preheater and the reheater. There are two second armored thermocouples on the coupler seat, several wall thermocouple wires and some second copper electrode plates on the experimental section, two insulating joints on the experimental section, and the two insulating joints pass through the pressure induction tube A differential pressure transmitter is connected, a second pressure transmitter and a third pressure transmitter are respectively arranged on the pressure introduction tube, and several second copper electrode plates and the second current regulator are electrically connected through the second copper braided wire. Connection, the casing of the second armored thermocouple is made of 316L stainless steel, and the wall thermocouple wire is a K-type thermocouple.
采用以上结构,为了防止电加热对流体温度测量的第二铠装热电偶影响,第二铠装热电偶为非接触式绝缘铠装热电偶,第二铠装热电偶通过高压密封热电偶座垂直插入管道中心处,第二铠装热电偶通过锥形密封实现高压密封,壁面热电偶丝为K型热电偶,通过电容放电产生瞬时高温原理直接焊接在实验段管壁上。With the above structure, in order to prevent the influence of electric heating on the second armored thermocouple for fluid temperature measurement, the second armored thermocouple is a non-contact insulated armored thermocouple, and the second armored thermocouple passes through the high-pressure sealed thermocouple seat vertically Inserted into the center of the pipe, the second armored thermocouple realizes high-pressure sealing through a tapered seal, and the thermocouple wire on the wall is a K-type thermocouple, which is directly welded to the pipe wall of the experimental section by the principle of instantaneous high temperature generated by capacitive discharge.
所述绝缘接头包括中心柱,中心柱的一端螺接有第一紧固螺母,第一紧固螺母与中心柱之间依次设有压紧卡套和锥面卡套,中心柱上设有两个对称设置的聚四氟乙烯绝缘套,聚四氟乙烯绝缘套呈锥形,中心柱上套设有,聚四氟乙烯绝缘套外侧设有第二紧固螺母,两个聚四氟乙烯绝缘套位于第二紧固螺母内侧,第二紧固螺母上螺接有螺柱,第二紧固螺母和螺柱之间依次设有橡胶圈和聚四氟乙烯平垫。The insulating joint includes a central column, and one end of the central column is screwed with a first fastening nut, and a compression ferrule and a tapered ferrule are sequentially arranged between the first fastening nut and the central column, and the central column is provided with two A symmetrically arranged polytetrafluoroethylene insulating sleeve, the polytetrafluoroethylene insulating sleeve is tapered, the central column is sleeved, the outer side of the polytetrafluoroethylene insulating sleeve is provided with a second fastening nut, and two polytetrafluoroethylene insulating sleeves The sleeve is located inside the second fastening nut, and the second fastening nut is screwed with a stud, and a rubber ring and a polytetrafluoroethylene flat pad are sequentially arranged between the second fastening nut and the stud.
采用以上结构,第一紧固螺母和螺柱用于快速连接引压管,压紧卡套和锥面卡套配合以及橡胶圈和聚四氟乙烯平垫配合,第二紧固螺母和螺柱配合锁紧两个聚四氟乙烯绝缘套以及橡胶圈和聚四氟乙烯平垫,保证连接的密封性,有效的防止了漏电。With the above structure, the first fastening nut and stud are used to quickly connect the pressure induction pipe, the compression ferrule is matched with the tapered ferrule and the rubber ring is matched with the PTFE flat washer, and the second fastening nut and stud are used Cooperate and lock two PTFE insulating sleeves, rubber rings and PTFE flat pads to ensure the tightness of the connection and effectively prevent leakage.
所述高压密封热电偶座包括压紧螺母、固定螺母和锥形密封垫,压紧螺母与固定螺母螺接,锥形密封垫卡合在压紧螺母与固定螺母之间。The high-pressure sealed thermocouple seat includes a compression nut, a fixing nut and a conical sealing gasket, the compression nut and the fixing nut are screwed together, and the conical sealing gasket is engaged between the compression nut and the fixing nut.
采用以上结构,锥形密封垫稳定的卡合在压紧螺母与固定螺母之间保证密封,压紧螺母和固定螺母用于连接第二铠装热电偶,使得第二铠装热电偶通过高压密封热电偶座垂直插入管道中心处,第二铠装热电偶通过锥形密封,实现高压密封。With the above structure, the conical sealing gasket is stably engaged between the compression nut and the fixed nut to ensure the seal. The compression nut and the fixed nut are used to connect the second armored thermocouple, so that the second armored thermocouple is sealed by high pressure. The thermocouple seat is vertically inserted into the center of the pipe, and the second armored thermocouple is sealed through a cone to achieve high-pressure sealing.
所述冷却系统包括冷却器,冷却器为管壳式换热器,其管程内部设置高温高压二氧化碳工质,壳程内部设置常温冷却水,冷却器的进口端和出口端分别与回热器和主管铠装热电偶连接,冷却器连接有换热管,换热管上依次设有第二冷却塔、第二储水桶、第三离心泵和第三流量计。The cooling system includes a cooler. The cooler is a shell-and-tube heat exchanger. A high-temperature and high-pressure carbon dioxide working medium is arranged inside the tube side, and normal-temperature cooling water is arranged inside the shell side. The inlet and outlet ends of the cooler are respectively connected to the regenerator It is connected with the main armored thermocouple, the cooler is connected with a heat exchange tube, and the heat exchange tube is provided with a second cooling tower, a second water storage bucket, a third centrifugal pump and a third flowmeter in sequence.
采用以上结构,通过第三离心泵将第二储水桶内部的冷却水,经由第三流量计注入冷却器内部,与系统主管进行换热,得到的热水,进入第二冷却塔进行冷却,形成循环冷却机制,换热后的系统主管的二氧化碳工质温度降低,得到低温的二氧化碳工质通过主管铠装热电偶。With the above structure, the cooling water in the second water storage tank is injected into the cooler through the third flowmeter through the third centrifugal pump, and exchanges heat with the main pipe of the system, and the hot water obtained enters the second cooling tower for cooling to form Circulating cooling mechanism, after heat exchange, the temperature of the carbon dioxide working fluid in the main pipe of the system decreases, and the low-temperature carbon dioxide working fluid passes through the main pipe armored thermocouple.
与现有技术相比,本高温高压二氧化碳管内流动传热测试实验装置具有以下优点:Compared with the prior art, this high-temperature and high-pressure carbon dioxide tube flow heat transfer test experimental device has the following advantages:
抽真空注液系统对整个系统进行抽真空并注入二氧化碳,实现快速充装;通过冷凝储液系统,对系统主管内部的二氧化碳工质进行降温;并通过气囊式稳压器用来平稳回路二氧化碳流体的流量和压力波动;回热器为套管式换热器,其内管外管都由不锈钢材料制作而成,价格低,稳定性高、安全性强;通过预热系统进行预热,实验段测试系统用于测量实验段工质进出口温度,壁面热电偶直接焊接在对应的实验管路壁上,用于测量管壁温,进行精确测量,压力传感器用于测量进口工质的绝对压力,压差传感器用于测量进出口工质的压力损失;通过冷却系统与系统主管进行换热,得到的热水,进入第二冷却塔进行冷却,形成循环冷却机制,换热后的系统主管的二氧化碳工质温度降低,得到低温的二氧化碳工质进入冷凝储罐完成循环;The vacuum pumping liquid injection system evacuates the whole system and injects carbon dioxide to realize rapid filling; through the condensing liquid storage system, the temperature of the carbon dioxide working fluid inside the system supervisor is cooled; and the air bag type regulator is used to stabilize the flow of carbon dioxide fluid in the loop The flow and pressure fluctuate; the regenerator is a casing heat exchanger, and its inner and outer tubes are made of stainless steel, which is low in price, high in stability and strong in safety; it is preheated by the preheating system, and the experimental section The test system is used to measure the inlet and outlet temperature of the working fluid in the experimental section. The wall thermocouple is directly welded on the corresponding experimental pipeline wall to measure the tube wall temperature for accurate measurement. The pressure sensor is used to measure the absolute pressure of the inlet working fluid. The pressure difference sensor is used to measure the pressure loss of the inlet and outlet working fluid; through the heat exchange between the cooling system and the system supervisor, the hot water obtained enters the second cooling tower for cooling to form a circulating cooling mechanism, and the carbon dioxide in the system supervisor after heat exchange The temperature of the working fluid decreases, and the low-temperature carbon dioxide working fluid enters the condensation storage tank to complete the cycle;
通过绝缘接头将直流低压大电流变压器的正极引出两条线,一条接入口段电极板,另一头接出口段电极板,负极直接接中间段电极板,电流在U型管电加热预热器内部形成回路,有效的防止了漏电;通过连续调节第一电流调压器电压,可以改变预热器电加热功率,从而达到实验所需要的温度,本实验装置可进行不同压力(1~30 MPa)、不同温度(~600oC)、不同管径(2-30 mm)、不同加热功率(1-500 kW)的流动传热以及不稳定性测试。Lead out two wires from the positive pole of the DC low-voltage high-current transformer through an insulating joint, one is connected to the electrode plate of the inlet section, the other is connected to the electrode plate of the outlet section, and the negative pole is directly connected to the electrode plate of the middle section, and the current is inside the U-shaped tube electric heating preheater A loop is formed to effectively prevent leakage; by continuously adjusting the voltage of the first current regulator, the electric heating power of the preheater can be changed to achieve the temperature required for the experiment. This experimental device can be used for different pressures (1~30 MPa) , flow heat transfer at different temperatures (~600 o C), different pipe diameters (2-30 mm), different heating powers (1-500 kW), and instability tests.
附图说明Description of drawings
图1是本实用新型的系统原理图;Fig. 1 is a system schematic diagram of the present utility model;
图2是本实用新型中绝缘接头的立体结构示意图;Fig. 2 is a three-dimensional structural schematic diagram of an insulating joint in the utility model;
图3是本实用新型中绝缘接头的剖面结构示意图;Fig. 3 is a schematic cross-sectional structure diagram of an insulating joint in the utility model;
图4是本实用新型中绝缘接头的分解结构示意图;Fig. 4 is a schematic diagram of an exploded structure of an insulating joint in the utility model;
图5是本实用新型中高压密封热电偶座的立体结构示意图;Fig. 5 is a schematic diagram of the three-dimensional structure of the medium and high pressure sealed thermocouple seat of the present invention;
图6是本实用新型中高压密封热电偶座的分解结构示意图;Fig. 6 is a schematic diagram of the decomposition structure of the medium and high pressure sealed thermocouple seat of the present invention;
图中:1-高压二氧化碳泵、2-压力传感器、3-主管安全阀、4-气囊式稳压器、5-系统流量计、6-回热器、7-主管铠装热电偶、8-压力调节阀、9-系统截止阀、10-过滤器、11-支路、100-抽真空注液系统、101-汇流排、102-真空泵、103-真空截止阀、104-二氧化碳气瓶、105-电加热套、200-冷凝储液系统、201-工业冷水机、202-第一流量计、203-第一离心泵、204-第一截止阀、205-冷凝储罐、206-第一铠装热电偶、207-第一压力变送器、208-储罐安全阀、209-第一冷却塔、210-第一储水桶、211-第二离心泵、212-第二流量计、213-排气阀、300-预热系统、301-第一电流调压器、302-第一铜辫线、303-U型管电加热预热器、304-第一铜电极板、400-实验段测量系统、401-第二电流调压器、402-第二铜辫线、403-第二铜电极板、404-第二压力变送器、405-第二铠装热电偶、406-壁面热电偶丝、407-第三压力变送器、408-压差变送器、409-绝缘接头、4091-第一紧固螺母、4092-中心柱、4093-第二紧固螺母、4094-螺柱、4095-压紧卡套、4096-锥面卡套、4097-聚四氟乙烯绝缘套、4098-橡胶圈、4099-聚四氟乙烯平垫、410-引压管、411-高压密封热电偶座、4111-压紧螺母、4112-固定螺母、4113-锥形密封垫、412-实验段、500-冷却系统、501-冷却器、502-第三流量计、503-第三离心泵、504-第二储水桶、505-第二冷却塔。In the figure: 1-High-pressure carbon dioxide pump, 2-Pressure sensor, 3-Director safety valve, 4-Air bag regulator, 5-System flow meter, 6-Regenerator, 7-Director armored thermocouple, 8- Pressure regulating valve, 9-system stop valve, 10-filter, 11-branch, 100-vacuumizing liquid injection system, 101-bus, 102-vacuum pump, 103-vacuum stop valve, 104-carbon dioxide cylinder, 105 -Electric heating mantle, 200-condensate storage system, 201-industrial chiller, 202-first flow meter, 203-first centrifugal pump, 204-first stop valve, 205-condensation storage tank, 206-first armor Install thermocouple, 207-first pressure transmitter, 208-tank safety valve, 209-first cooling tower, 210-first water storage bucket, 211-second centrifugal pump, 212-second flow meter, 213- Exhaust valve, 300-preheating system, 301-the first current regulator, 302-the first copper braid, 303-U-shaped tube electric heating preheater, 304-the first copper electrode plate, 400-experimental section Measuring system, 401-the second current regulator, 402-the second braided copper wire, 403-the second copper electrode plate, 404-the second pressure transmitter, 405-the second armored thermocouple, 406-the wall thermoelectric Even wire, 407-third pressure transmitter, 408-differential pressure transmitter, 409-insulated joint, 4091-first fastening nut, 4092-central column, 4093-second fastening nut, 4094-stud , 4095-compression ferrule, 4096-cone ferrule, 4097-polytetrafluoroethylene insulating sleeve, 4098-rubber ring, 4099-polytetrafluoroethylene flat gasket, 410-impression tube, 411-high pressure sealed thermocouple Seat, 4111-pressing nut, 4112-fixing nut, 4113-conical gasket, 412-experimental section, 500-cooling system, 501-cooler, 502-third flow meter, 503-third centrifugal pump, 504 - the second water storage tank, 505 - the second cooling tower.
具体实施方式Detailed ways
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。The technical solution of this patent will be further described in detail below in conjunction with specific embodiments.
下面详细描述本专利的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利,而不能理解为对本专利的限制。Embodiments of the present patent are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are only used for explaining the patent, and should not be construed as limiting the patent.
请参阅图1-6,本实施例提供了一种高温高压二氧化碳管内流动传热测试实验装置,包括依次连接的高压二氧化碳泵1、压力传感器2、主管安全阀3、气囊式稳压器4、系统流量计5、回热器6、主管铠装热电偶7、压力调节阀8、系统截止阀9和过滤器10,回热器6分别连接有预热系统300、实验段测量系统400和冷却系统500,其中冷却系统500连接在回热器6和主管铠装热电偶7之间,压力调节阀8和系统截止阀9之间连接有相互连通的抽真空注液系统100和冷凝储液系统200,其中冷凝储液系统200连接有支路11,支路11连接在主管安全阀3和气囊式稳压器4之间。Please refer to Figures 1-6, this embodiment provides a high-temperature and high-pressure carbon dioxide tube flow heat transfer test experimental device, including a high-pressure carbon dioxide pump 1, a pressure sensor 2, a main safety valve 3, an air bag regulator 4, System flow meter 5, regenerator 6, supervisor armored thermocouple 7, pressure regulating valve 8, system shut-off valve 9 and filter 10, regenerator 6 are respectively connected with preheating
高压二氧化碳泵1为柱塞式计量泵,回热器6为套管式换热器,回热器6的内管外管都由不锈钢材料制作而成;高压二氧化碳泵1一方面为二氧化碳流体提供动力,配合压力调节阀8调节系统所需压力,另一方面可以通过变频控制实现对系统流量进行精确控制;气囊式稳压器4用来平稳回路二氧化碳流体的流量和压力波动,回热器6的内管外管都由不锈钢材料制作而成,价格低、稳定性高、安全性强。The high-pressure carbon dioxide pump 1 is a plunger-type metering pump, the regenerator 6 is a casing heat exchanger, and the inner and outer tubes of the regenerator 6 are made of stainless steel; on the one hand, the high-pressure carbon dioxide pump 1 provides Power, with the pressure regulating valve 8 to adjust the pressure required by the system, on the other hand, the system flow can be precisely controlled by frequency conversion control; the air bag regulator 4 is used to stabilize the flow and pressure fluctuation of the carbon dioxide fluid in the circuit, and the regenerator 6 The inner and outer tubes are made of stainless steel, which is low in price, high in stability and strong in safety.
抽真空注液系统100包括汇流排101和真空泵102,汇流排101和真空泵102分别与压力调节阀8连通,汇流排101上连接有若干二氧化碳气瓶104,二氧化碳气瓶104与汇流排101之间均设有真空截止阀103,二氧化碳气瓶104上均设有电加热套105;抽真空注液系统100的特点是在充装二氧化碳前,为了避免不凝性气体对测量的影响,保证回路处于通路,开启真空泵102将整个回路抽真空,直至整个系统的真空度达到30 Pa以下关闭真空泵102,装二氧化碳气瓶104的压力通常在8 MPa左右,当二氧化碳气瓶104的压力和系统压力相等时,二氧化碳气瓶104里多余的二氧化碳则不能继续充进系统,为了提高充装速度和减小二氧化碳的浪费,在二氧化碳气瓶104外加装电加热套105将二氧化碳的温度升高,从而增大二氧化碳气瓶104的压力,实现快速充装。The vacuum pumping
冷凝储液系统200包括工业冷水机201和冷凝储罐205,工业冷水机201的进口端及出口端和冷凝储罐205之间分别设有第一流量计202和第一离心泵203以及第一截止阀204,冷凝储罐205与抽真空注液系统100连接,冷凝储罐205上连接有第一铠装热电偶206、第一压力变送器207和储罐安全阀208,冷凝储罐205与系统截止阀9之间连接有排气阀213,工业冷水机201依次连接有第一冷却塔209、第一储水桶210、第二离心泵211和第二流量计212,冷凝储罐205为冷凝器和储液罐组成的一体式罐体,由冷却水筒体、二氧化碳储液罐、冷凝盘管和低温冷水喷管组成;二氧化碳储液罐在冷却水筒体内,冷凝盘管在储液罐和冷却水筒体中间,低温冷水喷管连接冷水机冷侧出口,冷水机冷侧出口温度为1摄氏度左右,冷水喷管竖直放置,自下而上流动,冷水喷管管壁轴向和周向方向开设了一定数量的通孔,用来增强换热,通过第二离心泵211将第一储水桶210内部的冷却水,经由第二流量计212注入工业冷水机201内部,进行换热,得到的热水,进入第一冷却塔213进行冷却,形成循环冷却机制,换热后得到低温的介质通过第一离心泵203注入冷凝储罐205,对冷凝储罐205内部的系统主管进行降温,从而对系统主管内部的二氧化碳流体进行降温。The condensate
预热系统300包括第一电流调压器301和U型管电加热预热器303,U型管电加热预热器303与回热器6连接,U型管电加热预热器303上设有若干第一铜电极板304,第一电流调压器301与若干第一铜电极板304之间均通过第一铜辫线302连接,U型管电加热预热器303由不锈钢管制作而成,第一电流调压器301为可控硅低压大电流调压器;通过接入电源,由U型管电加热预热器303的不锈钢管自身的电阻发热加热二氧化碳流体,制作过程中在其入口段、中间段和出口段分别用银钎焊焊接结束将铜电极板焊接上去,为了防止电加热漏电影响系统仪器仪表的测量,传统的电绝缘法兰或者绝缘接头在高温高压系统中的难实现,本实施例采用三点加热法,所谓三点加热法就是将直流低压大电流变压器的正极引出两条线,一条接入口段电极板,另一头接出口段电极板,负极直接接中间段电极板,电流在U型管电加热预热器303内部形成回路,有效的防止了漏电,第一电流调压器301连接低压0-60V大电流0-5000A变压器,通过连续调节第一电流调压器301电压,可以改变U型管电加热预热器303电加热功率,从而达到实验所需要的温度。The preheating
实验段测试系统400包括实验段412和第二电流调压器401,实验段412进口端和出口端分别与U型管电加热预热器303以及回热器6连接,实验段412的两端分别通过高压密封热电偶座411设有两个第二铠装热电偶405,实验段412上设有若干壁面热电偶丝406和若干第二铜电极板403,实验段412上设有两个绝缘接头409,两个绝缘接头409上通过引压管410连接有压差变送器408,引压管410上分别设有第二压力变送器404和第三压力变送器407,若干第二铜电极板403与第二电流调和压器401通过第二铜辫线402电性连接,第二铠装热电偶405的套管采用316L不锈钢材料,壁面热电偶丝406为K型热电偶;为了防止电加热对流体温度测量的第二铠装热电偶405影响,第二铠装热电偶405为非接触式绝缘铠装热电偶,第二铠装热电偶405通过高压密封热电偶座411垂直插入管道中心处,第二铠装热电偶405通过锥形密封实现高压密封,壁面热电偶丝406为K型热电偶,通过电容放电产生瞬时高温原理直接焊接在实验段管壁上。The experimental
绝缘接头409包括中心柱4092,中心柱4092的一端螺接有第一紧固螺母4091,第一紧固螺母4091与中心柱4092之间依次设有压紧卡套4095和锥面卡套4096,中心柱4092上设有两个对称设置的聚四氟乙烯绝缘套4097,聚四氟乙烯绝缘套4097呈锥形,中心柱4092上套设有,聚四氟乙烯绝缘套4097外侧设有第二紧固螺母4093,两个聚四氟乙烯绝缘套4097位于第二紧固螺母4093内侧,第二紧固螺母4093上螺接有螺柱4094,第二紧固螺母4093和螺柱4094之间依次设有橡胶圈4098和聚四氟乙烯平垫4099;第一紧固螺母4091和螺柱4094用于快速连接引压管410,压紧卡套4095和锥面卡套4096配合以及橡胶圈4098和聚四氟乙烯平垫4099配合,第二紧固螺母4093和螺柱4094配合锁紧两个聚四氟乙烯绝缘套4097以及橡胶圈4098和聚四氟乙烯平垫4099,保证连接的密封性,有效的防止了漏电。The insulating joint 409 includes a
高压密封热电偶座411包括压紧螺母4111、固定螺母4112和锥形密封垫4113,压紧螺母4111与固定螺母4112螺接,锥形密封垫4113卡合在压紧螺母4111与固定螺母4112之间;锥形密封垫4113稳定的卡合在压紧螺母4111与固定螺母4112之间保证密封,压紧螺母4111和固定螺母4112用于连接第二铠装热电偶405,使得第二铠装热电偶405通过高压密封热电偶座411垂直插入管道中心处,第二铠装热电偶405通过锥形密封,实现高压密封。The high-pressure sealed
冷却系统500包括冷却器501,冷却器501为管壳式换热器,其管程内部设置高温高压二氧化碳工质,壳程内部设置常温冷却水,冷却器501的进口端和出口端分别与回热器6和主管铠装热电偶7连接,冷却器501连接有换热管,换热管上依次设有第二冷却塔505、第二储水桶504、第三离心泵503和第三流量计502;通过第三离心泵503将第二储水桶504内部的冷却水,经由第三流量计502注入冷却器501内部,与系统主管进行换热,得到的热水,进入第二冷却塔505进行冷却,形成循环冷却机制,换热后的系统主管的二氧化碳工质温度降低,得到低温的二氧化碳工质通过主管铠装热电偶7。The
本实用新型的工作原理:首先用抽真空注液系统100对整个系统进行抽真空并注入二氧化碳,冷凝储液系统200将二氧化碳液化,启动高压二氧化碳泵1使二氧化碳依次流入气囊式稳压器4、系统流量计5、回热器6、预热系统300、实验段测量系统400、冷却系统500、压力调节阀8完成一个闭合回路;高压二氧化碳泵1一方面为二氧化碳流体提供动力,配合压力调节阀8调节系统所需压力,另一方面可以通过变频控制实现对系统流量进行精确控制;气囊式稳压器4用来平稳回路二氧化碳流体的流量和压力波动;系统流量计5用于精确测量系统的流量;The working principle of the present utility model: firstly, the whole system is vacuumized and carbon dioxide is injected with the vacuum pumping
U型管电加热预热器303通过接入电源,由不锈钢管自身的电阻发热加热二氧化碳流体,制作过程中在其入口段、中间段和出口段分别用银钎焊焊接结束将铜电极板焊接上去;The U-shaped tube
为了防止漏电影响系统仪器仪表的测量,传统的电绝缘法兰或者绝缘接头在高温高压系统中的难实现,本申请采用三点加热法,就是将直流低压大电流变压器的正极引出两条线,一条接入口段电极板,另一头接出口段电极板,负极直接接中间段电极板,这样电流在U型管电加热预热器303内部形成回路,有效的防止了漏电,第一电流调压器301连接低压0-60V大电流0-5000A变压器,通过连续调节第一电流调压器301电压,可以改变U型管电加热预热器303电加热功率,从而达到实验所需要的温度;In order to prevent leakage from affecting the measurement of system instruments and meters, traditional electrical insulating flanges or insulating joints are difficult to implement in high-temperature and high-pressure systems. This application adopts a three-point heating method, which is to lead out two lines from the positive pole of the DC low-voltage high-current transformer. One end is connected to the electrode plate of the inlet section, the other end is connected to the electrode plate of the outlet section, and the negative electrode is directly connected to the electrode plate of the middle section, so that the current forms a loop inside the U-shaped tube
回热器6为一套管式换热器,内管外管都由不锈钢材料制作而成,内管为低温二氧化碳、环隙通道里面为实验段流出来的高温二氧化碳流体工质;The regenerator 6 is a sleeve-tube heat exchanger, the inner and outer tubes are made of stainless steel, the inner tube is low-temperature carbon dioxide, and the annulus channel is the high-temperature carbon dioxide fluid working fluid flowing out of the experimental section;
实验段测试系统400通过第二铠装热电偶405用于测量实验段工质进出口温度,壁面热电偶丝406焊接在对应的实验管路壁上,用于测量管壁温,第二压力变送器404和第三压力变送器407用于测量进口工质的绝对压力,压差变送器408用于测量进出口二氧化碳流体工质的压力损失;The
冷却器501为管壳式换热器,管程走高温高压二氧化碳流体工质,壳程为常温冷却水;The cooler 501 is a shell-and-tube heat exchanger, the tube side uses high-temperature and high-pressure carbon dioxide fluid working medium, and the shell side uses normal temperature cooling water;
冷凝储罐205的特点是冷凝器和储液罐为一体式的,由冷却水筒体、二氧化碳储液罐、冷凝盘管、低温冷水喷管组成;二氧化碳储液罐在冷却水筒体内,冷凝盘管在储液罐和冷却水筒体中间,低温冷水喷管连接冷水机冷侧出口,冷水机冷侧出口温度为1摄氏度左右,冷水喷管竖直放置,自下而上流动,冷水喷管管壁轴向和周向方向开设了一定数量的通孔,用来增强换热;
共同作用将低温低压的二氧化碳转换成高温高压的二氧化碳并对其在管内的流动传热进行精确测量;Working together to convert low-temperature and low-pressure carbon dioxide into high-temperature and high-pressure carbon dioxide and accurately measure its flow and heat transfer in the tube;
综上,抽真空注液系统100对整个系统进行抽真空并注入二氧化碳,实现快速充装;通过冷凝储液系统200,对系统主管内部的二氧化碳工质进行降温;并通过气囊式稳压器4用来平稳回路二氧化碳流体的流量和压力波动;回热器6为套管式换热器,其内管外管都由不锈钢材料制作而成,价格低,稳定性高、安全性强;通过预热系统300进行预热,实验段测试系统400用于测量实验段工质进出口温度,壁面热电偶直接焊接在对应的实验管路壁上,用于测量管壁温,进行精确测量,压力传感器用于测量进口工质的绝对压力,压差传感器用于测量进出口工质的压力损失;通过冷却系统500与系统主管进行换热,得到的热水,进入第二冷却塔505进行冷却,形成循环冷却机制,换热后的系统主管的二氧化碳工质温度降低,得到低温的二氧化碳工质进入冷凝储罐完成循环;To sum up, the vacuum injection
通过绝缘接头409将直流低压大电流变压器的正极引出两条线,一条接入口段电极板,另一头接出口段电极板,负极直接接中间段电极板,电流在U型管电加热预热器303内部形成回路,有效的防止了漏电,通过连续调节第一电流调压器301电压,可以改变预热器电加热功率,从而达到实验所需要的温度,本实验装置可进行不同压力(1~30 MPa)、不同温度(~600 oC)、不同管径(2-30 mm)、不同加热功率(1-500 kW)的流动传热以及不稳定性测试。Lead out two wires from the positive pole of the DC low-voltage high-current transformer through the insulating joint 409, one is connected to the electrode plate of the inlet section, the other is connected to the electrode plate of the outlet section, and the negative pole is directly connected to the electrode plate of the middle section, and the current flows in the U-shaped tube electric heating preheater A loop is formed inside 303, which effectively prevents leakage. By continuously adjusting the voltage of the first
上面对本专利的较佳实施方式作了详细说明,但是本专利并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本专利宗旨的前提下做出各种变化。The preferred implementation of this patent has been described in detail above, but this patent is not limited to the above-mentioned implementation, and within the knowledge of those of ordinary skill in the art, it can also be made without departing from the purpose of this patent. Variations.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220136686.7U CN217717578U (en) | 2022-01-19 | 2022-01-19 | Experimental device for testing flow heat transfer in high-temperature and high-pressure carbon dioxide pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220136686.7U CN217717578U (en) | 2022-01-19 | 2022-01-19 | Experimental device for testing flow heat transfer in high-temperature and high-pressure carbon dioxide pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217717578U true CN217717578U (en) | 2022-11-01 |
Family
ID=83787299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220136686.7U Expired - Fee Related CN217717578U (en) | 2022-01-19 | 2022-01-19 | Experimental device for testing flow heat transfer in high-temperature and high-pressure carbon dioxide pipe |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217717578U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115750008A (en) * | 2022-11-22 | 2023-03-07 | 西安交通大学 | A supercritical carbon dioxide experimental device that can simultaneously measure the performance of multiple heat exchangers |
CN117438700A (en) * | 2023-12-21 | 2024-01-23 | 常州博瑞电力自动化设备有限公司 | Efficient energy-saving split type water chiller system and control method thereof |
-
2022
- 2022-01-19 CN CN202220136686.7U patent/CN217717578U/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115750008A (en) * | 2022-11-22 | 2023-03-07 | 西安交通大学 | A supercritical carbon dioxide experimental device that can simultaneously measure the performance of multiple heat exchangers |
CN115750008B (en) * | 2022-11-22 | 2025-07-15 | 西安交通大学 | Supercritical carbon dioxide experimental device capable of simultaneously measuring the performance of multiple heat exchangers |
CN117438700A (en) * | 2023-12-21 | 2024-01-23 | 常州博瑞电力自动化设备有限公司 | Efficient energy-saving split type water chiller system and control method thereof |
CN117438700B (en) * | 2023-12-21 | 2024-03-29 | 常州博瑞电力自动化设备有限公司 | Efficient energy-saving split type water chiller system and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN217717578U (en) | Experimental device for testing flow heat transfer in high-temperature and high-pressure carbon dioxide pipe | |
CN105301047A (en) | Supercritical Freon heat exchange experiment system and experiment method thereof | |
CN102661845B (en) | Visualized narrow rectangular natural circulation system | |
CN106066235A (en) | Supercritical water narrow passage Natural Circulation experimental provision and method | |
CN110865004A (en) | Device and method for measuring flow distribution characteristics of supercritical fluid in parallel pipes | |
CN105756804B (en) | Hot end heat exchanger for free piston Stirling engine | |
CN102679063A (en) | High-performance electrical isolation flange device resisting high temperature and high pressure | |
CN106289834B (en) | A kind of experimental system for building the initial operating mode of steam generator secondary side | |
CN108565034B (en) | U-tube flows backwards the system and method for thermal environment simulation under passive service condition | |
CN205719474U (en) | Supercritical water narrow passage Natural Circulation experimental provision | |
CN202599639U (en) | Visual natural circulation system with narrow rectangular channel | |
CN103353107B (en) | Device capable of obtaining superheated steam from high-temperature high-pressure gas | |
CN110307949A (en) | A labyrinth seal hydraulic test bench | |
CN116007411A (en) | An ultra-high temperature and high pressure bayonet tube heat exchanger | |
CN114113214B (en) | A test device for uniform high temperature heat transfer characteristics suitable for supercritical fluids | |
CN115586107A (en) | Viscosity testing system and testing method for liquid metal single-phase flow in a wide temperature range | |
CN114235888B (en) | Freon flow boiling heat transfer universal experiment bench and experiment method | |
CN211575204U (en) | Secondary net water replenishing preheating system of heat exchange station | |
CN213480607U (en) | Multi-tube-bundle efficient heating device | |
CN115325862A (en) | Heat exchanger for liquid metal and supercritical gas | |
CN109404162B (en) | Aviation kerosene isobaric two-stage electric heating device | |
CN117079845B (en) | Marine condition reactor natural circulation bar bundle channel boiling critical test device and method | |
CN108413367B (en) | A kind of supercritical water and fuse salt heat exchanger apparatus | |
CN117705866A (en) | Supercritical carbon dioxide flow heat transfer dissimilation experimental device and experimental method | |
CN1291194C (en) | Electric heater for high temperature high pressure flowing gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221101 |