[go: up one dir, main page]

CN217543430U - Microlens array substrate, microlens array projection device and vehicle - Google Patents

Microlens array substrate, microlens array projection device and vehicle Download PDF

Info

Publication number
CN217543430U
CN217543430U CN202220986841.4U CN202220986841U CN217543430U CN 217543430 U CN217543430 U CN 217543430U CN 202220986841 U CN202220986841 U CN 202220986841U CN 217543430 U CN217543430 U CN 217543430U
Authority
CN
China
Prior art keywords
microlens
micro
light
layer
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202220986841.4U
Other languages
Chinese (zh)
Inventor
关赛新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oufei Microelectronics Nanchang Co ltd
Original Assignee
Jiangxi OMS Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi OMS Microelectronics Co Ltd filed Critical Jiangxi OMS Microelectronics Co Ltd
Priority to CN202220986841.4U priority Critical patent/CN217543430U/en
Application granted granted Critical
Publication of CN217543430U publication Critical patent/CN217543430U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

本实用新型公开了一种微透镜阵列基板、微透镜阵列投影装置及车辆。该微透镜阵列基板包括基材层、图案层、第一微透镜层、遮光层及第二微透镜层。基材层具有相背设置的第一表面和第二表面,图案层设于第一表面上,第一微透镜层设于图案层的背离第一表面的一侧,遮光层设于第二表面上,以及第二微透镜层设于遮光层的背离第二表面的一侧。本实用新型能够使微透镜阵列基板实现薄型化、小型化设计,从而当微透镜阵列基板应用于微透镜阵列投影装置时,能够减少对微透镜阵列投影装置的空间的占用,从而使得微透镜阵列投影装置也能够实现小型化设计。

Figure 202220986841

The utility model discloses a microlens array substrate, a microlens array projection device and a vehicle. The microlens array substrate includes a base material layer, a pattern layer, a first microlens layer, a light shielding layer and a second microlens layer. The base material layer has a first surface and a second surface arranged opposite to each other, the pattern layer is arranged on the first surface, the first microlens layer is arranged on the side of the pattern layer away from the first surface, and the light shielding layer is arranged on the second surface and the second microlens layer is disposed on the side of the light shielding layer away from the second surface. The utility model can realize thin and miniaturized design of the micro-lens array substrate, so that when the micro-lens array substrate is applied to the micro-lens array projection device, the space occupation of the micro-lens array projection device can be reduced, thereby making the micro-lens array The projection device can also be miniaturized.

Figure 202220986841

Description

微透镜阵列基板、微透镜阵列投影装置及车辆Microlens array substrate, microlens array projection device and vehicle

技术领域technical field

本实用新型涉及光学成像技术领域,尤其涉及一种微透镜阵列基板、微透镜阵列投影装置及车辆。The utility model relates to the technical field of optical imaging, in particular to a microlens array substrate, a microlens array projection device and a vehicle.

背景技术Background technique

投影技术被广泛地应用在图像显示、迎宾照明、舞台照明等领域。相关技术的投影装置包括发光源、菲林片、投影镜头,其中,发光源用于发出光线,投影镜头包括沿光线出射方向依次排布的多片镜片,投影镜头用于将菲林片的图案影像放大投影到前方。然而,上述投影镜头因镜片尺寸较大,占用的空间较多,导致投影镜头整体尺寸较大,进而导致投影装置的体积较大。Projection technology is widely used in image display, welcome lighting, stage lighting and other fields. The related art projection device includes a light source, a film, and a projection lens, wherein the light source is used to emit light, the projection lens includes a plurality of lenses arranged in sequence along the light exit direction, and the projection lens is used to amplify the pattern image of the film. projected to the front. However, the above-mentioned projection lens takes up a lot of space due to the larger size of the lens, resulting in a larger overall size of the projection lens, which in turn results in a larger volume of the projection device.

实用新型内容Utility model content

本实用新型公开了一种微透镜阵列基板、微透镜阵列投影装置及车辆,使微透镜阵列基板薄型化、小型化。The utility model discloses a microlens array substrate, a microlens array projection device and a vehicle, which make the microlens array substrate thin and miniaturized.

为了实现上述目的,本实用新型公开了一种微透镜阵列基板,包括:基材层,具有相背设置的第一表面和第二表面;图案层,所述图案层设于所述第一表面上,所述图案层包括微图案单元;第一微透镜层,所述第一微透镜层设于所述图案层的背离所述第一表面的一侧,所述第一微透镜层包括第一微透镜单元,所述第一微透镜单元对应所述微图案单元设置;遮光层,所述遮光层设于所述第二表面上,所述遮光层包括镂空单元,所述镂空单元与所述微图案单元对应设置;以及第二微透镜层,所述第二微透镜层设于所述遮光层的背离所述第二表面的一侧,所述第二微透镜层包括第二微透镜单元,所述第二微透镜单元对应所述镂空单元设置。In order to achieve the above purpose, the utility model discloses a microlens array substrate, comprising: a base material layer, which has a first surface and a second surface arranged opposite to each other; and a pattern layer, the pattern layer is arranged on the first surface above, the pattern layer includes a micro-pattern unit; a first micro-lens layer, the first micro-lens layer is provided on the side of the pattern layer away from the first surface, and the first micro-lens layer includes a first micro-lens layer. a micro-lens unit, the first micro-lens unit is disposed corresponding to the micro-pattern unit; a light-shielding layer, the light-shielding layer is disposed on the second surface, the light-shielding layer includes a hollow unit, the hollow unit and the the micro-pattern units are correspondingly arranged; and a second micro-lens layer, the second micro-lens layer is arranged on the side of the light shielding layer away from the second surface, and the second micro-lens layer includes a second micro-lens unit, and the second microlens unit is disposed corresponding to the hollow unit.

上述的微透镜阵列基板通过分别将第一微透镜层和第二微透镜层设于基材层的相对两侧,同时使得图案层设于第一微透镜层与基材层之间,遮光层设于基材层与第二微透镜层之间,从而使第一微透镜层、图案层、遮光层、第二微透镜层集成到基材层上,这样,能够使微透镜阵列基板实现薄型化、小型化设计,从而当微透镜阵列基板应用于微透镜阵列投影装置时,能够减少对微透镜阵列投影装置的空间的占用,从而使得微透镜阵列投影装置也能够实现小型化设计。In the above-mentioned microlens array substrate, the first microlens layer and the second microlens layer are respectively arranged on opposite sides of the base material layer, while the pattern layer is arranged between the first microlens layer and the base material layer, and the light shielding layer is arranged. It is arranged between the base material layer and the second microlens layer, so that the first microlens layer, the pattern layer, the light shielding layer and the second microlens layer are integrated on the base material layer, so that the microlens array substrate can be thinned Therefore, when the microlens array substrate is applied to the microlens array projection device, the space occupation of the microlens array projection device can be reduced, so that the microlens array projection device can also realize the miniaturization design.

作为一种可选的实施方式,所述基材层的所述第一表面用于朝向发光源设置。由于第一微透镜层设置在第一表面,发光源发射的光线首先经过第一微透镜层,利用第一微透镜层可实现对光线进行匀光后投射到图案层,有效提高该微透镜阵列基板的光学均匀度。As an optional implementation manner, the first surface of the base material layer is configured to face the light-emitting source. Since the first microlens layer is disposed on the first surface, the light emitted by the light-emitting source first passes through the first microlens layer, and the first microlens layer can realize uniform light and then project it to the pattern layer, effectively improving the microlens array. Optical uniformity of the substrate.

作为一种可选的实施方式,所述第一微透镜层包括多个呈阵列排布的所述第一微透镜单元,所述图案层包括多个呈阵列排布的所述微图案单元,各所述第一微透镜单元分别与各所述微图案单元一一对应设置,所述第二微透镜层包括多个呈阵列排布的所述第二微透镜单元,各第二微透镜单元分别与各所述第一微透镜单元一一对应,所述遮光层包括多个呈阵列排布的所述镂空单元,各所述第二微透镜单元分别与各所述镂空单元一一对应。As an optional implementation manner, the first microlens layer includes a plurality of the first microlens units arranged in an array, and the pattern layer includes a plurality of the micropattern units arranged in an array, Each of the first micro-lens units is arranged in a one-to-one correspondence with each of the micro-pattern units, the second micro-lens layer includes a plurality of the second micro-lens units arranged in an array, and each second micro-lens unit One-to-one correspondence with each of the first micro-lens units, the light shielding layer includes a plurality of the hollowed-out units arranged in an array, and each of the second micro-lens units is in a one-to-one correspondence with each of the hollowed-out units.

通过分别将入射的光线依次经过第一微透镜层、图案层、基材层、遮光层以及第二微透镜层。多个第一微透镜单元对入射的光线分割成多束光线,每个第一微透镜单元将分割后光线分别投射至对应微图案单元,在经过微图案单元形成微图案后,投射至对应的镂空单元,镂空单元遮挡光线中的杂散光后投射至对应的第二微透镜单元,多个第二微透镜单元从不同位置和角度同时投影成像时,在焦距的前后会产生图像叠加,叠加后的图像提高了清晰度。可见,采用本申请的微透镜阵列基板,通过上述各微单元的设计,在保证成像效果的基础上,有效缩小了微透镜阵列基板的体积。The incident light passes through the first microlens layer, the pattern layer, the base material layer, the light shielding layer and the second microlens layer in sequence respectively. The plurality of first micro-lens units divide the incident light into multiple beams of light, and each first micro-lens unit projects the divided light to the corresponding micro-pattern unit respectively, and after the micro-pattern is formed by the micro-pattern unit, it is projected to the corresponding micro-pattern unit. Hollow unit, the hollow unit blocks the stray light in the light and then projects it to the corresponding second micro-lens unit. When multiple second micro-lens units are projected from different positions and angles at the same time, images will be superimposed before and after the focal length. images with improved clarity. It can be seen that, by using the microlens array substrate of the present application, the volume of the microlens array substrate is effectively reduced on the basis of ensuring the imaging effect through the design of the above-mentioned microunits.

作为一种可选的实施方式,所述镂空单元沿垂直于所述第一表面的方向上的投影位于对应的所述第一微透镜单元的光阑上。As an optional implementation manner, the projection of the hollow unit in a direction perpendicular to the first surface is located on the corresponding aperture of the first microlens unit.

通过在第一微透镜单元设置光阑,通过每个第一微透镜单元的光阑对来自发光源发射的光线进行切割,分成多个光束投射到对应的微图案单元,镂空单元沿垂直于所述第一表面的方向上的投影位于对应的所述光阑上,光线可全部通过第二透镜层单元投影至目标照射面,通光效率高。而同时通过镂空结构可以遮挡入射角较大的杂光,从而提高光学效率与光学均匀度。By arranging a diaphragm in the first micro-lens unit, the light emitted from the light-emitting source is cut through the diaphragm of each first micro-lens unit, divided into a plurality of beams and projected to the corresponding micro-pattern unit. The projection in the direction of the first surface is located on the corresponding diaphragm, and all the light rays can be projected to the target irradiation surface through the second lens layer unit, and the light transmission efficiency is high. At the same time, the hollow structure can block stray light with a large incident angle, thereby improving the optical efficiency and optical uniformity.

作为一种可选的实施方式,所述第二微透镜单元沿垂直于所述第二表面的方向上的焦点位于对应的所述微图案单元上。如此,当该微透镜阵列基板应用于微透镜阵列投影装置,乃至应用于车辆时,通过上述设计,能够实现在偏离焦点距离上的叠加图像更加清晰,即,使得在焦点前后很长范围内的投影图像都可以很清晰,由此实现大面积、清晰、亮度均匀的倾斜式投影照明。As an optional implementation manner, a focal point of the second microlens unit along a direction perpendicular to the second surface is located on the corresponding micropattern unit. In this way, when the microlens array substrate is applied to a microlens array projection device, or even to a vehicle, through the above design, the superimposed image at the off-focus distance can be made clearer, that is, to make the superimposed image in a long range before and after the focus. The projected image can be very clear, thus realizing a large-area, clear, and even-brightness oblique projection illumination.

上述的光学系统能实现更大范围焦深的效果,大角度倾斜投影也能成像为清晰图案。The above-mentioned optical system can achieve the effect of a wider range of depth of focus, and a large-angle oblique projection can also be imaged into a clear pattern.

作为一种可选的实施方式,所述图案层与所述第二微透镜层构成光学系统,所述光学系统的焦距在0.1mm~3mm之间;所述光学系统满足条件式: 1≤TTL/ImgH≤10,其中,TTL为所述微图案单元入光侧的表面至所述第二微透镜单元出光侧的表面于光轴上的距离,Imgh为所述光学系统最大视场角对应像高的一半;所述第一微透镜单元包括包括相对的第一入光面和第一出光面,所述第一出光面设于所述图案层的背离所述第一表面的一侧,所述第一入光面为凸弧面,沿所述第一微透镜单元的光轴方向上,所述第一入光面的顶点至所述第一出光面的距离在15um-200um之间,和/或,所述第二微透镜单元包括相对的第二入光面和第二出光面,所述第二入光面设于所述遮光层的背离所述第二表面的一侧,所述第二出光面为凸弧面,沿所述第二微透镜单元的光轴方向上,所述第二出光面的顶点至所述第二入光面的距离在 15um-200um之间。通过限定该光学系统满足上述范围,能够在保证良好的成像质量的基础上,合理压缩光学系统的总长度,进而有利于压缩微透镜阵列基板总长度,实现该微透镜阵列基板的薄型化、小型化设计。同时实现在投影的成像面实现更大范围的焦深,使得在焦点前后很长范围内的投影图像都可以很清晰,由此实现大面积、清晰、亮度均匀的倾斜式投影照明。As an optional implementation manner, the pattern layer and the second microlens layer constitute an optical system, and the focal length of the optical system is between 0.1 mm and 3 mm; the optical system satisfies the conditional formula: 1≤TTL /ImgH≤10, wherein, TTL is the distance on the optical axis from the surface of the light-incident side of the micro-pattern unit to the surface of the light-emitting side of the second micro-lens unit, and Imgh is the image corresponding to the maximum angle of view of the optical system half of the height; the first microlens unit includes a first light incident surface and a first light exit surface opposite to each other, the first light exit surface is arranged on the side of the pattern layer away from the first surface, so The first light incident surface is a convex arc surface, and along the optical axis direction of the first microlens unit, the distance from the vertex of the first light incident surface to the first light exit surface is between 15um and 200um, And/or, the second microlens unit includes a second opposite light incident surface and a second light exit surface, the second light incident surface is provided on the side of the light shielding layer away from the second surface, so The second light emitting surface is a convex arc surface, and along the direction of the optical axis of the second microlens unit, the distance from the vertex of the second light emitting surface to the second light incident surface is between 15um and 200um. By limiting the optical system to meet the above range, the overall length of the optical system can be reasonably compressed on the basis of ensuring good imaging quality, which in turn is beneficial to compress the overall length of the microlens array substrate, thereby realizing the thinning and miniaturization of the microlens array substrate. design. At the same time, a wider range of focal depth can be achieved on the projected imaging surface, so that the projected image in a long range before and after the focus can be very clear, thereby realizing large-area, clear, and uniformly bright oblique projection illumination.

作为一种可选的实施方式,所述微图案单元包括透光区域和围绕所述透光区域设置的遮光区域,所述透光区域形成有微图案,且各个所述微图案单元上的微图案形状不同或不完全相同,使得在不垂直于光轴的成像面上的成像清晰并且保持远近亮度一致。As an optional implementation manner, the micro-pattern unit includes a light-transmitting area and a light-shielding area arranged around the light-transmitting area, the light-transmitting area is formed with micro-patterns, and the micro-patterns on each of the micro-pattern units The shapes of the patterns are different or not exactly the same, so that the imaging on the imaging plane not perpendicular to the optical axis is clear and the brightness of far and near is kept consistent.

微图案单元中只有微图案部分透光,其他部分不透光,而且微图案单元中的每一个微图案都不一样。相应的第一微透镜单元和相应的第二微透镜单元分别对应同一个微图案。与照射在成像面上的完整图案相比,大多数微图案都只是其中的一部分。通过调整不同微图案单元上的微图案形状,能使较多光束照射到成像面较远的地方,而较少光束照射到成像面较近的地方。这样就可以避免远处比近处昏暗的问题,使成像面上的图案亮度均匀分布,从而实现远近成像清晰度接近甚至相同的效果。In the micropattern unit, only part of the micropattern is light-transmitting, and other parts are opaque, and each micropattern in the micropattern unit is different. The corresponding first microlens unit and the corresponding second microlens unit respectively correspond to the same micropattern. Most micropatterns are only a fraction of the full pattern illuminated on the imaging surface. By adjusting the shapes of the micropatterns on different micropattern units, more light beams can be irradiated to places farther from the imaging surface, while fewer light beams can be irradiated to places closer to the imaging surface. In this way, the problem that the far distance is darker than the near one can be avoided, and the pattern brightness on the imaging surface can be evenly distributed, so that the near and far imaging sharpness is close to or even the same.

本发明提供一种微透镜阵列投影装置,包括光源、匀光镜组以及上述的微透镜阵列基板,所述匀光镜组设于所述光源与所述微透镜阵列基板之间。本申请由于微透镜阵列基板体积较小,薄型化,微透镜阵列投影装置的体积也较小,薄型化。The present invention provides a microlens array projection device, comprising a light source, a homogenizing mirror group and the above-mentioned microlens array substrate, wherein the homogenizing mirror group is arranged between the light source and the microlens array substrate. In the present application, due to the small volume and thinning of the microlens array substrate, the volume of the microlens array projection device is also small and thin.

本发明提供一种车辆,包括主体部分以及上述的微透镜阵列基板,本申请由于微透镜阵列基板体积较小,薄型化,微透镜阵列投影装置的体积也较小,薄型化。The present invention provides a vehicle including a main body and the above-mentioned microlens array substrate. In the present application, because the microlens array substrate is small and thin, the microlens array projection device is also small and thin.

与现有技术相比,本实用新型的有益效果在于:Compared with the prior art, the beneficial effects of the present utility model are:

上述的微透镜阵列基板通过分别将第一微透镜层和第二微透镜层设于基材层的相对两侧,同时使得图案层设于第一微透镜层与基材层之间,遮光层设于基材层与第二微透镜层之间,从而使第一微透镜层、图案层、遮光层、第二微透镜层集成到基材层上,这样,能够使微透镜阵列基板实现薄型化、小型化设计,从而当微透镜阵列基板应用于微透镜阵列投影装置时,能够减少对微透镜阵列投影装置的空间的占用,从而使得微透镜阵列投影装置也能够实现小型化设计。In the above-mentioned microlens array substrate, the first microlens layer and the second microlens layer are respectively arranged on opposite sides of the base material layer, while the pattern layer is arranged between the first microlens layer and the base material layer, and the light shielding layer is arranged. It is arranged between the base material layer and the second microlens layer, so that the first microlens layer, the pattern layer, the light shielding layer and the second microlens layer are integrated on the base material layer, so that the microlens array substrate can be thinned Therefore, when the microlens array substrate is applied to the microlens array projection device, the space occupation of the microlens array projection device can be reduced, so that the microlens array projection device can also realize the miniaturization design.

附图说明Description of drawings

为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. , for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.

图1是本实用新型实施例公开的微透镜阵列基板的结构示意图;1 is a schematic structural diagram of a microlens array substrate disclosed in an embodiment of the present invention;

图2是本实用新型实施例公开的遮光层的光路示意图;2 is a schematic diagram of an optical path of a light shielding layer disclosed in an embodiment of the present invention;

图3是本实用新型实施例公开的呈阵列排布的微图案单元的设计举例;3 is an example of the design of the micro-pattern units arranged in an array disclosed in the embodiment of the present invention;

图4是本实用新型实施例公开的微透镜阵列投影装置的结构示意图;4 is a schematic structural diagram of a microlens array projection device disclosed in an embodiment of the present invention;

图5是本实用新型实施例公开的车辆的结构示意图。FIG. 5 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present invention.

主要附图标记说明:Description of main reference signs:

1、微透镜阵列基板;11、基材层;12、第一微透镜层;121、第一微透镜单元;13、图案层;131、微图案单元;14、第二微透镜层;141、第二微透镜单元;15、遮光层;151、镂空单元;m、中心轴;111、第一表面;112、第二表面;2、发光源;3、匀光镜组;100、微透镜阵列投影装置;200、主体部分;1000、车辆。1. Micro-lens array substrate; 11. Base material layer; 12. First micro-lens layer; 121, First micro-lens unit; 13. Pattern layer; 131, Micro-pattern unit; 14. Second micro-lens layer; 141, 2nd microlens unit; 15, shading layer; 151, hollow unit; m, central axis; 111, first surface; 112, second surface; 2, light source; 3, uniform mirror group; 100, microlens array Projection device; 200, main body part; 1000, vehicle.

具体实施方式Detailed ways

下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。The technical solutions in the embodiments of the present utility model will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present utility model. Obviously, the described embodiments are only a part of the embodiments of the present utility model, rather than all the implementations. example. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.

在本实用新型中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本实用新型及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。In this utility model, the terms "up", "down", "left", "right", "front", "rear", "top", "bottom", "inner", "outer", "middle" The orientations or positional relationships indicated by , "vertical", "horizontal", "horizontal", "longitudinal", etc. are based on the orientations or positional relationships shown in the drawings. These terms are primarily used to better describe the present invention and its embodiments, and are not intended to limit the fact that the indicated device, element or component must have a particular orientation, or be constructed and operated in a particular orientation.

并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本实用新型中的具体含义。In addition, some of the above-mentioned terms may be used to express other meanings besides orientation or positional relationship. For example, the term "on" may also be used to express a certain attachment or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in the present invention can be understood according to specific situations.

此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。Furthermore, the terms "installed", "arranged", "provided", "connected", "connected" should be construed broadly. For example, it may be a fixed connection, a detachable connection, or a unitary structure; it may be a mechanical connection, or an electrical connection; it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.

此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。In addition, the terms "first", "second", etc. are mainly used to distinguish different devices, elements or components (the specific types and configurations may be the same or different), and are not used to indicate or imply the indicated devices, elements, etc. or the relative importance and number of components. Unless stated otherwise, "plurality" means two or more.

下面将结合实施例和附图对本实用新型的技术方案作进一步的说明。The technical solutions of the present utility model will be further described below with reference to the embodiments and the accompanying drawings.

请参阅图1,本申请实施例第一方面提出了一种微透镜阵列基板1,该微透镜阵列基板1可应用于微透镜阵列投影装置100中,从而使得微透镜阵列投影装置100可应用于例如车辆、电子产品中,进而实现投影照明。举例来说,当微透镜阵列投影装置100应用于车辆时,则该微透镜阵列投影装置100 可作为例如迎宾灯,地面方向灯,地面刹车距离警示灯等用于对地面投影照明。具体地,微透镜阵列基板1至少包括基材层11、第一微透镜层12、图案层13、第二微透镜层14、遮光层15。基材层11具有相背设置的第一表面111 与第二表面112。图案层13设于第一表面111上,图案层13包括微图案单元131。第一微透镜层12设于图案层13的背离第一表面111的一侧,第一微透镜层12包括第一微透镜单元121,第一微透镜单元121对应微图案单元 131设置。遮光层15设于第二表面112上,遮光层15包括镂空单元151,镂空单元151与微图案单元131对应设置。第二微透镜层14设于遮光层15的背离第二表面112的一侧,第二微透镜层14包括第二微透镜单元141,第二微透镜单元141对应镂空单元151设置。Referring to FIG. 1 , a first aspect of an embodiment of the present application provides a microlens array substrate 1 , and the microlens array substrate 1 can be applied to a microlens array projection device 100 , so that the microlens array projection device 100 can be applied to For example, in vehicles and electronic products, and then realize projection lighting. For example, when the microlens array projection device 100 is applied to a vehicle, the microlens array projection device 100 can be used as a welcome light, a ground direction light, a ground braking distance warning light, etc. for projecting lighting on the ground. Specifically, the microlens array substrate 1 at least includes a base material layer 11 , a first microlens layer 12 , a pattern layer 13 , a second microlens layer 14 and a light shielding layer 15 . The base material layer 11 has a first surface 111 and a second surface 112 disposed opposite to each other. The pattern layer 13 is disposed on the first surface 111 , and the pattern layer 13 includes micro-pattern units 131 . The first microlens layer 12 is disposed on the side of the pattern layer 13 away from the first surface 111 . The first microlens layer 12 includes a first microlens unit 121 , and the first microlens unit 121 is disposed corresponding to the micropattern unit 131 . The light-shielding layer 15 is disposed on the second surface 112 . The light-shielding layer 15 includes a hollow unit 151 , and the hollow unit 151 is disposed corresponding to the micro-pattern unit 131 . The second microlens layer 14 is disposed on the side of the light shielding layer 15 away from the second surface 112 . The second microlens layer 14 includes a second microlens unit 141 , and the second microlens unit 141 is disposed corresponding to the hollow unit 151 .

上述的微透镜阵列基板1通过分别将第一微透镜层12和第二微透镜层 14设于基材层11的相对两侧,同时使得图案层13设于第一微透镜层12与基材层11之间,遮光层15设于基材层11与第二微透镜层14之间,从而使第一微透镜层12、图案层13、遮光层15、第二微透镜层14集成到基材层11 上,这样,能够使微透镜阵列基板1实现薄型化、小型化设计,从而当微透镜阵列基板1应用于微透镜阵列投影装置100时,能够减少对微透镜阵列投影装置100的空间的占用,从而使得微透镜阵列投影装置100也能够实现小型化设计。The above-mentioned microlens array substrate 1 is formed by disposing the first microlens layer 12 and the second microlens layer 14 on opposite sides of the base material layer 11 respectively, and at the same time making the pattern layer 13 disposed on the first microlens layer 12 and the base material. Between the layers 11, the light shielding layer 15 is provided between the base material layer 11 and the second microlens layer 14, so that the first microlens layer 12, the pattern layer 13, the light shielding layer 15, and the second microlens layer 14 are integrated into the base material. Therefore, when the microlens array substrate 1 is applied to the microlens array projection device 100, the space for the microlens array projection device 100 can be reduced. occupancy, so that the microlens array projection device 100 can also achieve a miniaturized design.

一些实施例中,该基材层11可为透光基材,例如可为玻璃基材或塑胶基材等,本实施例对此不作具体限定。示例性的,该基材层11可为玻璃基材,从而当将第一微透镜层12和图案层13设置在基材层11的第一表面111,遮光层15和第二微透镜层14设置在基材层11的第二表面112时,由于基材层 11为透明材质,因此不会对光线的入射和出射造成影响,从而可以提高向地面投射图案的精准度,保证了成像质量。In some embodiments, the substrate layer 11 may be a light-transmitting substrate, such as a glass substrate or a plastic substrate, which is not specifically limited in this embodiment. Exemplarily, the substrate layer 11 can be a glass substrate, so that when the first microlens layer 12 and the pattern layer 13 are disposed on the first surface 111 of the substrate layer 11 , the light shielding layer 15 and the second microlens layer 14 When disposed on the second surface 112 of the base material layer 11 , since the base material layer 11 is a transparent material, it will not affect the incidence and output of light, thereby improving the accuracy of projecting patterns on the ground and ensuring imaging quality.

一些实施例中,基材层11的第一表面111用于朝向发光源2设置,由于第一微透镜层12设置在第一表面111,发光源2发射的光线首先经过第一微透镜层12,利用第一微透镜层12可实现对光线进行匀光后投射到图案层13,有效提高该微透镜阵列基板1的光学均匀度。In some embodiments, the first surface 111 of the base material layer 11 is configured to face the light-emitting source 2 . Since the first microlens layer 12 is disposed on the first surface 111 , the light emitted by the light-emitting source 2 first passes through the first microlens layer 12 . , the use of the first microlens layer 12 can realize uniform light and then project the light to the pattern layer 13 , thereby effectively improving the optical uniformity of the microlens array substrate 1 .

一些实施例中,在基材层11上设置该图案层13、第一微透镜层12、第二微透镜层14以及遮光层15时,可通过镀铬层或黑胶层于基材层11的第一表面111和第二表面112,再用激光直写或显影蚀刻法去除铬层或黑胶层,以此形成图案层13和遮光层15。然后再以压印或回流法在图案层13表面加工第一微透镜层12,相应的,在遮光层15的表面加工第二微透镜层14,由此形成该微阵列透镜基板1。In some embodiments, when the pattern layer 13 , the first microlens layer 12 , the second microlens layer 14 and the light-shielding layer 15 are disposed on the base material layer 11 , a chrome plating layer or a black glue layer can be used on the base material layer 11 . On the first surface 111 and the second surface 112 , the chrome layer or the black glue layer is removed by laser direct writing or developing etching, so as to form the pattern layer 13 and the light shielding layer 15 . Then, the first microlens layer 12 is processed on the surface of the pattern layer 13 by imprinting or reflow method, and correspondingly, the second microlens layer 14 is processed on the surface of the light shielding layer 15 , thereby forming the microarray lens substrate 1 .

一些实施例中,第一微透镜层12包括多个呈阵列排布的第一微透镜单元 121,所述图案层13包括多个呈阵列排布的微图案单元131,各所述第一微透镜单元121分别与各所述微图案单元131一一对应,第二微透镜层14包括多个呈阵列排布的第二微透镜单元141,各第二微透镜单元141分别与各所述第一微透镜单元121一一对应,所述遮光层15包括多个呈阵列排布的镂空单元151,各所述第二微透镜单元141分别与各所述镂空单元151一一对应。即,该第一微透镜单元121的数量、微图案单元131的数量、镂空单元151 的数量以及第二微透镜单元141的数量一一对应。In some embodiments, the first microlens layer 12 includes a plurality of first microlens units 121 arranged in an array, the pattern layer 13 includes a plurality of micropattern units 131 arranged in an array, and each of the first microlens units 131 is arranged in an array. The lens units 121 are in one-to-one correspondence with each of the micro-pattern units 131 , and the second micro-lens layer 14 includes a plurality of second micro-lens units 141 arranged in an array. The microlens units 121 are in one-to-one correspondence, the light shielding layer 15 includes a plurality of hollow units 151 arranged in an array, and each of the second micro-lens units 141 is in a one-to-one correspondence with each of the hollow units 151 . That is, the number of the first micro-lens units 121 , the number of the micro-pattern units 131 , the number of the hollow units 151 and the number of the second micro-lens units 141 are in one-to-one correspondence.

值得说明的是,第一微透镜单元121与微图案单元131一一对应主要是指的位置上的对应以及数量上的对应,该位置上的对应包括了完全对应和部分对应的情况。It is worth noting that the one-to-one correspondence between the first microlens unit 121 and the micropattern unit 131 mainly refers to the correspondence in position and in quantity, and the correspondence in position includes complete correspondence and partial correspondence.

通过分别将入射的光线依次经过第一微透镜层12、图案层13、基材层 11、遮光层15以及第二微透镜层14。多个第一微透镜单元121对入射的光线分割成多束光线,每个第一微透镜单元121将分割后光线分别投射至对应微图案单元131,在经过微图案单元131形成微图案后,投射至对应的镂空单元151,镂空单元151遮挡光线中的杂散光后投射至对应的第二微透镜单元141,多个第二微透镜单元141从不同位置和角度同时投影成像时,在焦距的前后会产生图像叠加,叠加后的图像提高了清晰度。采用本申请的微透镜阵列基板1,通过上述各微单元的设计,在保证成像效果的基础上,有效缩小了微透镜阵列基板1的体积。The incident light passes through the first microlens layer 12, the pattern layer 13, the base material layer 11, the light shielding layer 15 and the second microlens layer 14 in sequence. The plurality of first micro-lens units 121 divide the incident light into multiple beams of light, and each first micro-lens unit 121 projects the divided light to the corresponding micro-pattern unit 131 respectively. After the micro-pattern unit 131 forms a micro-pattern, Projecting to the corresponding hollow unit 151, the hollow unit 151 blocks the stray light in the light and then projects it to the corresponding second micro-lens unit 141. When a plurality of second micro-lens units 141 are simultaneously projected and imaged from different positions and angles, the focal length is different. The front and back images are superimposed, and the superimposed images improve sharpness. By adopting the microlens array substrate 1 of the present application, the volume of the microlens array substrate 1 is effectively reduced on the basis of ensuring the imaging effect through the design of the above-mentioned micro-units.

可以理解的是,在其他实施例中,第一微透镜单元121的数量、微图案单元131的数量、镂空单元151的数量以及第二微透镜单元141的数量也可不一一对应,例如,第一微透镜单元121的数量可大于或者是小于微图案单元131的数量,镂空单元151的数量也可大于或者是小于第二微透镜单元141 的数量。It can be understood that, in other embodiments, the number of the first micro-lens units 121, the number of the micro-pattern units 131, the number of the hollow units 151, and the number of the second micro-lens units 141 may not be in one-to-one correspondence. The number of one micro-lens unit 121 may be larger or smaller than the number of micro-pattern units 131 , and the number of hollow units 151 may also be larger or smaller than that of the second micro-lens unit 141 .

请参阅图2,一些实施例中,第一微透镜层12设于基材层11的第一表面111,第一微透镜层12包括多个呈阵列排布的第一微透镜单元121,通过在第一微透镜单元121设置光阑,通过每个第一微透镜单元121的光阑对来自发光源2发射的光线进行切割,分成多个光束投射到对应的微图案单元131。遮光层15设于基材层11的第二表面112,遮光层15包括多个呈阵列排布的镂空单元151,各第一微透镜单元121与各镂空单元151一一对应。可以理解的是遮光层15在图2中标识剖物线的区域时遮光区域,未遮光的区域形成镂空单元151,在垂直于第一表面111的方向,镂空单元151的中心与对应的第一微透镜单元121的中心重合,如中心轴m所示,所述镂空单元151沿垂直于所述第一表面111的方向上的投影位于对应的所述第一微透镜单元 121上的光阑上。光线可全部通过第二透镜层单元141投影至目标照射面,通光效率高。由于光线需穿过镂空单元151后投射到对应的第二微透镜单元 141进行聚焦成像。因此,上述遮光层15的结构,通过各镂空单元151可以遮挡入射角较大的杂光,从而提高投射到第二微透镜单元141后形成的图像的清晰度的一致性,有效提高微透镜阵列基板的成像效果。Referring to FIG. 2 , in some embodiments, the first microlens layer 12 is disposed on the first surface 111 of the base material layer 11 , and the first microlens layer 12 includes a plurality of first microlens units 121 arranged in an array. A diaphragm is provided on the first microlens unit 121 , and the light emitted from the light source 2 is cut through the diaphragm of each first microlens unit 121 , and divided into a plurality of beams and projected to the corresponding micropattern unit 131 . The light shielding layer 15 is disposed on the second surface 112 of the base material layer 11 . The light shielding layer 15 includes a plurality of hollow units 151 arranged in an array, and each first microlens unit 121 corresponds to each hollow unit 151 one-to-one. It can be understood that when the light-shielding layer 15 marks the area of the cross-section line in FIG. 2 , the light-shielding area, and the unshielded area forms the hollow unit 151 . In the direction perpendicular to the first surface 111 , the center of the hollow unit 151 corresponds to the corresponding first The centers of the micro-lens units 121 are coincident. As shown by the central axis m, the hollow unit 151 is located on the corresponding aperture on the first micro-lens unit 121 along the projection in the direction perpendicular to the first surface 111 . . All the light can be projected to the target irradiation surface through the second lens layer unit 141, and the light transmission efficiency is high. Because the light needs to pass through the hollow unit 151 and then project to the corresponding second microlens unit 141 for focused imaging. Therefore, in the structure of the light shielding layer 15, the stray light with a large incident angle can be shielded by each hollow unit 151, thereby improving the consistency of the clarity of the image formed after being projected to the second microlens unit 141, and effectively improving the microlens array. Imaging effect of the substrate.

示例性的,如图2所示,L1为垂直光,L2为非垂直光。其中,垂直光指与第一微透镜单元121的第一入光面垂直的光,否则便为非垂直光。L2的入射角为a,越靠近第一微透镜单元121的边缘,入射光的入射角越大。入射光射入第一微透镜单元121后的折射损耗越大。L2为可射入第一微透镜单元121的入射角最大的光,即镂空单元151可遮挡入射角大于a的杂光,即遮挡入射成像后清晰度较低的光,而入射角小于a的入射光入射成像的清晰度均大于等于入射光L2的入射成像的清晰度,从而提高投射至第二微透镜单元141形成的图像清晰度的一致性,提高第二微透镜单元141的聚光效率,从而提高成像效果。Exemplarily, as shown in FIG. 2 , L1 is vertical light, and L2 is non-vertical light. The vertical light refers to the light perpendicular to the first light incident surface of the first microlens unit 121 , otherwise it is non-vertical light. The incident angle of L2 is a, and the closer to the edge of the first microlens unit 121, the larger the incident angle of incident light. The greater the refraction loss of the incident light after entering the first microlens unit 121 is. L2 is the light with the largest incident angle that can enter the first microlens unit 121 , that is, the hollow unit 151 can block the stray light with the incident angle greater than a, that is, block the light with lower clarity after incident imaging, and the incident angle is smaller than a The clarity of the incident image of the incident light is all greater than or equal to the clarity of the incident image of the incident light L2, so as to improve the consistency of the image clarity projected to the second micro-lens unit 141 and improve the light-gathering efficiency of the second micro-lens unit 141 , so as to improve the imaging effect.

一些实施例中,所述第二微透镜单元141沿垂直于所述第二表面112的方向上的焦点位于对应的所述微图案单元131上。如此,当该微透镜阵列基板1应用于微透镜阵列投影装置100,乃至应用于车辆1000时,通过上述设计,能够实现在偏离焦点距离上的叠加图像更加清晰,即,使得在焦点前后很长范围内的投影图像都可以很清晰,由此实现大面积、清晰、亮度均匀的倾斜式投影照明。In some embodiments, the focal point of the second micro-lens unit 141 along the direction perpendicular to the second surface 112 is located on the corresponding micro-pattern unit 131 . In this way, when the microlens array substrate 1 is applied to the microlens array projection device 100 or even the vehicle 1000 , the superimposed image at the off-focus distance can be made clearer through the above-mentioned design, that is, the superimposed image can be made very long before and after the focus. The projected images within the range can be very clear, thus realizing large-area, clear, and evenly-bright oblique projection illumination.

一些实施例中,所述图案层13与所述第二微透镜层14构成光学系统,光学系统的焦距在0.1mm~3mm之间。通过限定该光学系统的焦距满足上述范围,能够在保证良好的成像质量的基础上,合理压缩光学系统的焦距,进而有利于压缩微透镜阵列基板1总长度,实现该微透镜阵列基板1的薄型化、小型化设计。In some embodiments, the pattern layer 13 and the second microlens layer 14 form an optical system, and the focal length of the optical system is between 0.1 mm and 3 mm. By limiting the focal length of the optical system to meet the above range, it is possible to reasonably compress the focal length of the optical system on the basis of ensuring good imaging quality, which in turn is beneficial to compress the total length of the microlens array substrate 1 and realize the thinness of the microlens array substrate 1 Miniaturized and miniaturized design.

在一个具体的实施例中,光学系统满足条件式:1≤TTL/ImgH≤10,其中, TTL为所述微图案单元131入光侧的表面至所述第二微透镜单元141出光侧的表面于光轴上的距离,Imgh为所述光学系统最大视场角对应像高的一半。当光学系统满足上述条件式时,可有效压缩该光学系统的总长度,有利于压缩微透镜阵列基板1总长度。实现该微透镜阵列基板1的薄型化、小型化设计,同时,还能够使得该微透镜阵列基板1具有足够的成像尺寸可以增加相对照度,从而有利于提高该微透镜阵列基板1的成像质量。In a specific embodiment, the optical system satisfies the conditional formula: 1≤TTL/ImgH≤10, wherein, TTL is the surface of the light-incident side of the micro-pattern unit 131 to the light-exit side surface of the second micro-lens unit 141 The distance on the optical axis, Imgh is half of the image height corresponding to the maximum angle of view of the optical system. When the optical system satisfies the above conditional expression, the total length of the optical system can be effectively compressed, which is beneficial to compress the total length of the microlens array substrate 1 . The thin and miniaturized design of the microlens array substrate 1 can be realized, and at the same time, the microlens array substrate 1 can have a sufficient imaging size to increase the relative illuminance, thereby helping to improve the imaging quality of the microlens array substrate 1 .

在一个具体的实施例中,第一微透镜单元121包括包括相对的第一入光面和第一出光面,第一出光面设于所述图案层13的背离所述第一表面111 的一侧,所述第一入光面为凸弧面,沿所述第一微透镜单元121的光轴方向上,所述第一入光面的顶点至所述第一出光面的距离在15um-200um之间,和/或,In a specific embodiment, the first micro-lens unit 121 includes a first light incident surface and a first light exit surface opposite to each other, and the first light exit surface is disposed on a side of the pattern layer 13 away from the first surface 111 . side, the first light incident surface is a convex arc surface, along the optical axis direction of the first microlens unit 121, the distance from the vertex of the first light incident surface to the first light exit surface is 15um- 200um, and/or,

所述第二微透镜单元141包括相对的第二入光面和第二出光面,所述第二入光面设于所述遮光层15的背离所述第二表面112的一侧,所述第二出光面为凸弧面,沿所述第二微透镜单元141的光轴方向上,所述第二出光面的顶点至所述第二入光面的距离在15um-200um之间。The second microlens unit 141 includes a second light incident surface and a second light exit surface opposite to each other, the second light incident surface is disposed on the side of the light shielding layer 15 away from the second surface 112 , the The second light emitting surface is a convex arc surface, and along the direction of the optical axis of the second microlens unit 141 , the distance from the vertex of the second light emitting surface to the second light incident surface is between 15um and 200um.

即,第一微透镜单元121的第一入光面的顶点至所述第一出光面的距离在15um-200um之间和第二微透镜单元141的第二出光面的顶点至所述第二入光面的距离在15um-200um之间可同时满足,也可只满足其一。That is, the distance from the vertex of the first light incident surface of the first microlens unit 121 to the first light outgoing surface is between 15um and 200um, and the distance from the vertex of the second light outgoing surface of the second microlens unit 141 to the second light outgoing surface The distance of the incident light surface can be satisfied between 15um-200um at the same time, or only one of them can be satisfied.

当光学系统满足上述条件式时,可有效压缩该光学系统的总长度,有利于压缩微透镜阵列基板1总长度。When the optical system satisfies the above conditional expression, the total length of the optical system can be effectively compressed, which is beneficial to compress the total length of the microlens array substrate 1 .

考虑到该图案层13和第二微型透镜层14共同形成光学系统,因此,以下将结合示例对该光学系统的相关参数进行示例说明。Considering that the pattern layer 13 and the second micro-lens layer 14 together form an optical system, the following will illustrate the relevant parameters of the optical system with reference to examples.

第一个示例中,第二微透镜单元141的出光面在近光轴处为凸面。光学系统的有效焦距f=2.08mm,光学系统的光圈数FNO=2.50,光学系统的 TTL/ImgH=8.17。In the first example, the light exit surface of the second microlens unit 141 is a convex surface at the near optical axis. The effective focal length of the optical system is f=2.08mm, the aperture number of the optical system is FNO=2.50, and the TTL/ImgH of the optical system is 8.17.

表1a示出了该第二微透镜层14的相关参数,沿光轴方向上,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,例如, S1为该第二微透镜单元141的物侧面,而S2则为该第二微透镜单元141的像侧面。表1a中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。表1a中的厚度中的第一个数值为第二微透镜单元141于光轴上的厚度,第二个数值为该第二微透镜单元141的像侧面至像面,例如S2至像面于光轴上的距离。Y半径、厚度和焦距的单位均为毫米(mm)。Table 1a shows the relevant parameters of the second microlens layer 14. Along the optical axis, the surface with a smaller surface number is the object side of the lens, and the surface with a larger surface number is the image side of the lens. For example, S1 is the object side of the second microlens unit 141 , and S2 is the image side of the second microlens unit 141 . The Y radius in Table 1a is the curvature radius of the object side or image side of the corresponding surface number at the optical axis. The first value in the thicknesses in Table 1a is the thickness of the second microlens unit 141 on the optical axis, and the second value is the image side to the image plane of the second microlens unit 141, for example, S2 to the image plane is at distance on the optical axis. Y radius, thickness, and focal length are in millimeters (mm).

表1aTable 1a

面序号face number 表面名称surface name 表面类型surface type Y半径Y radius 厚度thickness 折射率refractive index 阿贝数Abbe number 焦距focal length 物面object plane 球面spherical 无限unlimited 3.0003.000 1.5171.517 64.264.2 S1S1 物侧面object side 球面spherical 无限unlimited 0.1050.105 1.5151.515 54.354.3 2.084882.08488 S2S2 像侧面like the side 非球面Aspherical -0.931-0.931 15001500 像面image plane 球面spherical 无限unlimited

在本实施例中,第二微透镜单元141的像侧面为非球面,各非球面的面型x可利用但不限于以下非球面公式进行限定:In this embodiment, the image side surface of the second micro-lens unit 141 is an aspherical surface, and the surface x of each aspherical surface can be defined by, but not limited to, the following aspherical surface formula:

Figure BDA0003616070270000101
Figure BDA0003616070270000101

其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1a中Y半径R的倒数);K为圆锥系数;Ai是非球面第i项高次项相对应的修正系数。表1b给出了可用于第一实施例中各个非球面镜面S1-S14的高次项系数A4、 A6、A8、A10、A12、A14、A16、A18和A20。Among them, x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis; c is the paraxial curvature of the aspheric surface, c=1/R (that is, the paraxial curvature c is the above table The reciprocal of the Y radius R in 1a); K is the conic coefficient; Ai is the correction coefficient corresponding to the higher-order term of the i-th term of the aspheric surface. Table 1b gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each of the aspheric mirror surfaces S1-S14 in the first embodiment.

表1bTable 1b

Figure BDA0003616070270000102
Figure BDA0003616070270000102

Figure BDA0003616070270000111
Figure BDA0003616070270000111

第二示例中,第二微透镜单元141的出光面在近光轴处为凸面。光学系统的有效焦距f=2.00mm,光学系统的光圈数FNO=2.73,光学系统的 TTL/ImgH=8.24。In the second example, the light exit surface of the second microlens unit 141 is a convex surface at the near optical axis. The effective focal length of the optical system is f=2.00mm, the aperture number of the optical system is FNO=2.73, and the TTL/ImgH of the optical system is 8.24.

表2a示出了该第二微透镜层14的相关参数,沿光轴方向上,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,例如, S1为该第二微透镜单元141的物侧面,而S2则为该第二微透镜单元141的像侧面。表2a中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。表2a中的厚度中的第一个数值为第二微透镜单元141于光轴上的厚度,第二个数值为该第二微透镜单元141的像侧面至像面,例如S2至像面于光轴上的距离。Y半径、厚度和焦距的单位均为毫米(mm)。Table 2a shows the relevant parameters of the second microlens layer 14. Along the optical axis, the surface with a smaller surface number is the object side of the lens, and the surface with a larger surface number is the image side of the lens. For example, S1 is the object side of the second microlens unit 141 , and S2 is the image side of the second microlens unit 141 . The Y radius in Table 2a is the curvature radius of the object side or image side of the corresponding surface number at the optical axis. The first value in the thickness in Table 2a is the thickness of the second microlens unit 141 on the optical axis, and the second value is the image side to the image plane of the second microlens unit 141, for example, S2 to the image plane is at distance on the optical axis. Y radius, thickness, and focal length are in millimeters (mm).

表2aTable 2a

面序号face number 表面名称surface name 表面类型surface type Y半径Y radius 厚度thickness 折射率refractive index 阿贝数Abbe number 焦距focal length 物面object plane 球面spherical 无限unlimited 3.2003.200 1.5171.517 64.264.2 S1S1 物侧面object side 球面spherical 无限unlimited 0.0970.097 1.5151.515 54.354.3 2.005492.00549 S2S2 像侧面like the side 非球面Aspherical -1.037-1.037 10001000 像面image plane 球面spherical 无限unlimited

在本实施例中,第二微透镜单元141的像侧面为非球面,各非球面的面型x可利用但不限于以下非球面公式进行限定:In this embodiment, the image side surface of the second micro-lens unit 141 is an aspherical surface, and the surface x of each aspherical surface can be defined by, but not limited to, the following aspherical surface formula:

Figure BDA0003616070270000112
Figure BDA0003616070270000112

其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表2a中Y半径R的倒数);K为圆锥系数;Ai是非球面第i项高次项相对应的修正系数。表2b给出了可用于第一实施例中各个非球面镜面S1-S14的高次项系数A4、 A6、A8、A10、A12、A14、A16、A18和A20。Among them, x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis; c is the paraxial curvature of the aspheric surface, c=1/R (that is, the paraxial curvature c is the above table 2a is the reciprocal of the Y radius R); K is the conic coefficient; Ai is the correction coefficient corresponding to the higher-order term of the i-th term of the aspheric surface. Table 2b gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each of the aspheric mirror surfaces S1-S14 in the first embodiment.

表2bTable 2b

Figure BDA0003616070270000113
Figure BDA0003616070270000113

Figure BDA0003616070270000121
Figure BDA0003616070270000121

第三示例中,第二微透镜单元141的出光面在近光轴处为凸面。光学系统的有效焦距f=2.08mm,光学系统的光圈数FNO=2.5,光学系统的 TTL/ImgH=7.76。In the third example, the light exit surface of the second microlens unit 141 is a convex surface at the near optical axis. The effective focal length of the optical system is f=2.08mm, the aperture number of the optical system is FNO=2.5, and the TTL/ImgH of the optical system is 7.76.

表3a示出了该第二微透镜层14的相关参数,沿光轴方向上,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,例如, S1为该第二微透镜单元141的物侧面,而S2则为该第二微透镜单元141的像侧面。表3a中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。表3a中的厚度中的第一个数值为第二微透镜单元141于光轴上的厚度,第二个数值为该第二微透镜单元141的像侧面至像面,例如S2至像面于光轴上的距离。Y半径、厚度和焦距的单位均为毫米(mm)。Table 3a shows the relevant parameters of the second microlens layer 14. Along the optical axis, the surface with a smaller surface number is the object side of the lens, and the surface with a larger surface number is the image side of the lens, for example, S1 is the object side of the second microlens unit 141 , and S2 is the image side of the second microlens unit 141 . The Y radius in Table 3a is the curvature radius of the object side or image side of the corresponding surface number at the optical axis. The first value in the thickness in Table 3a is the thickness of the second micro-lens unit 141 on the optical axis, and the second value is the image side to the image surface of the second micro-lens unit 141, for example, S2 to the image surface is at distance on the optical axis. Y radius, thickness, and focal length are in millimeters (mm).

表3aTable 3a

Figure BDA0003616070270000122
Figure BDA0003616070270000122

在本实施例中,第二微透镜单元141的像侧面为非球面,各非球面的面型x可利用但不限于以下非球面公式进行限定:In this embodiment, the image side surface of the second micro-lens unit 141 is an aspherical surface, and the surface x of each aspherical surface can be defined by, but not limited to, the following aspherical surface formula:

Figure BDA0003616070270000131
Figure BDA0003616070270000131

其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表3a中Y半径R的倒数);K为圆锥系数;Ai是非球面第i项高次项相对应的修正系数。表3b给出了可用于第一实施例中各个非球面镜面S1-S14的高次项系数A4、 A6、A8、A10、A12、A14、A16、A18和A20。Among them, x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis; c is the paraxial curvature of the aspheric surface, c=1/R (that is, the paraxial curvature c is the above table 3a, the reciprocal of the Y radius R); K is the conic coefficient; Ai is the correction coefficient corresponding to the higher-order term of the i-th term of the aspheric surface. Table 3b gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each of the aspheric mirror surfaces S1-S14 in the first embodiment.

表3bTable 3b

Figure BDA0003616070270000132
Figure BDA0003616070270000132

上述三个实施例均可以实现良好投影成像品质,且微透镜阵列基板1薄型化。通过限定该光学系统满足上述范围,能够在保证良好的成像质量的基础上,合理压缩光学系统的总长度,进而有利于压缩微透镜阵列基板总长度,实现该微透镜阵列基板的薄型化、小型化设计。同时实现在投影的成像面实现更大范围的焦深,使得在焦点前后很长范围内的投影图像都可以很清晰,由此实现大面积、清晰、亮度均匀的倾斜式投影照明。All of the above three embodiments can achieve good projection imaging quality, and the microlens array substrate 1 can be thinned. By limiting the optical system to meet the above-mentioned range, the overall length of the optical system can be reasonably compressed on the basis of ensuring good imaging quality, which in turn is beneficial to compress the overall length of the microlens array substrate, thereby realizing the thinning and miniaturization of the microlens array substrate. Design. At the same time, a wider range of focal depth can be achieved on the projected imaging surface, so that the projected image in a long range before and after the focal point can be very clear, thereby realizing large-area, clear, and evenly bright oblique projection illumination.

在一些实施例中,微图案单元131包括透光区域和围绕透光区域设置的遮光区域,遮光区域如图1中的图案层13当中剖物线所示的区域,所述透光区域形成有微图案,且各个微图案单元131上的微图案形状不同或不完全相同,使得在不垂直于光轴的成像面上的成像清晰并且保持远近亮度一致。In some embodiments, the micro-pattern unit 131 includes a light-transmitting area and a light-shielding area arranged around the light-transmitting area. The shapes of the micropatterns on each micropattern unit 131 are different or not completely the same, so that the imaging on the imaging plane not perpendicular to the optical axis is clear and the brightness of far and near is consistent.

一些实施例中,第一微透镜层12和第二微透镜层14分别由几十、几百甚至几千个圆形凸微透镜组成。微透镜以六角形结构平面阵列排布,圆心之间的角度为60度。六角形排列为最密集排列,可提供最大投影面积单元,又能以最密集排列最大限度利用发光源的光线,提高光学效率。In some embodiments, the first microlens layer 12 and the second microlens layer 14 are respectively composed of dozens, hundreds or even thousands of circular convex microlenses. The microlenses are arranged in a flat array of hexagonal structures, and the angle between the centers of the circles is 60 degrees. The hexagonal arrangement is the densest arrangement, which can provide the largest projection area unit, and can maximize the utilization of the light of the light source in the densest arrangement to improve the optical efficiency.

进一步地,每一个第一微透镜单元121和每一个第二微透镜单元141对应一个微图案单元131,也就是说在两个微透镜阵列中间夹着几十、几百甚至几千个不同的微图案。与照射在成像面上的完整图案相比,大多数微图案都只是其中的一部分。Further, each first microlens unit 121 and each second microlens unit 141 corresponds to one micropattern unit 131, that is to say, dozens, hundreds or even thousands of different microlens arrays are sandwiched between the two microlens arrays. micropattern. Most micropatterns are only a fraction of the full pattern illuminated on the imaging surface.

而对于不垂直于光轴的倾斜成像面上,通常朝向底面倾斜12°,具体实施在成像面的较远处显示内容在微图案的透光设置更多,在成像面的较近处显示内容在微图案的透光设置更少。如图3所示,透光区域是微图案单元131 当中剖物线所示的区域,透光区域形成有微图案,围绕透光区域周边设置的是遮光区域,不同剖物线表示的是4个微图案单元上的微图案形状不同或不完全相同,当确定了从第二微透镜单元141射出的平行光与成像面角度以及成像图像大小后,可以根据光束照射到成像面上不同位置的能量差,来确定微图案阵列中每个微图案占完整图案多大一部分。这些不同微图案的排列可以是随机的,没有顺序和位置要求。这样,在倾斜投影时,远处的图案有更多投影图像的重叠,从而弥补远距离光弱的现象。For the inclined imaging surface that is not perpendicular to the optical axis, it is usually inclined toward the bottom surface by 12°. Specifically, the display content is more farther away from the imaging surface, and the light transmission settings of the micropattern are more, and the content is displayed closer to the imaging surface. There are fewer light-transmitting settings in the micropattern. As shown in FIG. 3 , the light-transmitting area is the area shown by the cross-section line in the micro-pattern unit 131 , the light-transmitting area is formed with a micro-pattern, and the light-shielding area is arranged around the periphery of the light-transmitting area, and the different cross-section lines represent 4 The shapes of the micro-patterns on each of the micro-pattern units are different or not exactly the same. After the angle of the parallel light emitted from the second micro-lens unit 141 and the imaging plane and the size of the imaging image are determined, the beams can be irradiated to different positions on the imaging plane according to the size of the imaging plane. energy difference to determine what fraction of the full pattern each micropattern in the micropattern array represents. The arrangement of these different micropatterns can be random, with no order and position requirements. In this way, when projected obliquely, the pattern at a distance has more overlap of the projected image, thereby compensating for the phenomenon of weak light at a distance.

参见图4,第二方面,本申请实施例公开了一种微透镜阵列投影装置100,微透镜阵列投影装置100包括发光源2、匀光镜组3以及微透镜阵列基板1,匀光镜组3设于所述光源2与微透镜阵列基板1之间,发光源2的光线依次经过匀光镜组3、以及微透镜阵列基板1投影在成像面上。匀光镜组3对发光源2发射的光线进行准直。Referring to FIG. 4 , in a second aspect, an embodiment of the present application discloses a microlens array projection device 100 . The microlens array projection device 100 includes a light source 2 , a homogenizing mirror group 3 , and a microlens array substrate 1 . The homogenizing mirror group 3 is arranged between the light source 2 and the microlens array substrate 1, and the light of the light source 2 is projected on the imaging surface through the homogenizing mirror group 3 and the microlens array substrate 1 in sequence. The homogenizing mirror group 3 collimates the light emitted by the light source 2 .

参见图5,第三方面,本申请实施例公开了一种车辆1000,该车辆1000 包括主体部分200以及第二方面的微透镜阵列投影装置100,该微透镜阵列投影装置100设于该主体部分200。Referring to FIG. 5 , in a third aspect, an embodiment of the present application discloses a vehicle 1000 , the vehicle 1000 includes a main body part 200 and the microlens array projection device 100 of the second aspect, the microlens array projection device 100 is provided on the main body part 200.

示例性地,由于微透镜阵列投影装置100轻薄的特性,可用以在主体部分200有限空间内集成多个微透镜阵列投影装置100,通过分别控制各模组亮暗,分别投影各种投影图案,以实现按时序控制动态投影照明。Exemplarily, due to the light and thin characteristics of the micro-lens array projection device 100, it can be used to integrate multiple micro-lens array projection devices 100 in the limited space of the main body part 200. To achieve timing control of dynamic projection lighting.

示例性地,该车辆1000为汽车、电动车或脚踏车。本实施例的微透镜阵列投影装置100可作为车辆1000的迎宾灯,地面方向灯,地面刹车距离警示灯使用。Illustratively, the vehicle 1000 is an automobile, an electric vehicle or a bicycle. The microlens array projection device 100 of this embodiment can be used as a welcome light, a ground direction light, and a ground braking distance warning light of the vehicle 1000 .

作为一种可选的实施方式,该车辆1000为汽车,则该主体部分200可为汽车门或汽车底盘。As an optional embodiment, if the vehicle 1000 is an automobile, the main body portion 200 may be an automobile door or an automobile chassis.

本实用新型实施例提供了一种车辆1000,微透镜阵列投影装置100的体积较小,可减小微透镜阵列投影装置100占用车辆的空间,减小车辆的体积和重量。The embodiment of the present invention provides a vehicle 1000. The microlens array projection device 100 has a small volume, which can reduce the space occupied by the microlens array projection device 100 in the vehicle and reduce the volume and weight of the vehicle.

以上对本实用新型实施例公开的一种微透镜阵列基板、微透镜阵列投影装置及车辆进行了详细介绍,本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的一种微透镜阵列基板、微透镜阵列投影装置及车辆及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本实用新型的限制。A micro-lens array substrate, a micro-lens array projection device and a vehicle disclosed in the embodiments of the present utility model have been described above in detail. Specific examples are used in this paper to illustrate the principles and implementations of the present utility model. The description is only used to help understand a microlens array substrate, a microlens array projection device, a vehicle and its core idea of the present invention; There will be changes in the scope of application and application. To sum up, the contents of this specification should not be construed as a limitation to the present invention.

Claims (11)

1. A microlens array substrate, comprising:
the substrate layer is provided with a first surface and a second surface which are arranged oppositely;
a pattern layer disposed on the first surface, the pattern layer including micropattern units;
the first micro-lens layer is arranged on one side, away from the first surface, of the pattern layer and comprises first micro-lens units, and the first micro-lens units are arranged corresponding to the micro-pattern units;
the light shielding layer is arranged on the second surface and comprises a hollowed-out unit, and the hollowed-out unit is arranged corresponding to the micro-pattern unit; and
the second micro-lens layer is arranged on one side, away from the second surface, of the light shielding layer and comprises second micro-lens units, and the second micro-lens units are arranged corresponding to the hollow-out units.
2. The microlens array substrate of claim 1, wherein the first surface of the substrate layer is configured to be disposed toward a light emitting source.
3. The microlens array substrate of claim 1, wherein the first microlens layer includes a plurality of the first microlens units arranged in an array, the pattern layer includes a plurality of the micropattern units arranged in an array, each of the first microlens units is disposed in one-to-one correspondence with each of the micropattern units, the second microlens layer includes a plurality of the second microlens units arranged in an array, each of the second microlens units corresponds to each of the first microlens units in one-to-one correspondence, the light shielding layer includes a plurality of the hollow units arranged in an array, and each of the second microlens units corresponds to each of the hollow units in one-to-one correspondence.
4. The substrate of claim 3, wherein the projection of the hollow unit along the direction perpendicular to the first surface is located on the stop of the corresponding first microlens unit.
5. A microlens array substrate according to claim 3, wherein the second microlens unit has a focal point in a direction perpendicular to the second surface on the corresponding micropattern unit.
6. The microlens array substrate of claim 3, wherein the micropattern unit comprises a light-transmissive region and a light-shielding region disposed around the light-transmissive region, the light-transmissive region is formed with micropatterns, and the micropatterns on the individual micropattern units are different or not identical in shape, so that imaging on an imaging plane not perpendicular to the optical axis is clear and uniform in near-far brightness is maintained.
7. The microlens array substrate according to any one of claims 1 to 6, wherein the pattern layer and the second microlens layer constitute an optical system having a focal length of 0.1mm to 3 mm.
8. The microlens array substrate of claim 7, wherein the optical system satisfies the conditional expression: TTL/ImgH is more than or equal to 1 and less than or equal to 10, wherein TTL is the distance between the surface of the light inlet side of the micro pattern unit and the surface of the light outlet side of the second micro lens unit on the optical axis, and Imgh is half of the height of the maximum field angle corresponding image of the optical system.
9. The micro-lens array substrate of claim 7, wherein the first micro-lens unit includes a first light incident surface and a first light emitting surface opposite to each other, the first light emitting surface is disposed on a side of the pattern layer away from the first surface, the first light incident surface is a convex arc surface, a distance from a vertex of the first light incident surface to the first light emitting surface is between 15um and 200um along an optical axis direction of the first micro-lens unit, and/or,
the second microlens unit includes relative second income plain noodles and second play plain noodles, the second income plain noodles is located deviating from of light shield layer one side of second surface, the second goes out the plain noodles and is the convex cambered surface, follows on the optical axis direction of second microlens unit, the second goes out the summit of plain noodles extremely the distance that the second goes into the plain noodles is between 15um-200 um.
10. A micro-lens array projection device, comprising a light source, a light uniformizing lens assembly and the micro-lens array substrate as claimed in any one of claims 1 to 9, wherein the light uniformizing lens assembly is disposed between the light source and the micro-lens array substrate.
11. A vehicle comprising a vehicle body and the microlens array projection apparatus of claim 10, wherein the microlens array projection apparatus is provided on the vehicle body.
CN202220986841.4U 2022-04-26 2022-04-26 Microlens array substrate, microlens array projection device and vehicle Active CN217543430U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202220986841.4U CN217543430U (en) 2022-04-26 2022-04-26 Microlens array substrate, microlens array projection device and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202220986841.4U CN217543430U (en) 2022-04-26 2022-04-26 Microlens array substrate, microlens array projection device and vehicle

Publications (1)

Publication Number Publication Date
CN217543430U true CN217543430U (en) 2022-10-04

Family

ID=83432093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202220986841.4U Active CN217543430U (en) 2022-04-26 2022-04-26 Microlens array substrate, microlens array projection device and vehicle

Country Status (1)

Country Link
CN (1) CN217543430U (en)

Similar Documents

Publication Publication Date Title
US8637799B2 (en) Imaging apparatus with lens array having densely arranged lens surfaces without a gap
KR100517089B1 (en) Backlit Lighting Device, Liguid Crystal Display Device Utilizing Same, and Liguid Crystal Display Device Manufacturing Method
US7850319B2 (en) Light-absorbing member
CN112764234B (en) Optical field modulator and modulation method thereof
KR20070048203A (en) Camera module, array based on it, and method for manufacturing
CN110515258B (en) A close-up illuminator and imaging device including the illuminator
TWI714247B (en) Camera module and electronic device
JP2019139163A (en) Diffusion plate, method for designing diffusion plate, display device, projection device, and illumination device
CN113608400B (en) Pattern projection equipment
CN110488396A (en) It is a kind of for reducing the imaging method of parallel type bionic compound eyes off-axis aberration
CN217543430U (en) Microlens array substrate, microlens array projection device and vehicle
KR20060093386A (en) Camera lighting equipment
CN111897181A (en) Intelligent equipment, microlens array projection device and array substrate thereof
TW201910854A (en) Optical lens assembly and image capturing device
CN115327846B (en) Design method of lighting system for eliminating sidelobes of micro-lens array
CN109387920B (en) Optical lens and shooting device
CN116624805A (en) Wide-angle large-aperture pixelized car lamp optical structure, car lamp and car
CN113805311B (en) Optical lens, camera module and electronic equipment
CN116125736A (en) Projection system and method of manufacturing the same
CN114647138B (en) Projection system and method for manufacturing the same
CN112008974A (en) Optical lens group for photocuring 3D printer
CN111123532A (en) Planar light source beam shaping method and device based on holographic transfer
CN222439821U (en) Micro-lens array lens module with diaphragm and projection device comprising same
CN216718826U (en) Light-emitting module and TOF imaging device
CN118330903B (en) Aerial imaging display system

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 330096 No.699 Tianxiang North Avenue, Nanchang hi tech Industrial Development Zone, Jiangxi Province

Patentee after: Oufei Microelectronics (Nanchang) Co.,Ltd.

Country or region after: China

Address before: No. 699 Tianxiang North Avenue, Nanchang High tech Industrial Development Zone, Nanchang City, Jiangxi Province

Patentee before: Jiangxi OMS Microelectronics Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address