CN216793755U - Flow battery system based on underground space - Google Patents
Flow battery system based on underground space Download PDFInfo
- Publication number
- CN216793755U CN216793755U CN202123195620.XU CN202123195620U CN216793755U CN 216793755 U CN216793755 U CN 216793755U CN 202123195620 U CN202123195620 U CN 202123195620U CN 216793755 U CN216793755 U CN 216793755U
- Authority
- CN
- China
- Prior art keywords
- liquid storage
- storage tank
- flow battery
- battery system
- stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 claims abstract 31
- 239000008151 electrolyte solution Substances 0.000 claims abstract 9
- 238000003487 electrochemical reaction Methods 0.000 claims abstract 2
- 238000001514 detection method Methods 0.000 claims 8
- 238000005260 corrosion Methods 0.000 claims 1
- 239000011550 stock solution Substances 0.000 abstract 1
Images
Landscapes
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本申请涉及液流电池技术领域,具体涉及一种基于地下空间的液流电池系统。The present application relates to the technical field of flow batteries, and in particular, to an underground space-based flow battery system.
背景技术Background technique
液流电池系统是一种新型电能储存和高效转化装置,具有蓄电容量大、寿命长、效率高、无毒无害环境友好的特点。液流电池系统包括两个电解液储液器、电堆以及用于输送电解液的电解液进、出液管路等部件。其中,两个电解液储液器分别用于盛装正极电解液和负极电解液。The flow battery system is a new type of electric energy storage and high-efficiency conversion device, which has the characteristics of large storage capacity, long life, high efficiency, non-toxic and environmentally friendly. The flow battery system includes two electrolyte reservoirs, a stack, and electrolyte inlet and outlet pipelines for transporting electrolyte. Among them, the two electrolyte reservoirs are respectively used for containing the positive electrolyte and the negative electrolyte.
液流电池的电解液的能量决定了液流电池的电量,所以,液流电池的储液器的体积通常很大,以盛装更多的电解液,使电解液的能量更多,所以液流电池系统的体积通常较庞大,导致液流电池系统的占地空间较大,占地成本较高。The energy of the electrolyte of the flow battery determines the power of the flow battery, so the volume of the reservoir of the flow battery is usually large to hold more electrolyte, so that the energy of the electrolyte is more, so the flow The volume of the battery system is usually relatively large, resulting in a large footprint and high cost of the flow battery system.
实用新型内容Utility model content
本申请实施例提供了一种基于地下空间的液流电池系统,能够减小液流电池系统的占地空间,从而减少了占地成本。具体方案如下:The embodiments of the present application provide a flow battery system based on an underground space, which can reduce the footprint of the flow battery system, thereby reducing the footprint cost. The specific plans are as follows:
本申请实施例提供了一种液流电池系统,包括:Embodiments of the present application provide a flow battery system, including:
第一储液罐,所述第一储液罐设于地下,用于储存第一电解质溶液;a first liquid storage tank, the first liquid storage tank is arranged underground and is used for storing the first electrolyte solution;
第二储液罐,用于储存第二电解质溶液,所述第二电解质溶液与所述第一电解质溶液分别用于发生极性相反的电化学反应;a second liquid storage tank for storing a second electrolyte solution, where the second electrolyte solution and the first electrolyte solution are respectively used for electrochemical reactions with opposite polarities;
电堆,分别与所述第一储液罐、所述第二储液罐连通。The electric stack is respectively communicated with the first liquid storage tank and the second liquid storage tank.
本申请实施例提供的基于地下空间的液流电池系统的第一储液罐设于地下,所以第一储液罐不会占用地面上的空间,这就使得液流电池系统的用于储存电解质溶液的储液容器不会占用地面空间,从而节省了液流电池系统的占地空间,节省了占地成本。The first liquid storage tank of the flow battery system based on the underground space provided by the embodiment of the present application is arranged underground, so the first liquid storage tank does not occupy space on the ground, which makes the flow battery system for storing electrolytes The liquid storage container of the solution does not occupy the floor space, thereby saving the floor space and cost of the flow battery system.
可选地,所述液流电池系统还包括:Optionally, the flow battery system further includes:
第一储液室,所述第一储液室为设于地下的空间,所述第一储液罐设于所述第一储液室内。A first liquid storage chamber, the first liquid storage chamber is an underground space, and the first liquid storage tank is set in the first liquid storage chamber.
本实施例通过设置第一储液室,更便于第一储液罐设于地下,第一储液室的设置也能够为检修提供更好的空间,更便于检修,也更便于液流电池系统其他部件在第一储液室内设置。In this embodiment, by setting the first liquid storage chamber, it is more convenient for the first liquid storage tank to be installed underground. The setting of the first liquid storage chamber can also provide better space for maintenance, which is more convenient for maintenance and more convenient for the flow battery system. Other components are arranged in the first liquid storage chamber.
可选地,所述第一储液罐与所述第一储液室的内侧壁之间具有人工检测空间,所述人工检测空间与地面之间设有第一人工检测通道。Optionally, a manual detection space is provided between the first liquid storage tank and the inner side wall of the first liquid storage chamber, and a first manual detection channel is provided between the manual detection space and the ground.
本实施例设置人工检测通道后,检测人员可以从人工检测通道进入到人工检测空间内,从而可以在人工检测空间内从第一储液罐的外侧对第一储液罐进行维修、检测。After the manual detection channel is set in this embodiment, the detection personnel can enter the manual detection space from the manual detection channel, so that the first liquid storage tank can be maintained and tested from the outside of the first liquid storage tank in the manual detection space.
可选地,所述液流电池系统还包括控制系统,所述第一储液室的底部设有漏液检测装置,所述漏液检测装置位于所述第一储液罐的外部,且与所述控制系统通信连接。Optionally, the flow battery system further includes a control system, a liquid leakage detection device is provided at the bottom of the first liquid storage chamber, the liquid leakage detection device is located outside the first liquid storage tank, and is connected with the first liquid storage tank. The control system is communicatively connected.
本实施例在第一储液室的底部设置漏液检测装置,可以在第一储液罐发生泄露后快速地检测出来,以便于作业人员及时维修,减小因泄露而造成的不良后果。In this embodiment, a liquid leakage detection device is provided at the bottom of the first liquid storage chamber, which can quickly detect the leakage of the first liquid storage tank, so as to facilitate timely maintenance by operators and reduce adverse consequences caused by leakage.
可选地,所述第一储液室的内壁上设有防腐蚀层。Optionally, an anti-corrosion layer is provided on the inner wall of the first liquid storage chamber.
本实施例在第一储液室的内壁上设置防腐蚀层,可以使得在第一储液罐发生渗漏时不会对第一储液室的室壁发生腐蚀、侵害,不会通过第一储液室的室壁浸入地下,从而可以更好地避免漏液浸入到地下而破坏生态环境。In this embodiment, an anti-corrosion layer is arranged on the inner wall of the first liquid storage chamber, so that when the first liquid storage tank leaks, the chamber wall of the first liquid storage chamber will not be corroded or damaged, and will not pass through the first liquid storage tank. The wall of the liquid storage chamber is immersed into the ground, so that the leakage of the liquid can be better prevented from immersing into the ground and destroying the ecological environment.
可选地,所述第一储液罐与地面之间设有液体输送通道。Optionally, a liquid conveying channel is provided between the first liquid storage tank and the ground.
本实施例设置液体输送通道更便于将电解质溶液输入第一储液罐,或从第一储液罐抽出,提高了存取电解质溶液的便捷性。In this embodiment, the provision of the liquid delivery channel makes it easier to input the electrolyte solution into the first liquid storage tank, or to extract the electrolyte solution from the first liquid storage tank, which improves the convenience of accessing the electrolyte solution.
可选地,所述电堆设于地下的空间内,所述电堆上电连接有通向地面的通电线缆。Optionally, the electric stack is arranged in an underground space, and a power cable leading to the ground is electrically connected to the electric stack.
本实施例将电堆设置在地下的空间内,使得电堆与第一储液罐之间的距离可以设置的比较近,从而使得电堆与第一储液罐之间更便于通过管道连通。另外,将电堆设置在地下的空间内,得益于地下土壤和岩壁较好的导热性,电堆运行过程中产生的热量可以被及时释放,使得电堆的温度不容易过高而影响工作性能,另外,地下空间的温差变化很小,温度较为稳定,使得电堆的工作环境不易过低,从而使得电堆能够更可靠地运行,有利于电堆的热管理。In this embodiment, the electric stack is arranged in the underground space, so that the distance between the electric stack and the first liquid storage tank can be set relatively close, so that the connection between the electric stack and the first liquid storage tank is more convenient through pipelines. In addition, the stack is placed in the underground space, thanks to the better thermal conductivity of the underground soil and rock walls, the heat generated during the operation of the stack can be released in time, so that the temperature of the stack is not easily affected by excessively high In addition, the temperature difference in the underground space changes very little, and the temperature is relatively stable, so that the working environment of the stack is not easy to be too low, so that the stack can operate more reliably and is conducive to the thermal management of the stack.
另外,由于设于地下的电堆与第一储液罐的高度差较小,还可以有效减少循环泵所需做的功,提升了液流电池系统的储能效率。将电堆设置在地下的空间内,还可以进一步减小液流电池的占地空间,减小占地成本。In addition, since the height difference between the electric stack arranged underground and the first liquid storage tank is small, the work required by the circulating pump can also be effectively reduced, and the energy storage efficiency of the flow battery system is improved. By arranging the stack in the underground space, the floor space and cost of the flow battery can be further reduced.
可选地,所述电堆所在的地下的空间与地面之间设有第二人工检测通道,所述通电线缆位于所述第二人工检测通道内。Optionally, a second manual detection channel is provided between the underground space where the electric stack is located and the ground, and the power cable is located in the second manual detection channel.
本实施例将通电线缆通过第二人工检测通道通向地面,可以使得操作人员通过第二人工检测通道对通电线缆进行检测,另外,操作人员也可以从第二人工检测通道到达电堆所在的地下空间,以对电堆进行检查维修等。In this embodiment, the energized cable is led to the ground through the second manual detection channel, so that the operator can detect the energized cable through the second manual detection channel. In addition, the operator can also reach the location of the stack from the second manual detection channel. underground space for inspection and maintenance of the stack, etc.
可选地,所述电堆所在的地下的空间与地面之间设有气流通道,所述气流通道与所述第二人工检测通道分隔设置。Optionally, an air flow channel is provided between the underground space where the electric stack is located and the ground, and the air flow channel is arranged separately from the second manual detection channel.
气流通道可以将电堆进行氧化还原反应过程中产生的氢气等气体排出,以防止发生爆炸,提高了安全性,保证电堆正常工作。The gas flow channel can discharge the hydrogen and other gases generated during the redox reaction of the stack to prevent explosion, improve the safety, and ensure the normal operation of the stack.
可选地,所述电堆设于地面上,所述第一储液罐上设有出液口,所述电堆上设有与所述出液口连通的进液口,所述出液口与所述进液口之间的高度差不大于10米。Optionally, the electric stack is set on the ground, the first liquid storage tank is provided with a liquid outlet, the electric stack is provided with a liquid inlet communicated with the liquid outlet, and the liquid outlet is provided on the stack. The height difference between the port and the liquid inlet is not more than 10 meters.
本实施例将电堆设置在地面上,更便于对电堆进行检测和维修,电堆的安装也更加简单。第一储液罐上的出液口与电堆上的进液口之间的高度差不大于米,高度差比较小,这样,第一储液罐内的电解质溶液也能够较容易地被抽进电堆内。In this embodiment, the electric stack is arranged on the ground, which is more convenient to detect and maintain the electric stack, and the installation of the electric stack is also simpler. The height difference between the liquid outlet on the first liquid storage tank and the liquid inlet on the stack is not more than meters, and the height difference is relatively small, so that the electrolyte solution in the first liquid storage tank can also be easily pumped into the stack.
可选地,所述第一储液室的侧壁与所述第一储液罐的侧壁接触,以对所述第一储液罐的侧壁进行支撑。Optionally, the side wall of the first liquid storage chamber is in contact with the side wall of the first liquid storage tank to support the side wall of the first liquid storage tank.
由于第一储液室对第一储液罐的侧壁起到了支撑作用,使得第一储液罐的侧壁可以做的比较薄,这样,可以减小第一储液罐的耗材、生产成本等,同时,第一储液罐的结构稳定性也能得到较好的保证。Since the first liquid storage chamber supports the side wall of the first liquid storage tank, the side wall of the first liquid storage tank can be made thinner, so that the consumables and production costs of the first liquid storage tank can be reduced. At the same time, the structural stability of the first liquid storage tank can also be better guaranteed.
可选地,所述第一储液罐为塑料罐,所述塑料罐的材质包括聚氯乙烯、聚丙烯、聚四氟乙烯中的至少一种。Optionally, the first liquid storage tank is a plastic tank, and the material of the plastic tank includes at least one of polyvinyl chloride, polypropylene, and polytetrafluoroethylene.
当第一储液罐是塑料罐时,可以使得第一储液罐的化学稳定性更好、重量更轻、成本也更低,生产制造也更方便。When the first liquid storage tank is a plastic tank, the chemical stability of the first liquid storage tank is better, the weight is lighter, the cost is lower, and the manufacturing is more convenient.
可选地,所述防腐蚀层为环氧防腐层、酚醛树脂防腐层、硅钛氧化物复合防腐层、聚氯乙烯自由发泡板中的任意一种。Optionally, the anti-corrosion layer is any one of epoxy anti-corrosion layer, phenolic resin anti-corrosion layer, silicon-titanium oxide composite anti-corrosion layer, and polyvinyl chloride free foam board.
附图说明Description of drawings
图1是本申请实施例提供的基于地下空间的液流电池系统一例结构示意图;1 is a schematic structural diagram of an example of an underground space-based flow battery system provided by an embodiment of the present application;
图2是本申请实施例提供的基于地下空间的液流电池系统另一例的结构示意图;2 is a schematic structural diagram of another example of an underground space-based flow battery system provided by an embodiment of the present application;
图3是本申请实施例提供的基于地下空间的液流电池系统的再一例的结构示意图;3 is a schematic structural diagram of yet another example of an underground space-based flow battery system provided by an embodiment of the present application;
图4是本申请实施例提供的基于地下空间的液流电池系统的再一例的结构示意图。FIG. 4 is a schematic structural diagram of another example of the flow battery system based on the underground space provided by the embodiment of the present application.
图中标号分别为:The symbols in the figure are:
110、第一储液室;111、液体输送通道;113、人工检测空间;114、第一人工检测通道;120、第一储液罐;130、电堆;131、通电线缆;132、第二人工检测通道;134、双极板;135、集流板;136、端板;137a、正电极;137b、负电极;137c、离子交换膜;138、进液管道;138a、循环泵;139、出液管道;140、第二储液室;150、第二储液罐;160、功率转换系统;161、充电用功率转换系统;162、放电用功率转换系统;170、控制系统;180、电量检测传感器;110, the first liquid storage chamber; 111, the liquid delivery channel; 113, the artificial detection space; 114, the first manual detection channel; 120, the first liquid storage tank; 130, the electric stack; Two artificial detection channels; 134, bipolar plate; 135, collector plate; 136, end plate; 137a, positive electrode; 137b, negative electrode; 137c, ion exchange membrane; 138, liquid inlet pipe; 138a, circulating pump; 139 140, the second liquid storage chamber; 150, the second liquid storage tank; 160, the power conversion system; 161, the power conversion system for charging; 162, the power conversion system for discharging; 170, the control system; 180, battery detection sensor;
10、地面;20、风力发电系统;30、太阳能发电系统;40、外部电网。10. Ground; 20. Wind power generation system; 30. Solar power generation system; 40. External power grid.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。The technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application. Wherein, in the description of the embodiments of the present application, unless otherwise stated, “/” means or means, for example, A/B can mean A or B; “and/or” in this document is only a description of the associated object The association relationship of , indicates that there can be three kinds of relationships, for example, A and/or B, can indicate that A exists alone, A and B exist at the same time, and B exists alone. In addition, in the description of the embodiments of the present application, "plurality" refers to two or more than two.
以下,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。Hereinafter, the terms "first", "second" and "third" are only used for descriptive purposes, and should not be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first", "second", "third" may expressly or implicitly include one or more of that feature.
随着能源危机和环境污染的加剧,风力发电、光伏发电等可再生能源发电得到了快速发展。风力发电和光伏发电已经大比例入网,但风电发电量随风速和风向的变化而变化,且存在季节性特征,不同地区不同季节发电量不同;光伏出力受天气影响,在日内也存在明显变化,同时气温的波动对光伏发电也有影响,一般春季和冬季的白天中午时分发电量最大。可见,风电和光电等新能源发电波动性强、不可预测性强、不可控性较大,从而使得电网调度的困难,导致风电和光电的发展受到很大限制。With the intensification of energy crisis and environmental pollution, renewable energy power generation such as wind power generation and photovoltaic power generation has developed rapidly. A large proportion of wind power generation and photovoltaic power generation have been connected to the grid, but the wind power generation volume changes with the change of wind speed and wind direction, and there are seasonal characteristics, and the power generation volume varies in different regions and seasons; At the same time, the fluctuation of temperature also has an impact on photovoltaic power generation. Generally, the maximum power is distributed at noon during the daytime in spring and winter. It can be seen that the power generation of new energy sources such as wind power and photovoltaics is highly volatile, unpredictable, and uncontrollable, which makes the grid dispatching difficult and greatly restricts the development of wind power and photovoltaics.
当新能源大量并入电网时,会增加电网的波动,电网安全性或将受到冲击。因此,可以将大规模储能技术和风力发电技术相结合,以提高风力发电输出功率的可控性,便于对电网调峰调频等的调度。When a large number of new energy sources are integrated into the power grid, the fluctuation of the power grid will increase, and the security of the power grid may be affected. Therefore, large-scale energy storage technology and wind power generation technology can be combined to improve the controllability of wind power output power and facilitate the scheduling of power grid peak regulation and frequency regulation.
现有的大规模储能技术,以电化学储能、抽水储能为主。抽水储能技术成熟,安全性高,但是具有受地理环境限制较大、储电形式不灵活等缺点,导致抽水储能无法大规模推广应用。The existing large-scale energy storage technologies are mainly electrochemical energy storage and pumped water energy storage. The pumped hydro storage technology is mature and safe, but it has disadvantages such as being greatly restricted by the geographical environment and inflexible in the form of electricity storage, which makes it impossible to popularize and apply pumped hydro energy storage on a large scale.
电化学储能一般分为锂电池、铅酸电池和液流电池。锂电池的安全性低;铅酸电池功率小,充放电过程会消耗金属电极导致功率下降、寿命低。液流电池能够将电能转换成化学能,并将其储存在电解液中,根据研究发现,全钒液流电池和铁铬液流电池的电解质溶液可以反复回收利用,具有安全性高、寿命长和良好的充放电特性,所以在风电等新能源领域和电网调峰调频中被越来越多地使用。Electrochemical energy storage is generally divided into lithium batteries, lead-acid batteries and flow batteries. The safety of lithium batteries is low; lead-acid batteries have low power, and the charging and discharging process will consume metal electrodes, resulting in power reduction and low life. Flow batteries can convert electrical energy into chemical energy and store it in the electrolyte. According to research, the electrolyte solutions of all-vanadium flow batteries and iron-chromium flow batteries can be recycled repeatedly, with high safety and long life. and good charging and discharging characteristics, so it is more and more used in new energy fields such as wind power and power grid peak regulation and frequency regulation.
下面,结合附图对液流电池的原理进行简要介绍。Below, the principle of the flow battery is briefly introduced with reference to the accompanying drawings.
如图1、图4所示,液流电池主要包括储液罐、电堆130、管路系统、循环泵138a等部件。As shown in FIG. 1 and FIG. 4 , the flow battery mainly includes components such as a liquid storage tank, an
储液罐包括第一储液罐120和第二储液罐150,分别用于盛放正极电解质溶液和负极电解质溶液。管路系统用于连通储液罐与电堆130,循环泵138a用于使电解质溶液在储液罐和电堆130之间流动。The liquid storage tank includes a first
如图1所示,液流电池可以包括一个电堆130,如图4所示,液流电池也可以包括多个电堆130。As shown in FIG. 1 , the flow battery may include one
如图1所示,电堆130可以包括一个或多个电堆单元,相邻的电堆单元之间通过双极板134相隔,电堆130的两侧分别具有集流板135,集流板135用于与外电路连接而进行电流导入或导出,集流板135的外侧设有端板136,端板136用于固定多个电堆单元。电堆单元包括正电极137a和负电极137b,正电极137a和负电极137b之间设有离子交换膜137c。As shown in FIG. 1 , the
电堆130是电极反应的主要场所,电堆130的电极面积和电堆单元的数量决定了液流电池的输出功率。电解质溶液是能量的储存介质,电解质溶液的浓度和体积决定了液流电池的存能能力,这就使得液流电池的设计更加灵活。The
液流电池的电极只为活性物质提供反应界面,本身并不进行电化学反应,且正、负极活性物质通常以离子态存储在电解液中,并分别放置于正、负极储存罐中。在充放电过程中,电解液通过循环泵138a进入到电堆130中,在电极表面发生氧化还原反应来实现化学能与电能的相互转换。The electrode of the flow battery only provides a reaction interface for the active material, and does not perform electrochemical reaction itself. The positive and negative active materials are usually stored in the electrolyte in an ionic state, and are placed in the positive and negative storage tanks respectively. During the charging and discharging process, the electrolyte enters the
下面,以全钒液流电池为例对液流电池的储能原理进行简要介绍。In the following, the energy storage principle of the flow battery is briefly introduced by taking the all-vanadium flow battery as an example.
如图1、图4所示,全钒液流电池中的电能以化学能的方式存储在不同价态钒离子的酸性电解液中,正极电解液包括VO2+离子(4价钒离子)和离子(5价钒离子),负极电解液包括V2+离子(2价钒离子)和V3+离子(3价钒离子),钒离子通过电解质溶液的方式存储于储液罐中,系统通过循环泵138a使电解质溶液进入电堆130内发生氧化还原反应。As shown in Figure 1 and Figure 4, the electrical energy in the all-vanadium redox flow battery is stored in the acid electrolyte of different valence vanadium ions in the form of chemical energy. The positive electrolyte includes VO 2+ ions (tetravalent vanadium ions) and ions (5-valent vanadium ions), the negative electrolyte includes V 2+ ions (2-valent vanadium ions) and V 3+ ions (3-valent vanadium ions), and the vanadium ions are stored in the liquid storage tank through the electrolyte solution, and the system passes The
如图1、图4所示,在循环泵138a的作用下,正极电解质溶液流入电堆130中正极所在的区域,在正极发生还原反应后再从电堆130流出,并流进第一储液罐120内;负极电解质溶液流入电堆130中负极所在的区域,在负极发生氧化反应后再从电堆130流出,并流进第二储液罐150内,以此循环进行。离子交换膜137c允许离子在浓度差和电位差的作用下通过,离子交换膜137c会将正、负电极137b的电解液阻隔,避免自放电。As shown in FIG. 1 and FIG. 4 , under the action of the circulating
上述正电极137a和负电极137b可以为多孔电极,活性物质(即电解液中包括的离子)在多孔电极表面发生氧化还原反应,通过双极板134收集和传导电流,使得存储在电解质溶液中的化学能转换为电能。铁铬液流电池和全钒液流电池原理相似,此处不再赘述。The above-mentioned
相比于其他储能机构,全钒液流电池和铁铬液流电池有很多技术上的优点,尤其是在制造成本、全周期寿命、能量效率和安全性等方面的优势突出。然而这两种液流电池的能量密度较低,大概为20Wh/L~30Wh/L。在实际使用过程中,液流电池的能量密度比理论值要低一些,大概不到20Wh/L,因此,为了储存更多的电量,需要更多的电解质溶液,使得液流电池系统的储液罐的体积通常很庞大,导致占地空间很大。Compared with other energy storage mechanisms, all-vanadium flow batteries and iron-chromium flow batteries have many technical advantages, especially in terms of manufacturing cost, full cycle life, energy efficiency and safety. However, the energy density of these two flow batteries is relatively low, about 20Wh/L to 30Wh/L. In the actual use process, the energy density of the flow battery is lower than the theoretical value, about less than 20Wh/L. Therefore, in order to store more electricity, more electrolyte solution is needed, which makes the liquid storage of the flow battery system. Tanks are often bulky, resulting in a large floor space.
因此,本申请提供了一种液流电池系统,该液流电池系统采用地下空间对液流电池系统进行放置,能够减小液流电池系统的占地空间,从而减少了占地成本,可大幅降低液流电池对地面空间的依赖。Therefore, the present application provides a flow battery system, which uses underground space to place the flow battery system, which can reduce the floor space of the flow battery system, thereby reducing the floor space cost, and can greatly reduce the cost of the flow battery system. Reduce the reliance of flow batteries on ground space.
如图2至图4所示,本申请实施例提供的基于地下空间的液流电池系统包括:第一储液罐120、第二储液罐150和电堆130。As shown in FIG. 2 to FIG. 4 , the underground space-based flow battery system provided by the embodiment of the present application includes: a first
第一储液罐120设于地下且用于储存第一电解质溶液,第二储液罐150用于储存第二电解质溶液,第二电解质溶液与第一电解质溶液分别用于发生极性相反的电化学反应,电堆130分别与第一储液罐120、第二储液罐150连通。The first
本申请实施例中,第一储液罐120设于地下,指的是第一储液罐120整体位于地面之下。第一储液罐120可以埋设在地下,或者,第一储液罐120也放置在地下所设的空间内。In the embodiment of the present application, the first
本申请实施例中,可以是第二电解质溶液为正极电解质溶液,第一电解质溶液为负极电解质溶液,也可以是第二电解质溶液为负极电解质溶液,第一电解质溶液为正极电解质溶液。In the embodiment of the present application, the second electrolyte solution may be a positive electrode electrolyte solution, and the first electrolyte solution may be a negative electrode electrolyte solution, or the second electrolyte solution may be a negative electrode electrolyte solution, and the first electrolyte solution may be a positive electrode electrolyte solution.
上述第二储液罐150可以设于地面之上,也可以设于地下。为了进一步减小液流电池系统的占地空间,第二储液罐150可以设于地下。The above-mentioned second
上述第一储液罐120可以是金属罐、塑料罐等,也可以是其他材质的罐体。当第一储液罐120是塑料罐时,可以使得第一储液罐120的化学稳定性更好、重量更轻、成本也更低,生产制造也更方便。The above-mentioned first
具体的,第一储液罐120的材质可以为聚氯乙烯、聚丙烯、聚四氟乙烯中的至少一种,塑料罐也可以是其他化学性质比较稳定的材质,本申请不具体限定。Specifically, the material of the first
第一储液罐120的形状可以是圆筒形、圆台形、立方体形等,也可以是其他规则或者不规则的形状。The shape of the first
第一储液罐120在地下的深度可以根据当地的地热温升曲线选取,具体的,当液流电池为全钒液流电池时,第一储液罐120所处环境的温度选在15℃~35℃之间,当液流电池为铁铬液流电池时,第一储液罐120所处环境的温度选在45℃~70℃之间。The depth of the first
第二储液罐150的材质、形状和设置方式等可以参考第一储液罐,此处不再赘述。For the material, shape and arrangement of the second
本申请实施例提供的液流电池系统的第一储液罐120设于地下,所以第一储液罐120不会占用地面上的空间,这就使得液流电池系统的用于储存电解质溶液的储液容器不会占用地面空间,从而节省了液流电池系统的占地空间,节省了占地成本。The first
本申请将第一储液罐120设置在地下,得益于地下土壤和岩壁较好的导热性,液流电池系统运行过程中产生的热量可以被及时释放,使得第一储液罐120内的电解质溶液的温度不容易过高。另外,位于地下的第一储液罐120与大气中热交换很少,所以,第一储液罐120所处环境的温差不易随着大气温度的变化而发生较大变化,即第一储液罐120所处环境的温差变化很小,温度较为稳定,在地面温度较低时,位于地下的第一储液罐120内的电解质溶液的温度也不易过低。这样,能够更好地保证电解质溶液在稳定的环境温度中工作,使得电解质溶液的化学性能更稳定,从而使得液流电池系统更稳定、可靠,也能够降低对电解液进行温控的能耗。In the present application, the first
在一种实施方式中,如图2至图4所示,液流电池系统还可以包括:第一储液室110,第一储液室110为设于地下的空间,第一储液罐120设于第一储液室110内。In one embodiment, as shown in FIGS. 2 to 4 , the flow battery system may further include: a first
上述第一储液室110可以是位于地下的洞穴,该洞穴可以是岩洞或者土洞。The above-mentioned first
当第一储液室110为设于地下的土洞时,可以通过打桩机打洞而形成第一储液室110,土洞的内壁可以经夯实而成,以使得第一储液室110结构稳定性更好。When the first
第一储液室110的大小可以根据液流电池的容量(储能能力)确定,第一储液室110的空间越大,能够容纳的第一储液罐120的体积越大,使得第一储液罐120内能够存储的电解质溶液的体积越多,液流电池的容量越大。The size of the first
第一储液室110的形状可以是圆筒形、立方体形、圆台形等,也可以是其他任意规则或者不规则的形状。本领域技术人员可以根据实际情况设计第一储液室110的形状和大小,本申请不具体限定。The shape of the first
第一储液室110的形状可以与第一储液罐120的形状相对应,例如,当第一储液罐120为圆筒形时,第一储液室110也可以为圆筒形,当第一储液罐120为立方体形时,第一储液室110也可以为立方体形,这样,可以使得更加充分地利用第一储液室110的空间,使第一储液罐120能够储存更多的电解质溶液,提高了液流电池系统的储能能力。The shape of the first
可选地,如图2所示,第一储液罐120与地面之间可以设有液体输送通道111,上述液体输送通道111可以是管道,通过液体输送通道111能够向第一储液罐120中加入电解质溶液,或者将电解质溶液从第一储液罐120中抽出。Optionally, as shown in FIG. 2 , a
液体输送通道111的通向地面10的一端可以设有盖体,当需要抽取或加入电解质溶液时,将盖体打开,抽取或加入结束后,可以将盖体盖合。The end of the
如图2、图4所示,上述电堆130与第一储液罐120之间可以设有进液管道138和出液管道139,进液管道138用于将第一储液罐120内的电解质溶液流入电堆130内,出液管道139用于将电堆130内的反应后的电解质溶液流入第一储液罐120内,进液管道138和储液管道为分隔设置的两根不同管道。As shown in FIG. 2 and FIG. 4 , a
进液管道138和/或出液管道139上可以设置循环泵138a,通过循环泵138a使得第一储液罐120内的电解质溶液能够流入电堆130,并从电堆130流出而进入第一储液罐120内。循环泵138a上可以电连接有通向地面10的通电线缆,循环泵138a通过通电线缆与地面10上的电源连接,循环泵138a还可以与控制系统170通信连接,以使得控制系统170能够控制循环泵138a的启停和转速。A
上述控制系统170也可以称为电池管理系统(Battery Management System,简称BMS)。The
进液管道138和储液管道上可以设有阀门,各个阀门通过线缆与控制系统170连接,控制系统170通过阀门控制各个管道的开闭状态。Valves may be provided on the
第二储液罐150与电堆130的连通方式可以参考第一储液罐120,此处不再赘述。The communication manner between the second
可选地,电堆130内可以设置温度传感器及流速传感器,控制系统170可以获取电堆130内的流速传感器的流速数据,并根据流速数据控制循环泵138a的工作状态,实现对流速的调节。电堆130可以包括温控设备,控制系统170可以获取电堆130内的温度传感器的温度数据,并根据温度数据控制电堆130的温控设备作业,以使电堆130维持正常的工作温度。Optionally, a temperature sensor and a flow rate sensor may be provided in the
以第一储液罐120内储存的第一电解质溶液是正极电解质溶液为例,正极电解质溶液的循环流动过程为:第一储液罐120内的正极电解质溶液在循环泵138a的作用下从进液管道138流入电堆130中的正极所在的区域,以进行还原反应,反应后的正极电解质溶液在循环泵138a的作用下从出液管道139流出并流入第一储液罐120内,流入第一储液罐120内的正极电解质溶液具有化学能,能够放电。Taking the first electrolyte solution stored in the first
为了提高液流电池系统的功率,如图4所示,液流电池系统可以包括多个电堆130,多个电堆130分别与第一储液罐120连通。电堆130的输出功率范围可以为1KW~250KW,本领域技术人员可以根据实际需求选择所需的电堆130输出功率。In order to improve the power of the flow battery system, as shown in FIG. 4 , the flow battery system may include a plurality of
本实施方式通过设置第一储液室110,更便于第一储液罐120设于地下。By arranging the first
对于全钒液流电池,当其工作温度低于10℃时,负极侧的V2+离子和V3+离子会发生沉淀,当温度高于40℃时,正极侧的VO2+离子会发生热析出。可见,液流电池系统对环境温度也有一定的要求,因此,对储液罐内的温控要求较高。For the all-vanadium redox flow battery, when the operating temperature is lower than 10°C, the V 2+ ions and V 3+ ions on the negative side will precipitate, and when the temperature is higher than 40°C, the VO 2+ ions on the positive side will occur. Thermal precipitation. It can be seen that the flow battery system also has certain requirements on the ambient temperature, therefore, the temperature control requirements in the liquid storage tank are relatively high.
另外,由于电解质溶液中富含酸、碱、或重金属离子,当用于存储电解质溶液的储液罐发生泄露时,容易快速流向周围而对环境造成较大污染。本申请实施例将第一储液罐120设于地下的第一储液室110内,即使第一储液罐120发生泄露,泄露的电解质溶液也大部分位于第一储液室110内而不容易发生较大的泄露,因此,不容易对环境造成污染。In addition, since the electrolyte solution is rich in acid, alkali, or heavy metal ions, when the liquid storage tank for storing the electrolyte solution leaks, it is easy to quickly flow to the surroundings and cause great pollution to the environment. In the embodiment of the present application, the first
在一种实施方式中,如图2、图3所示,液流电池系统还可以包括功率转换系统160,功率转换系统160设于地面10上,功率转换系统160与电堆130电连接,功率转换系统160用于与外部电网40电连接而进行电能传输。In one embodiment, as shown in FIG. 2 and FIG. 3 , the flow battery system may further include a
功率转换系统160可以包括:变压器、变流器、整流器等,但不限于此。The
在一种实施方式中,第一储液室110的内壁上可以设有防腐蚀层。In one embodiment, an anti-corrosion layer may be provided on the inner wall of the first
可以理解的是,防腐蚀层的材质应是与不容易与酸、碱、重金属离子等发生化学反应的材质,例如,防腐蚀层可以是环氧防腐层、酚醛树脂防腐层、硅钛氧化物复合防腐层、聚氯乙烯自由发泡板中的任意一种,但不限于此。It can be understood that the material of the anti-corrosion layer should be a material that is not easy to chemically react with acid, alkali, heavy metal ions, etc., for example, the anti-corrosion layer can be epoxy anti-corrosion layer, phenolic resin anti-corrosion layer, silicon titanium oxide Any one of composite anti-corrosion layer and polyvinyl chloride free foam board, but not limited to this.
本实施方式在第一储液室110的内壁上设置防腐蚀层,可以使得在第一储液罐120发生渗漏时不会对第一储液室110的室壁发生腐蚀、侵害,不会通过第一储液室110的室壁浸入地下,从而可以更好地避免漏液浸入到地下而破坏生态环境。In this embodiment, an anti-corrosion layer is provided on the inner wall of the first
在一种实施方式中,第一储液室110的底部可以设有漏液检测装置,漏液检测装置位于第一储液罐120的外部,且漏液检测装置与液流电池系统的控制系统170通信连接。In one embodiment, a liquid leakage detection device may be provided at the bottom of the first
上述控制系统170可以设于操作房等便于操作人员及时查看的场所。控制系统170能够实时监测液流电池的工作状态,有利于维护。The above-mentioned
漏液检测装置与控制系统170通信连接,当漏液检测装置检测到有漏液时,向控制系统170发送漏液信号,控制系统170接收到漏液信号后可以发出提示信息,以提示作业人员进行检查、维修。The liquid leakage detection device is connected in communication with the
漏液检测装置可以是点式漏液传感器,也可以是带状(也称线式或绳式)漏液传感器,也可以是其他能够用于检测漏液的装置,本申请不具体限定。The liquid leakage detection device may be a point type liquid leakage sensor, a belt-shaped (also called wire or rope type) liquid leakage sensor, or other devices capable of detecting liquid leakage, which are not specifically limited in this application.
本实施方式在第一储液室110的底部设置漏液检测装置,可以在第一储液罐120发生泄露后快速地检测出来,以便于作业人员及时维修,减小因泄露而造成的不良后果。In this embodiment, a liquid leakage detection device is provided at the bottom of the first
在一种实施方式中,第一储液室110的侧壁与第一储液罐120的侧壁可以接触,以对第一储液罐120的侧壁进行支撑。In one embodiment, the side wall of the first
本实施方式也就是,第一储液室110的内侧壁与第一储液罐120的外侧壁接触,第一储液室110的内侧壁对第一储液罐120的外侧壁进行支撑。In this embodiment, the inner side wall of the first
本实施方式中,可以是第一储液罐120的整个外侧壁均与第一储液室110接触,从而使得第一储液罐120的整个外侧壁均被第一储液室110的侧壁支撑。第一储液室110的形状与第一储液罐120的形状可以相匹配,例如,第一储液室110为圆柱空间,第一储液罐120也可以为圆柱形罐体,这样,第一储液罐120的侧壁可以更好地被第一储液室110支撑。In this embodiment, the entire outer side wall of the first
或者,也可以是第一储液罐120的部分外侧壁与第一储液室110接触,以对第一储液罐120进行局部支撑,这样也可以使得第一储液罐120的强度得到提高。例如,第一储液罐120为圆柱形罐体,第一储液室110为立方体形状,第一储液罐120可以内切放置在第一储液室110内,第一储液室110的侧壁能够对第一储液罐120的所接触的侧壁进行支撑。Alternatively, a part of the outer side wall of the first
本实施方式中,由于第一储液室110对第一储液罐120的侧壁起到了支撑作用,使得第一储液罐120的侧壁可以做的比较薄,这样,可以减小第一储液罐120的耗材、生产成本等,同时,第一储液罐120的结构稳定性也能得到较好的保证。In this embodiment, since the first
在一种实施方式中,如图2所示,第一储液罐120与第一储液室110的内侧壁之间可以具有人工检测空间113,人工检测空间113与地面10之间设有第一人工检测通道114。In one embodiment, as shown in FIG. 2 , there may be a
本实施方式设置人工检测通道后,检测人员可以从人工检测通道进入到人工检测空间113内,从而可以在人工检测空间113内从第一储液罐120的外侧对第一储液罐120进行维修、检测。After the manual detection channel is provided in this embodiment, the detection personnel can enter the
本申请实施例中,当第一储液罐120的整个外侧壁均与第一储液室110的侧壁时,第一储液罐120与第一储液室110之间没有空间设置人工检测空间113,这种情况下,第一储液室110的顶部可以通向地面10,第一储液室110的顶部具有开口,第一储液室110顶部的开口通过盖体盖合,当需要检修第一储液罐120时,可以将盖体打开,并从第一储液室110顶部的开口将第一储液罐120提出来。In the embodiment of the present application, when the entire outer side wall of the first
在一种实施方式中,如图2至图4所示,电堆130可以设于地下的空间内,电堆130上电连接有通向地面10的通电线缆131。In one embodiment, as shown in FIG. 2 to FIG. 4 , the
电堆130所在的空间的内壁上也可以设有防腐蚀层,该防腐蚀层的具体材质可以参考第一储液室110内壁上的防腐蚀层的材质,此处不再赘述。An anti-corrosion layer may also be provided on the inner wall of the space where the
本实施方式中,电堆130所在的地下深度可以与第一储液室110所在的地下深度基本相同,以便于电堆130与第一储液室110通过管道连通。In this embodiment, the underground depth where the
具体的,可以通过打桩机打孔的方式形成用于放置电堆130的地下空间。Specifically, the underground space for placing the
电堆130上连接的通电线缆131具体可以与上述功率转换系统160电连接。The energizing
如图4所示,功率转换系统160可以包括充电用功率转换系统161和放电用功率转换系统162,电堆130上连接的通电线缆131可以包括充电线缆和放电线缆,充电线缆与充电用功率转换系统161电连接,放电线缆与放电用功率转换系统162电连接。As shown in FIG. 4 , the
本实施方式将电堆130设置在地下的空间内,使得电堆130与第一储液罐120之间的距离可以设置的比较近,从而使得电堆130与第一储液罐120之间更便于通过管道连通。另外,将电堆130设置在地下的空间内,得益于地下土壤和岩壁较好的导热性,电堆130运行过程中产生的热量可以被及时释放,使得电堆130的温度不容易过高而影响工作性能,另外,地下空间的温差变化很小,温度较为稳定,使得电堆130的工作环境不易过低,从而使得电堆130能够更可靠地运行,有利于电堆130的热管理。In this embodiment, the
另外,由于设于地下的电堆130与第一储液罐120的高度差较小,还可以有效减少循环泵138a所需做的功,提升了液流电池系统的储能效率。将电堆130设置在地下的空间内,还可以进一步减小液流电池的占地空间,减小占地成本。In addition, since the height difference between the
在一种可选的实施方式中,当电堆130设在地下的空间内时,第一储液室110距离地面10的高度可以设置的比较高,例如,第一储液室110距离地面10的高度可以不小于10米,这样,可以使得电解质溶液更不易受到外界环境温度变化的影响,从而使得液流电池系统的性能更可靠。In an optional embodiment, when the
在一个具体实施例中,如图2所示,电堆130所在的地下的空间与地面10之间可以设有第二人工检测通道132,通电线缆131位于第二人工检测通道132内。In a specific embodiment, as shown in FIG. 2 , a second
本实施方式将通电线缆131通过第二人工检测通道132通向地面10,可以使得操作人员通过第二人工检测通道132对通电线缆131进行检测,另外,操作人员也可以从第二人工检测通道132到达电堆130所在的地下空间,以对电堆130进行检查维修等。In this embodiment, the energized
在一种实施方式中,电堆130所在的地下的空间与地面10之间可以设有气流通道,气流通道与所述第二人工检测通道132分隔设置。In one embodiment, an air flow channel may be provided between the underground space where the
气流通道可以将电堆130进行氧化还原反应过程中产生的氢气等气体排出,以防止发生爆炸,提高了安全性,保证电堆130正常工作。The gas flow channel can discharge gas such as hydrogen gas generated during the redox reaction of the
在一种实施方式中,电堆130也可以设于地面10上,第一储液罐120上设有出液口,电堆130上设有与出液口连通的进液口,出液口与进液口之间的高度差不大于10米。In one embodiment, the
具体的,第一储液罐120上的出液口可以通过管道与电堆130上的进液口连通,第一储液罐120内的电解质溶液从出液口流出后,通过管道流入电堆130中进行氧化/还原反应。Specifically, the liquid outlet on the first
第一储液罐120上的出液口与电堆130上的进液口之间的高度差可以为1米、3米、5米、8米或者10米等,但不限于此。The height difference between the liquid outlet on the first
本实施方式将电堆130设置在地面10上,更便于对电堆130进行检测和维修,电堆130的安装也更加简单。第一储液罐120上的出液口与电堆130上的进液口之间的高度差不大于10米,高度差比较小,这样,第一储液罐120内的电解质溶液也能够较容易地被抽进电堆130内。In this embodiment, the
在一种实施方式中,如图2所示,液流电池系统还可以包括位于地下、且与第一储液室110分隔设置的第二储液室140,第二储液罐150设于第二储液室140内。In one embodiment, as shown in FIG. 2 , the flow battery system may further include a second
第二储液室140、第二储液罐150的具体设置方式可以参考第一储液室110、第一储液罐120,此处不再赘述。For the specific arrangement of the second
在另一种实施方式中,第一储液罐120和第二储液罐150可以均放在第一储液室110内,这种情况下,第一储液室110可以设置的比较大,以同时容纳两个储液罐,使得液流电池系统的更简单。In another embodiment, the first
在一个具体实施例中,第一储液室110、第二储液室140可以均为由土壤围成的孔洞,第一储液室110和第二储液室140为两个不同的孔洞。物理容积在5立方米~100立方米,根据当地热温升曲线进行测量后,得到孔洞的洞口距离地面10的深度范围为10米~50米,这样可以满足土洞温度在15℃~35℃之间。孔洞的直径为1.5米,每个孔洞可以装注电解质溶液的体积范围设计为17000L~88000L,电解质溶液的能量密度为30Wh/L,所以每个孔洞可存储510KWh-2550KWh电能。本示例中,也可以通过增加储液室的数量来存储更多电解质溶液,从而提高液流电池的储能能力。In a specific embodiment, the first
第一储液室110、第二储液室140为岩洞时的设置方式可以参考土洞,此处不再赘述。The setting method of the first
在另一个具体实施例中,第一储液室110和第二储液室140也可以为岩洞,岩洞内腔可以为不规则形状,根据当地的热温升曲线进行测量后,得到岩洞距离地面10深度范围为180米~220米,这样可以满足岩洞温度在50℃左右。岩洞的物理体积可以为5立方米~10万立方米,高度为80米,最大宽度为60米。岩洞内层涂有防腐蚀层,防腐蚀层为环氧防腐涂料涂刷而成,以防止第一储液罐120和第二储液罐150内的电解质溶液泄露腐蚀岩壁。In another specific embodiment, the first
第一储液罐120和第二储液罐150的材料为定型的PTFE或PP或PVC材质。第一储液罐120和第二储液罐150可以通过片状塑料拼接而成,以便于大型储液罐的生成。The materials of the first
电堆130置于地下的空间内,且电堆130位于第一储液罐120和第二储液罐150之间,这样设置可以有效减少泵功,提升系统储能效率。The
下面,对液流电池系统的充放电过程进行简单介绍。Below, the charging and discharging process of the flow battery system is briefly introduced.
如图2、图3所示,液流电池系统充电时,外部电网40的高压交流电或者新能源电厂(风力发电厂或太阳能发电厂)产生的电经过功率转换系统160转换成稳定电压的直流电,例如,风力发电系统20或太阳能发电系统30产生的电经过功率转换系统160转换成稳定电压的直流电,再经过通电线缆131输送到电堆130的正、负极端口。具体的,控制系统170接收到充电的指令信号后,控制功率转换系统160向电堆130通入转换后的直流电,控制系统170控制循环泵138a的转子转动,并获取循环泵138a的转子的转速,以进行速度反馈控制,使得正、负极电解质溶液以稳定、可控的流速通过管路进入到电堆130中参与液流电池的充电化学反应。As shown in FIG. 2 and FIG. 3 , when the flow battery system is charging, the high-voltage alternating current of the
为便于清晰看图,图3中省略了各个设备之间的通电线缆。For the convenience of reading the figure clearly, the power cables between the various devices are omitted in FIG. 3 .
以全钒液流电池为例,充电时,电堆130将正极电解质溶液中的4价钒离子氧化为5价钒离子,将负极电解质溶液中的3价钒离子还原为2价钒离子。充电过程的具体化学方程式为:Taking an all-vanadium redox flow battery as an example, during charging, the
正极: positive electrode:
负极:V3++e-→V2+ Negative: V 3+ +e - → V 2+
总反应: Overall response:
电池的荷电状态(State of Charge,简称SOC)是指电池当前剩余电量与电池充满电时的额定容量的百分比,可表示为:The State of Charge (SOC) of a battery refers to the percentage of the current remaining capacity of the battery to the rated capacity when the battery is fully charged, and can be expressed as:
SOC的取值范围是0~1,SOC越大说明电池储存的电量越多。The value of SOC ranges from 0 to 1. The larger the SOC, the more power the battery stores.
第一储液罐120与第二储液罐150内可以放置电量检测传感器180、温度传感器、浓度检测器、压力传感器等,第一储液罐120与第二储液罐150内的各个检测元器件可以通过通信线缆于控制系统170通信连接。The first
上述电量检测传感器180可以是霍尔电流传感器或者其他能够监测电量的元器件。The above-mentioned electric
液流电池系统的控制系统170获取电量监控元件的数据,并估算液流电池的SOC,去判断是否充满电,当判定充满电时,控制循环泵138a停止工作,防止过充。The
当控制系统170获取到放电指令后,产生控制信号并控制循环泵138a的运行速率,从而控制电解质溶液流入电堆130的流速,流入电堆130的电解质溶液在电堆130的双极板134发生氧化还原反应,电子在双极板134传导并经过集流板135后从负极流向正极,正极的H+离子透过离子交换膜137c流向负极,形成的电流经过通电线缆131传入功率转换系统160,转换成与外部电网40适配的同频率高压交流电,供用户端使用,最终实现电网的消峰填谷和新能源储能。放电过程的具体化学方程式如下:After the
正极: positive electrode:
负极:V2-→V3 ++e- Negative: V 2 -→V 3 + +e -
总反应: Overall response:
当SOC=0时,控制系统170控制循环泵138a停止工作,并发出放完电的提示信息。When SOC=0, the
以铁铬液流电池为例,充电时,电堆130使正极电解质溶液中的2价Fe离子失去电子被氧化成3价Fe离子,使负极电解质溶液中的3价铬离子得到电子还原为2价铬离子。充电过程的具体化学方程式为:Taking the iron-chromium flow battery as an example, when charging, the
正极:Fe2+→Fe3++ePositive electrode: Fe 2+ → Fe 3+ +e
负极:Cr3++e→Cr2+ Negative electrode: Cr 3+ +e→Cr 2+
总反应:Fe2++Cr3+→Fe3++Cr2+ Overall reaction: Fe 2+ +Cr 3+ →Fe 3+ +Cr 2+
放电过程的具体化学方程式如下:The specific chemical equation of the discharge process is as follows:
正极:Fe3++e→Fe2+ Positive electrode: Fe 3+ +e→Fe 2+
负极:Cr2+→Cr3++eNegative electrode: Cr 2+ →Cr 3+ +e
总反应:Fe3++Cr2+→Fe2++Cr3+ Overall reaction: Fe 3+ +Cr 2+ →Fe 2+ +Cr 3+
应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。It should be understood that the above is only to help those skilled in the art to better understand the embodiments of the present application, but is not intended to limit the scope of the embodiments of the present application. Based on the above-mentioned examples, those skilled in the art can obviously make various equivalent modifications or changes, or combinations of any two or any of the above-mentioned embodiments. Such modifications, changes or combined solutions also fall within the scope of the embodiments of the present application.
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。It should also be understood that the above description of the embodiments of the present application focuses on emphasizing the differences between the various embodiments, and the unmentioned same or similar points can be referred to each other, and are not repeated here for brevity.
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。It should also be understood that the manners, situations, categories, and divisions of the embodiments in the embodiments of the present application are only for the convenience of description, and should not constitute a special limitation, and the various manners, categories, situations, and features in the embodiments are not contradictory. can be combined.
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。It should also be understood that, in the various embodiments of the present application, if there is no special description or logical conflict, the terms and/or descriptions between different embodiments are consistent and can be referred to each other, and the technical features in different embodiments New embodiments can be combined according to their inherent logical relationships.
以上该,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited to this. Any person skilled in the art who is familiar with the technical scope disclosed in the present application can easily think of changes or substitutions. Covered within the scope of protection of this application. Therefore, the protection scope of the present application shall be subject to the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202123195620.XU CN216793755U (en) | 2021-12-17 | 2021-12-17 | Flow battery system based on underground space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202123195620.XU CN216793755U (en) | 2021-12-17 | 2021-12-17 | Flow battery system based on underground space |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216793755U true CN216793755U (en) | 2022-06-21 |
Family
ID=82009582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202123195620.XU Active CN216793755U (en) | 2021-12-17 | 2021-12-17 | Flow battery system based on underground space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216793755U (en) |
-
2021
- 2021-12-17 CN CN202123195620.XU patent/CN216793755U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104900892B (en) | Flow battery negative electrode electrolyte sealing system and flow battery system | |
CN106787139A (en) | A kind of hydrogen-preparing hydrogen-storing backup power system of fuel cell for communication base station | |
CN106356551B (en) | All-vanadium redox flow battery system applied to efficient energy storage | |
CN204577513U (en) | One utilizes underground pipe to carry out the temperature controlled device of all-vanadium redox flow battery electrolyte | |
EP2869383B1 (en) | Large-capacity power storage device | |
Li et al. | Design and development of large-scale vanadium redox flow batteries for engineering applications | |
CN115084580A (en) | Renewable energy in-situ energy storage system and method based on reversible solid oxide battery | |
CN204577514U (en) | A kind of thermostatically-controlled equipment of all-vanadium redox flow battery electrolyte | |
CN118919790A (en) | Sealed redox cell | |
CN218299838U (en) | An all-vanadium redox flow battery with gravity energy storage function | |
CN101548424B (en) | Fuel cell system and purging method thereof | |
CN202996968U (en) | Storage system for vanadium battery electrolyte | |
CN216793755U (en) | Flow battery system based on underground space | |
KR101843973B1 (en) | Redox Flow Battery System | |
CN204348815U (en) | Reduction generating battery | |
KR102672078B1 (en) | Self-power generation system using ethanol or green ammonia as fuel | |
CN109713337B (en) | Direct methanol fuel cell and lithium ion battery hybrid output device and output method | |
CN104300169A (en) | Alkaline zinc vanadium flow battery | |
KR101878365B1 (en) | Redox Flow Battery System | |
CN108183254B (en) | Energy-saving vanadium battery capable of improving battery stability | |
CN108091914A (en) | A kind of method for slowing down all-vanadium flow battery capacity attenuation and ion permeability test device | |
CN204497316U (en) | A kind of compact type hydrogen fuel cell | |
CN209993679U (en) | Liquid fuel cell | |
CN207896214U (en) | Vanadium cell energy saving and that stability test can be improved | |
CN217405666U (en) | Electric fuel energy storage system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |