CN216482450U - Graphite heat exchanger - Google Patents
Graphite heat exchanger Download PDFInfo
- Publication number
- CN216482450U CN216482450U CN202122399357.XU CN202122399357U CN216482450U CN 216482450 U CN216482450 U CN 216482450U CN 202122399357 U CN202122399357 U CN 202122399357U CN 216482450 U CN216482450 U CN 216482450U
- Authority
- CN
- China
- Prior art keywords
- heat exchanger
- graphite heat
- graphite
- exchanger body
- connecting column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 126
- 239000010439 graphite Substances 0.000 title claims abstract description 126
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 24
- 239000007791 liquid phase Substances 0.000 claims abstract description 16
- 230000002265 prevention Effects 0.000 claims description 12
- 239000012071 phase Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 3
- 239000010962 carbon steel Substances 0.000 claims description 3
- 230000006378 damage Effects 0.000 abstract description 11
- 238000001704 evaporation Methods 0.000 abstract description 6
- 230000008020 evaporation Effects 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 230000003139 buffering effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000007701 flash-distillation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
The utility model relates to a graphite heat exchanger, comprising: the graphite heat exchanger comprises a graphite heat exchanger body, a first connecting column, a second connecting column and a buffer device; the first connecting column is arranged between the outer wall of the graphite heat exchanger body and a metal pipeline flange of the graphite heat exchanger body; the second connecting column is arranged between the metal pipeline flange and the material pipeline flange of the graphite heat exchanger body; the buffer device is connected with a liquid phase heat source outlet of the graphite heat exchanger body. According to the utility model, the first connecting column and the second connecting column are arranged, so that the stability of the graphite heat exchanger body is improved, and the probability of damage to equipment of the graphite heat exchanger body due to flow fluctuation caused by instrument failure, control failure or other reasons is reduced; the liquid phase heat source outlet of the graphite heat exchanger body is connected with the buffer device, so that the situation that the graphite heater is damaged due to water hammer caused by flash evaporation of condensate in the material pipeline is avoided.
Description
Technical Field
The utility model relates to the technical field of chemical equipment, in particular to a graphite heat exchanger.
Background
In related chemical production, corrosive materials are mostly heated or cooled, and in the heat exchange process, the graphite heat exchanger is widely applied as key equipment due to good corrosion resistance. However, the graphite heat exchanger is easy to break under the conditions of large working condition change or uneven stress due to the characteristics of the material in the using process. And as the media for heating or cooling are mostly corrosive materials, once equipment failure occurs, environmental pollution or personnel injury can be caused. In order to prevent leakage, the common graphite heat exchanger is generally directly bonded with a graphite pipeline by a metal pipeline, so that the phenomenon that the structure strength is weak and the graphite heat exchanger is easy to damage exists; meanwhile, the situation that the graphite heater is damaged due to water hammer caused by flash evaporation of the condensate in the material pipeline also exists. Therefore, it is necessary to design a graphite heat exchanger to improve the stability of the graphite heat exchanger.
SUMMERY OF THE UTILITY MODEL
Therefore, the technical problem to be solved by the utility model is to overcome the defects that the metal pipeline and the graphite pipeline of the graphite heat exchanger in the prior art are bonded, so that the structure strength is weak and the graphite pipeline is easy to damage, and the condensate is subjected to water hammer in the material pipeline due to flash evaporation to cause the damage of the graphite heater.
In order to solve the above technical problem, the present invention provides a graphite heat exchanger, including: the graphite heat exchanger comprises a graphite heat exchanger body, a first connecting column, a second connecting column and a buffer device;
the first connecting column is arranged between the outer wall of the graphite heat exchanger body and a metal pipeline flange of the graphite heat exchanger body; the second connecting column is arranged between the metal pipeline flange and the material pipeline flange of the graphite heat exchanger body; and the buffer device is connected with a liquid phase heat source outlet of the graphite heat exchanger body.
In one embodiment of the present invention, the buffer device includes a backflow prevention element connected to the liquid-phase heat source outlet of the graphite heat exchanger body, and a buffer tube connected to the backflow prevention element.
In one embodiment of the utility model, the backflow prevention element is a check valve.
In one embodiment of the utility model, the buffer tube has a radius of 6 times the radius of the material conduit.
In an embodiment of the present invention, the material of the first connecting column is any one of carbon steel, 20 # alloy or 825 alloy.
In one embodiment of the utility model, the second connecting post is axially adjustable.
In one embodiment of the utility model, the metal pipe of the graphite heat exchanger body comprises a graphite pipe inside, and a wire mesh is arranged between the graphite pipe and the graphite heat exchanger body.
In one embodiment of the utility model, 6 uniformly distributed first connecting columns are arranged between the outer wall of the graphite heat exchanger body and the metal pipeline flange of the graphite heat exchanger body.
In an embodiment of the utility model, the graphite heat exchanger body is any one of a block-hole graphite heat exchanger, a vertical tube type graphite heat exchanger or a horizontal tube type graphite heat exchanger.
In one embodiment of the utility model, the graphite heat exchanger body comprises a gas-phase heat source inlet, a gas-phase material outlet and a liquid-phase material inlet.
Compared with the prior art, the technical scheme of the utility model has the following advantages:
the graphite heat exchanger comprises a graphite heat exchanger body, a first connecting column, a second connecting column and a buffer device; the first connecting column is arranged between the outer wall of the graphite heat exchanger body and a metal pipeline flange of the graphite heat exchanger body; the second connecting column is arranged between the metal pipeline flange and the material pipeline flange of the graphite heat exchanger body; and the buffer device is connected with a liquid phase heat source outlet of the graphite heat exchanger body. According to the utility model, the first connecting column is arranged between the outer wall of the graphite heat exchanger body and the metal pipeline flange of the graphite heat exchanger body, and the second connecting column is arranged between the metal pipeline flange of the graphite heat exchanger body and the material pipeline flange, so that the stress is eliminated, the stability of the graphite heat exchanger body is improved, and the probability of damage to equipment of the graphite heat exchanger body due to flow fluctuation caused by instrument failure, control failure or other reasons is reduced; the liquid phase heat source outlet of the graphite heat exchanger body is connected with the buffer device, so that the situation that the graphite heater is damaged due to water hammer caused by flash evaporation of condensate in the material pipeline is avoided.
Drawings
In order that the manner in which the present invention is more fully understood, a more particular description of the utility model will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings, wherein:
FIG. 1 is a schematic structural view of a first connecting column and a second connecting column of the graphite heat exchanger of the present invention;
FIG. 2 is a schematic view of the buffering device of the graphite heat exchanger according to the present invention;
the labels in the figure are: a graphite heat exchanger body 1; a first connecting column 2; a second connecting column 3; a gasket 4; a metal pipe flange 5; a material pipeline flange 6; a gas phase material outlet 7; a gas phase heat source inlet 8; a liquid phase material inlet 9; a liquid phase heat source outlet 10; a backflow prevention element 11; a buffer tube 12.
Detailed Description
The present invention is further described below in conjunction with the following figures and specific examples so that those skilled in the art may better understand the present invention and practice it, but the examples are not intended to limit the present invention.
The utility model provides a graphite heat exchanger, comprising: the graphite heat exchanger comprises a graphite heat exchanger body, a first connecting column, a second connecting column and a buffer device; the first connecting column is arranged between the outer wall of the graphite heat exchanger body and a metal pipeline flange of the graphite heat exchanger body; the second connecting column is arranged between the metal pipeline flange and the material pipeline flange of the graphite heat exchanger body; and the buffer device is connected with a liquid phase heat source outlet of the graphite heat exchanger body.
Referring to fig. 1, in the prior art, because the metal pipeline of the graphite heat exchanger is bonded with the graphite pipeline, and the graphite heat exchanger has weak structural strength and is easy to damage, a certain number of first connecting columns which are uniformly distributed are arranged between the outer wall of the graphite heat exchanger body and the metal pipeline flange of the graphite heat exchanger body, and a certain number of second connecting columns which are uniformly distributed are arranged between the metal pipeline flange of the graphite heat exchanger body and the material pipeline flange, so that stress is eliminated, the stability of the graphite heat exchanger body is improved, and the probability of damage to equipment of the graphite heat exchanger body due to flow fluctuation caused by instrument failure, control failure or other reasons is reduced. The graphite heat exchanger comprises a graphite heat exchanger body, wherein a metal pipeline of the graphite heat exchanger body is internally provided with a graphite pipeline, a wire mesh is arranged between the graphite pipeline and the graphite heat exchanger body to reduce the impact of impure materials on a graphite block, and the second connecting column can be axially adjusted to buffer the condition of large flow fluctuation. The number of the first connecting columns and the number of the second connecting columns are preferably uniformly distributed by 6, and may also be uniformly distributed by 2, 4 or 8, and the like, and specifically, the number of the first connecting columns and the number of the second connecting columns may be determined according to actual conditions, which is not limited in this embodiment of the present invention. The first connecting column and the second connecting column are preferably made of carbon steel so as to reduce the operation cost of enterprises, and can also be made of 20 # alloy or 825 alloy and other materials; meanwhile, the material of the first connecting column may be the same as or different from the material of the second connecting column, which is not limited in this embodiment of the present invention.
Referring to fig. 2, in order to prevent the damage of the graphite heater caused by the flash evaporation of the condensate in the material pipeline, the buffering device is arranged and connected at the liquid-phase heat source outlet of the graphite heat exchanger body, so that the flash evaporation water hammer of the condensate in the material pipeline is avoided. The buffer device comprises a backflow prevention element and a buffer tube, the backflow prevention element is connected with a liquid-phase heat source outlet of the graphite heat exchanger body, and the buffer tube is connected with the backflow prevention element. The backflow prevention element is preferably a check valve, and the radius of the buffer tube is preferably 6 times the radius of the material pipe, which is not limited in this embodiment of the present invention.
The graphite heat exchanger body is preferably a block-hole graphite heat exchanger, and may also be a vertical tube type graphite heat exchanger or a horizontal tube type graphite heat exchanger, and other graphite heat exchangers, which are not limited in this embodiment of the present invention. The graphite heat exchanger body comprises a gas-phase heat source inlet, a gas-phase material outlet and a liquid-phase material inlet, and gas introduced into the gas-phase heat source inlet is preferably steam. And a gasket is arranged between the metal pipeline flange and the material pipeline flange of the graphite heat exchanger body.
According to the system provided by the embodiment, the first connecting column and the second connecting column are arranged, so that the connecting structure between the graphite heat exchanger body and the material pipeline is enhanced, and the equipment is not easily impacted by the outside; the stability of the graphite heat exchanger body is improved, and the probability of damage to equipment of the graphite heat exchanger body due to flow fluctuation caused by operation, instrument failure, control failure or other reasons is reduced; the parking time of the device is reduced; the operation difficulty of the graphite heat exchanger is reduced. Through buffer, prevented that the condensate from appearing the condition that water hammer and lead to graphite heater to damage because of the flash distillation in material pipeline.
It should be understood that the above examples are only for clarity of illustration and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications therefrom are within the scope of the utility model.
Claims (10)
1. A graphite heat exchanger, comprising: the graphite heat exchanger comprises a graphite heat exchanger body, a first connecting column, a second connecting column and a buffer device;
the first connecting column is arranged between the outer wall of the graphite heat exchanger body and a metal pipeline flange of the graphite heat exchanger body; the second connecting column is arranged between the metal pipeline flange and the material pipeline flange of the graphite heat exchanger body; and the buffer device is connected with a liquid phase heat source outlet of the graphite heat exchanger body.
2. The graphite heat exchanger of claim 1, wherein the buffer device comprises a backflow prevention element and a buffer tube, the backflow prevention element is connected with a liquid phase heat source outlet of the graphite heat exchanger body, and the buffer tube is connected with the backflow prevention element.
3. The graphite heat exchanger of claim 2, wherein the backflow prevention element is a check valve.
4. The graphite heat exchanger of claim 2, wherein the buffer tube has a radius that is 6 times the radius of the material conduit.
5. The graphite heat exchanger of claim 1, wherein the first connecting column is made of any one of carbon steel, 20 alloy or 825 alloy.
6. The graphite heat exchanger of claim 1, wherein the second connecting column is axially adjustable.
7. The graphite heat exchanger of claim 1, wherein the metal pipe of the graphite heat exchanger body includes a graphite pipe therein, and a wire mesh is disposed between the graphite pipe and the graphite heat exchanger body.
8. The graphite heat exchanger of claim 1, wherein 6 uniformly distributed first connecting columns are arranged between the outer wall of the graphite heat exchanger body and the metal pipeline flange of the graphite heat exchanger body.
9. The graphite heat exchanger of claim 1, wherein the graphite heat exchanger body is any one of a block-hole graphite heat exchanger, a vertical tube-type graphite heat exchanger or a horizontal tube-type graphite heat exchanger.
10. The graphite heat exchanger of claim 1, wherein the graphite heat exchanger body includes a gas phase heat source inlet, a gas phase material outlet, and a liquid phase material inlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122399357.XU CN216482450U (en) | 2021-09-30 | 2021-09-30 | Graphite heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122399357.XU CN216482450U (en) | 2021-09-30 | 2021-09-30 | Graphite heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216482450U true CN216482450U (en) | 2022-05-10 |
Family
ID=81438602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202122399357.XU Active CN216482450U (en) | 2021-09-30 | 2021-09-30 | Graphite heat exchanger |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216482450U (en) |
-
2021
- 2021-09-30 CN CN202122399357.XU patent/CN216482450U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103822510B (en) | Muitishell tubular heat exchanger | |
CN114909928A (en) | Heat exchanger with double-end pull rod assembly | |
CN201221906Y (en) | Column tube-type heat exchanger made of tantalum | |
CN103063058A (en) | Novel horizontal cooler | |
CN103884213A (en) | Corrosion-resistant shell and tube heat exchanger | |
CN216482450U (en) | Graphite heat exchanger | |
CN105783558A (en) | U-shaped arranged circular tube type fluoroplastic anti-corrosion flue gas heat exchanger | |
CN207716928U (en) | A kind of chimney cooler with detachable heat exchanger tube | |
CN103063075B (en) | Tube box structure of tube type heat exchanger | |
CN205860851U (en) | The heat exchanger tube pipe bundle mounting structure of fast demountable | |
CN217636911U (en) | Heat exchanger with double-end pull rod assembly | |
CN216385207U (en) | Heat exchanger with heat exchange tube provided with protective sleeve | |
CN206300538U (en) | The sealing structure that a kind of detachable tantalum heat exchanger tube is connected with tetrafluoro tube sheet | |
CN1920459A (en) | Heat-energy recovering apparatus in beer plant | |
CN210773643U (en) | Four-stage cold water circulating system | |
CN215952282U (en) | Air cooling system suitable for little place miniflow | |
CN105444605A (en) | Impact-resistant fluoroplastic heat exchanger | |
Yan et al. | Industrially experimental investigations and development of the curve-ROD baffle heat exchanger | |
CN203100525U (en) | Tube box structure for tube type heat exchanger | |
CN205619800U (en) | Anticorrosive gas gas heater of pipe formula fluoroplastics is arranged to U type | |
CN201706912U (en) | Novel tube bundle heat exchanger | |
CN207716925U (en) | A kind of duplex chimney cooler with emptier | |
CN220380362U (en) | Novel heat exchange tube impact-resistant plate of heat exchanger | |
CN205209318U (en) | Protecting against shock teflon heat exchanger | |
CN2750277Y (en) | Heat exchanger with inhomogeneous heat exchange tubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |