CN216208595U - Dual wavelength light source Raman spectrometer system - Google Patents
Dual wavelength light source Raman spectrometer system Download PDFInfo
- Publication number
- CN216208595U CN216208595U CN202122735514.XU CN202122735514U CN216208595U CN 216208595 U CN216208595 U CN 216208595U CN 202122735514 U CN202122735514 U CN 202122735514U CN 216208595 U CN216208595 U CN 216208595U
- Authority
- CN
- China
- Prior art keywords
- light source
- raman
- dual
- volume holographic
- raman spectrometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 90
- 230000009977 dual effect Effects 0.000 title description 2
- 230000005540 biological transmission Effects 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000001514 detection method Methods 0.000 claims description 31
- 239000000523 sample Substances 0.000 claims description 20
- 239000000835 fiber Substances 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 10
- 230000003595 spectral effect Effects 0.000 description 8
- 239000013307 optical fiber Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- 238000001237 Raman spectrum Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010949 in-process test method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000005504 petroleum refining Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000001530 Raman microscopy Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及光学检测技术领域,特别涉及一种双波长光源拉曼光谱仪系统。The utility model relates to the technical field of optical detection, in particular to a dual-wavelength light source Raman spectrometer system.
背景技术Background technique
拉曼光谱是当一定频率的激光照射到样品时,物质的分子与光子发生能量转换,使得分子中原子间化学键的振动发生不同方式和程度的改变,然后散射出不同频率的光,频率的变化决定于散射物质的特性,不同种类的原子间化学键振动的方式是独一的,因此可以产生与入射光频率有特定差值的散射光,差值光谱就称为“拉曼光谱”。拉曼光谱仪是采用激光照射样品,并收集拉曼散射光进行信号分析,得到拉曼光谱的仪器。Raman spectroscopy is that when a laser of a certain frequency is irradiated to the sample, the molecules of the substance and photons undergo energy conversion, so that the vibration of the chemical bonds between atoms in the molecules changes in different ways and degrees, and then scatters light of different frequencies, and the frequency changes. Depending on the characteristics of the scattering material, the chemical bonds between different types of atoms vibrate in a unique way, so scattered light with a specific difference in frequency from the incident light can be generated. The difference spectrum is called "Raman spectrum". A Raman spectrometer is an instrument that uses a laser to irradiate a sample, collects Raman scattered light for signal analysis, and obtains a Raman spectrum.
拉曼光谱仪由于其具有检测范围广(可检测透光的气体、液体和固体)、检测时间短(几秒至几分钟)、样品用量少、对样品无损、光谱信息量丰富且特征性强、体积小、可远程检测、系统易维护等优点,目前被广泛应用在过程分析中。多物料、多通道同时检测可以大大提高检测效率,不同状态的物料有时需要使用不同波长的激光光源。而现有技术中虽然存在多通道的拉曼光谱仪,可同时进行多个物料的样品检测,但针对不同性状的物料,例如一种液体和一种气体,很难使用一种波长的光源进行检测,因此在这种情况下,往往需要两台不同的拉曼光谱仪分别进行检测。Raman spectrometer has a wide detection range (can detect light-transmitting gases, liquids and solids), short detection time (several seconds to minutes), small sample consumption, no damage to samples, rich spectral information and strong characteristics. , small size, remote detection, easy system maintenance and other advantages, is currently widely used in process analysis. The simultaneous detection of multiple materials and multiple channels can greatly improve the detection efficiency. Materials in different states sometimes need to use laser light sources of different wavelengths. In the prior art, although there are multi-channel Raman spectrometers that can detect samples of multiple materials at the same time, it is difficult to detect materials with different properties, such as a liquid and a gas, using a light source of one wavelength. , so in this case, two different Raman spectrometers are often required for detection.
中国专利申请CN109085152A公开了一种多通道光纤式气体拉曼散射测量系统,该方案中激光器系统、拉曼光谱成像系统、10通道光纤耦合系统、测控系统、45度激光反射镜、激光聚焦镜和激光收集器置于同一光学平台,该方案可实现动态燃烧场气态物种的激光自发振动拉曼光谱线成像,可实现动态燃烧场气态物种的摩尔分数和区域温度的高精度定量测量。该现有技术通过一个多通道光纤传感器收集经过样品的拉曼散射光,但只能用于单波长光源的检测。Chinese patent application CN109085152A discloses a multi-channel fiber-optic gas Raman scattering measurement system. In this solution, a laser system, a Raman spectral imaging system, a 10-channel fiber coupling system, a measurement and control system, a 45-degree laser mirror, a laser focusing mirror and The laser collector is placed on the same optical platform. This scheme can realize the laser spontaneous vibration Raman spectral line imaging of gaseous species in the dynamic combustion field, and can realize the high-precision quantitative measurement of the mole fraction of gaseous species and the regional temperature in the dynamic combustion field. This prior art collects the Raman scattered light passing through the sample through a multi-channel fiber optic sensor, but can only be used for detection of a single wavelength light source.
在过程分析中,如炼油过程中控物料的分析,既涉及气体,又涉及液体,目前针对不同物料或不同形状物料,往往采用不同的仪器进行分析,如液相物料采用近红外光谱、核磁共振等,气相物料采用气相色谱等。因此,亟需一种能同时对两种不同性状物料同时检测的仪器,基于双波长激光光源的多通道拉曼光谱仪,可实现同一台设备检测不同性状的样品,且同一性状的样品还可以同时检测多个,方便快捷。In process analysis, such as the analysis of controlled materials in the refining process, it involves both gas and liquid. At present, different instruments are often used for analysis of different materials or materials of different shapes. etc., the gas phase material adopts gas chromatography and so on. Therefore, there is an urgent need for an instrument that can simultaneously detect two materials with different properties. A multi-channel Raman spectrometer based on a dual-wavelength laser light source can detect samples of different properties with the same device, and samples of the same property can also be detected at the same time. Detect multiple, convenient and fast.
公开于该背景技术部分的信息仅仅旨在增加对本实用新型的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。The information disclosed in this Background section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person of ordinary skill in the art.
实用新型内容Utility model content
本实用新型的目的在于提供一种能检测两种波长激光光源的多通道拉曼光谱仪系统,通过双波长光源用同一台设备可检测两种不同种类、性状的样品,且通过多通道的设置,同一类样品还可以同时检测多个,方便快捷。The purpose of this utility model is to provide a multi-channel Raman spectrometer system capable of detecting two wavelengths of laser light sources. The same device can detect two samples of different types and properties through the dual-wavelength light source, and through the multi-channel setting, The same type of samples can also be detected at the same time, which is convenient and quick.
为实现上述目的,本实用新型提供了一种双波长光源拉曼光谱仪系统,包括:激光光源组,其具有两种波长的激光光源,该两种波长的光源分别激发两种不同性状的物料样品;体全息透射光栅组,其包括两个独立的体全息透射光栅,分别接收两种波长的光源激发两种样品后的拉曼散射光;CCD探测器,其不同区域接收来自两个体全息透射光栅的所述拉曼散射光经分光后的平行光束。In order to achieve the above purpose, the present utility model provides a dual-wavelength light source Raman spectrometer system, comprising: a laser light source group, which has laser light sources with two wavelengths, and the light sources with the two wavelengths excite two material samples with different properties respectively. ; Volume holographic transmission grating group, which includes two independent volume holographic transmission gratings, which respectively receive the Raman scattered light after two kinds of samples are excited by two wavelengths of light sources; CCD detector, whose different regions receive from the two volume holographic transmission gratings The Raman scattered light is split into a parallel beam.
进一步,上述技术方案中,在同一拉曼光谱仪中,两种波长的激光光源可分别设置多个光源,每个光源对应不同的采样点,形成多通道检测。Further, in the above technical solution, in the same Raman spectrometer, the laser light sources of the two wavelengths can be respectively provided with multiple light sources, and each light source corresponds to a different sampling point to form multi-channel detection.
进一步,上述技术方案中,多通道中的每一通道单向串行连接入射光纤、探头、样品池以及收集光纤。Further, in the above technical solution, each channel in the multi-channel is unidirectionally connected to the incident optical fiber, the probe, the sample cell and the collection optical fiber in series.
进一步,上述技术方案中,拉曼光谱仪还可包括:入口狭缝,其接收来自收集光纤的多路拉曼散射光;中继透镜,其接收通过入口狭缝的多路拉曼散射光,并根据不同的激发波长将拉曼散射光进行排序。Further, in the above technical solution, the Raman spectrometer may further include: an entrance slit, which receives the multi-channel Raman scattered light from the collection optical fiber; a relay lens, which receives the multi-channel Raman scattered light passing through the entrance slit, and Raman scattered light is sorted according to different excitation wavelengths.
进一步,上述技术方案中,排序后不同激发波长的拉曼散射光可分别进入对应的体全息透射光栅。Further, in the above technical solution, after sorting, Raman scattered light with different excitation wavelengths can respectively enter the corresponding volume holographic transmission grating.
进一步,上述技术方案中,两个体全息透射光栅可对应单独一个CCD探测器。Further, in the above technical solution, the two volume holographic transmission gratings may correspond to a single CCD detector.
进一步,上述技术方案中,在体全息透射光栅和CCD探测器之间设有与光源数量相对应的准直透镜,该准直透镜接收来自体全息透射光栅分光后的拉曼散射光并平行照射至CCD探测器的不同探测区域。Further, in the above technical solution, a collimating lens corresponding to the number of light sources is provided between the volume holographic transmission grating and the CCD detector, and the collimating lens receives the Raman scattered light from the volume holographic transmission grating and irradiates it in parallel. to different detection areas of the CCD detector.
进一步,上述技术方案中,两种波长的激光光源可以分别为532nm激光和785nm激光;两种不同性状的物料可以分别为气体和液体。Further, in the above technical solution, the laser light sources of the two wavelengths may be a 532 nm laser and a 785 nm laser, respectively; the two materials with different properties may be a gas and a liquid, respectively.
进一步,上述技术方案中,两个体全息透射光栅的狭缝方向与来自前端准直器的拉曼散射光方向垂直,并且,两个体全息透射光栅的狭缝平行。这样可有效防止光束交叉。Further, in the above technical solution, the slit directions of the two volume holographic transmission gratings are perpendicular to the direction of the Raman scattered light from the front-end collimator, and the slits of the two volume holographic transmission gratings are parallel. This effectively prevents beam crossing.
进一步,上述技术方案中,CCD探测器可连接信号处理系统,用于将光电信号转换为数字信号并获取拉曼散射光的光谱谱图。Further, in the above technical solution, the CCD detector can be connected to a signal processing system for converting the photoelectric signal into a digital signal and acquiring the spectral spectrum of the Raman scattered light.
与现有技术相比,本实用新型具有如下有益效果:Compared with the prior art, the utility model has the following beneficial effects:
1)采用本实用新型双波长光源的拉曼光谱仪系统,利用两种波长的光源在同一台设备中可分别对两种性状的物料样品进行同时检测,采用双光栅分光对应双波长光源,扩展了拉曼光谱仪的检测对象范围,实用性更强,可应用在化工、石油炼制、生物医药、环境监测等领域中需要同时检测气相和液相物料的场景;1) Using the Raman spectrometer system of the dual-wavelength light source of the present utility model, the material samples of the two properties can be simultaneously detected by using the light sources of the two wavelengths in the same equipment, and the dual-grating light splitting corresponds to the dual-wavelength light source, which expands the The range of detection objects of Raman spectrometer is more practical, and it can be used in the fields of chemical industry, petroleum refining, biomedicine, environmental monitoring and other fields that need to detect both gas phase and liquid phase materials at the same time;
2)采用本实用新型的多通道系统,每一个采样点可选用一个光源进行激发,光源强度可根据每个采样点的需要进行调整,从而提高检测灵敏度和检测精度;2) Using the multi-channel system of the present invention, each sampling point can be excited by a light source, and the intensity of the light source can be adjusted according to the needs of each sampling point, thereby improving the detection sensitivity and detection accuracy;
3)本实用新型的多通道系统共用一个CCD探测器,使得拉曼光谱仪系统更加紧凑,仪器体积更小,更有利于便携化和应用现场摆放位置的选择;3) The multi-channel system of the present utility model shares a CCD detector, which makes the Raman spectrometer system more compact, the instrument volume is smaller, and is more conducive to portability and the selection of the application site placement position;
4)通过将两个独立的体全息透射光栅的狭缝保持为平行状态,且两个体全息透射光栅的狭缝方向均与经前端准直器进入的拉曼散射光方向保持垂直状态,可有效保证不同的光源照射所得拉曼散射光经分光后的光束可平行照射在CCD探测器的不同探测区域,避免光束交叉,使得多通道可同时检测,增加了检测效率;4) By keeping the slits of the two independent volume holographic transmission gratings in a parallel state, and the slit directions of the two volume holographic transmission gratings are both perpendicular to the direction of the Raman scattered light entering through the front-end collimator, it can effectively It ensures that the split beams of the Raman scattered light obtained by different light sources can be irradiated in parallel on different detection areas of the CCD detector, avoiding beam crossing, enabling simultaneous detection of multiple channels and increasing detection efficiency;
5)本实用新型的光源放置位置可灵活选择,因光纤越长光的衰减越严重,光源放置位置可选有利于控制光纤的使用长度,从而增加检测能力。5) The light source placement position of the present invention can be flexibly selected, because the longer the optical fiber, the more serious the attenuation of light, the optional light source placement position is conducive to controlling the length of the optical fiber, thereby increasing the detection capability.
上述说明仅为本实用新型技术方案的概述,为了能够更清楚地了解本实用新型的技术手段并可依据说明书的内容予以实施,同时为了使本实用新型的上述和其他目的、技术特征以及优点更加易懂,以下列举一个或多个优选实施例,并配合附图详细说明如下。The above description is only an overview of the technical solutions of the present invention, in order to be able to more clearly understand the technical means of the present invention and to implement it according to the content of the description, and to make the above and other purposes, technical features and advantages of the present invention more effective. It is easy to understand, one or more preferred embodiments are listed below and described in detail below with reference to the accompanying drawings.
附图说明Description of drawings
图1是本实用新型双波长光源拉曼光谱仪系统的结构示意图(为多通道设置)。FIG. 1 is a schematic structural diagram of the dual-wavelength light source Raman spectrometer system of the present invention (for multi-channel setup).
图2是本实用新型双波长光源拉曼光谱仪系统实施例1(四通道)的分光原理图。FIG. 2 is a spectroscopic principle diagram of Embodiment 1 (four channels) of the dual-wavelength light source Raman spectrometer system of the present invention.
主要附图标记说明:Description of main reference signs:
1-激光光源,2-入射光纤,3-探头,4-样品池,5-收集光纤,6-入口狭缝,7-中继透镜,8-准直器,9-体全息透射光栅,9A-第一体全息透射光栅,9B-第二体全息透射光栅,10-准直透镜,11-CCD探测器,12-信号处理系统。1-laser source, 2-incident fiber, 3-probe, 4-sample cell, 5-collection fiber, 6-entry slit, 7-relay lens, 8-collimator, 9-volume holographic transmission grating, 9A - first volume holographic transmission grating, 9B- second volume holographic transmission grating, 10 - collimating lens, 11 - CCD detector, 12 - signal processing system.
具体实施方式Detailed ways
下面结合附图,对本实用新型的具体实施方式进行详细描述,但应当理解本实用新型的保护范围并不受具体实施方式的限制。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but it should be understood that the protection scope of the present invention is not limited by the specific embodiments.
除非另有其他明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其他元件或其他组成部分。Unless expressly stated otherwise, throughout the specification and claims, the term "comprising" or its conjugations such as "comprising" or "comprising" and the like will be understood to include the stated elements or components, and Other elements or other components are not excluded.
在本文中,为了描述的方便,可以使用空间相对术语,诸如“下面”、“下方”、“下”、“上面”、“上方”、“上”等,来描述一个元件或特征与另一元件或特征在附图中的关系。应理解的是,空间相对术语旨在包含除了在图中所绘的方向之外物件在使用或操作中的不同方向。例如,如果在图中的物件被翻转,则被描述为在其他元件或特征“下方”或“下”的元件将取向在所述元件或特征的“上方”。因此,示范性术语“下方”可以包含下方和上方两个方向。物件也可以有其他取向(旋转90度或其他取向)且应对本文使用的空间相对术语作出相应的解释。In this document, for convenience of description, spatially relative terms, such as "below", "below", "under", "above", "above", "over", etc., may be used to describe one element or feature with respect to another Relationship of elements or features in the drawings. It is to be understood that spatially relative terms are intended to encompass different orientations of items in use or operation in addition to the orientation depicted in the figures. For example, if the item in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the elements or features. Thus, the exemplary term "below" can encompass both an orientation of below and above. Items may also have other orientations (rotated 90 degrees or other orientations) and the spatially relative terms used herein should be interpreted accordingly.
在本文中,术语“第一”、“第二”等是用以区别两个不同的元件或部位,并不是用以限定特定的位置或相对关系。换言之,在一些实施例中,术语“第一”、“第二”等也可以彼此互换。In this document, the terms "first", "second" and the like are used to distinguish two different elements or parts, and are not used to limit a specific position or relative relationship. In other words, in some embodiments, the terms "first," "second," etc. are also interchangeable with each other.
本实用新型的双波长光源拉曼光谱仪系统采用两种波长的光源且一种波长的光源采用多个光源,进行多通道检测。即为了确保检测精度,一个光源检测一个采样点,而一台设备使用多个光源检测多个采样点,在以上条件满足的情况下,在光谱仪内设置双光栅,用于两种光源激发样品后拉曼散射光的分光,每一种光源可以设置多个光源,一个光栅可以支持同波长的多个光源的分光,且通过同一个CCD探测器根据不同光源选择不同的像素位置。The dual-wavelength light source Raman spectrometer system of the utility model adopts light sources with two wavelengths and a light source with one wavelength adopts multiple light sources to perform multi-channel detection. That is, in order to ensure the detection accuracy, one light source detects one sampling point, and one device uses multiple light sources to detect multiple sampling points. If the above conditions are met, double gratings are set in the spectrometer to be used after the two light sources excite the sample. For the spectroscopy of Raman scattered light, multiple light sources can be set for each light source, and one grating can support the spectroscopy of multiple light sources with the same wavelength, and the same CCD detector can select different pixel positions according to different light sources.
如图1所示,图1以双波长光源六通道的拉曼光谱仪为例进行说明。图1中的拉曼光谱仪可包括激光光源1、入射光纤2、探头3、样品池4、收集光纤5、入口狭缝6、中继透镜7、准直器8、第一体全息透射光栅9A、第二体全息透射光栅9B、准直透镜10、CCD探测器11以及信号处理系统12。As shown in FIG. 1 , FIG. 1 takes a Raman spectrometer with dual wavelength light sources and six channels as an example for illustration. The Raman spectrometer in FIG. 1 may include a laser light source 1, an incident fiber 2, a probe 3, a sample cell 4, a
进一步如图1所示,六个激光光源1组成激光光源组,激光光源组具有两种波长的激光光源,该两种波长的光源分别激发两种不同性状的物料样品。优选而非限制性地,两种波长的激光光源可分别采用532nm激光和785nm激光;两种不同性状的物料可以分别为气体和液体。在同一台拉曼光谱仪中使用这两种波长的光源分别检测气体和液体,可以使检测精度更高,检测效果更佳。Further as shown in FIG. 1 , six laser light sources 1 form a laser light source group, and the laser light source group has laser light sources with two wavelengths, and the two wavelength light sources excite material samples with two different properties respectively. Preferably, but not limitedly, the laser light sources of the two wavelengths can be a 532 nm laser and a 785 nm laser respectively; the two materials with different properties can be a gas and a liquid, respectively. Using these two wavelength light sources in the same Raman spectrometer to detect gas and liquid respectively can make the detection accuracy higher and the detection effect better.
进一步如图1所示,六个激光光源1组成的激光光源组、六个入射光纤2组成的入射光纤组、六个探头3组成的探头组、六个样品池4组成的样品池组以及六个收集光纤5组成的收集光纤组分别一一对应且采用单向串行连接的方式连接。激光光源1发射的激光通过入射光纤2传输至探头3,探头3将激光光源的光照射在样品池4中的采样点,采样点上相应拉曼散射光被相应的收集光纤5收集。Further as shown in Figure 1, a laser light source group composed of six laser light sources 1, an incident fiber group composed of six incident fibers 2, a probe group composed of six probes 3, a sample cell group composed of six sample cells 4, and six The collection fiber groups composed of the
进一步如图1所示,每路收集光纤5收集的拉曼散射光进入入口狭缝6,经中继透镜7将多路来自收集光纤的拉曼散射光按其对应的激发波长不同,分别进入对应的准直器8。由于本实用新型在同一拉曼光谱仪中,两种波长的激光光源分别设置多个光源,即图1中六个通道中三个通道使用同一波长(例如532nm)的激光,另外三个通道使用另一波长(例如785nm)的激光,每个光源对应不同的采样点,形成多通道检测。本实用新型的入口狭缝6接收来自收集光纤组的多路拉曼散射光,中继透镜7用于接收通过入口狭缝6的多路拉曼散射光,并根据不同的激发波长将拉曼散射光进行排序。不同激发波长的光分别按顺序进入对应的体全息透射光栅,例如波长532nm的激光激发样品后形成的拉曼散射光进入第一体全息透射光栅9A,波长785nm的激光激发样品后形成的拉曼散射光进入第二体全息透射光栅9B。第一体全息透射光栅9A和第二体全息透射光栅9B为两个独立的体全息透射光栅,可分别接收两种波长的光源激发两种样品后的拉曼散射光。拉曼散射光经体全息透射光栅分光后进入各自对应的准直透镜10,由同一个CCD探测器11检测,CCD探测器11的不同区域接收来自两个体全息透射光栅的拉曼散射光经分光后的平行光束。进一步地,光电信号由信号处理系统12转换为数字信号即可得到需要的拉曼光谱谱图。Further as shown in FIG. 1 , the Raman scattered light collected by each
为了保证多通道的拉曼散射光分光后能够按照顺序入射至CCD探测器11,即获得平行光束,避免光束交叉,本实用新型将第一体全息透射光栅9A和第二体全息透射光栅9B的狭缝设置为平行状态,且两个体全息透射光栅的狭缝方向均与经准直器8进入的拉曼散射光方向处于垂直状态。采用这样的方式可有效避免光束交叉。平行光束进一步进入体全息透射光栅和CCD探测器11之间与光源数量相对应的准直透镜10,该准直透镜10接收来自体全息透射光栅分光后的拉曼散射光并可平行照射至CCD探测器11的不同探测区域(可参考图2)。In order to ensure that the multi-channel Raman scattered light can be incident on the
采用本实用新型的拉曼光谱仪,利用两种波长的光源在同一台设备中可分别对两种性状的物料样品进行同时检测,采用双光栅分光对应双波长光源,扩展了拉曼光谱仪的检测对象范围,实用性更强,可应用在化工、石油炼制、生物医药、环境监测等领域中需要同时检测气相和液相物料的场景;多通道中每一个采样点选用一个光源进行激发,光源强度可根据每个采样点的需要进行调整,从而提高检测灵敏度和检测精度;多通道共用一个CCD探测器,使得本实用新型的拉曼光谱仪系统更加紧凑,仪器体积更小,更有利于便携化和应用现场摆放位置的选择;采用本实用新型的拉曼光谱仪,不同的光源照射所得拉曼散射光经分光后的光束可平行照射在CCD探测器的不同探测区域,使得多通道可同时检测,增加了检测效率;本实用新型的光源放置位置可灵活选择,因光纤越长光的衰减越严重,光源放置位置可选有利于控制光纤的使用长度,从而增加检测能力。By using the Raman spectrometer of the utility model, the material samples of the two properties can be detected simultaneously in the same equipment by using light sources of two wavelengths, and the double-grating light source corresponding to the double-wavelength light source can be used to expand the detection object of the Raman spectrometer. It can be used in chemical, petroleum refining, biomedicine, environmental monitoring and other fields that need to detect gas and liquid materials at the same time; each sampling point in the multi-channel selects a light source for excitation, and the intensity of the light source It can be adjusted according to the needs of each sampling point, so as to improve the detection sensitivity and detection accuracy; a CCD detector is shared by multiple channels, which makes the Raman spectrometer system of the present invention more compact, the instrument volume is smaller, and it is more conducive to portability and reliability. The selection of on-site placement positions is applied; using the Raman spectrometer of the present utility model, the beams of the Raman scattered light obtained by different light sources after being irradiated can be parallelly irradiated in different detection areas of the CCD detector, so that multiple channels can be detected at the same time, The detection efficiency is increased; the light source placement position of the utility model can be flexibly selected, because the longer the optical fiber, the more serious the attenuation of light, the optional light source placement position is beneficial to control the use length of the optical fiber, thereby increasing the detection capability.
实施例1Example 1
通过图1的连接方式设置四通道拉曼光谱仪,其中两通道为532nm光源照射获取的拉曼散射光最终投影在CCD探测器11上,对应的像素位分别为[10,45]和[60,95];另外两通道为785nm光源照射获取的拉曼散射光最终投影在同一CCD探测器11上,对应的像素位分别为[105,140]和[155,190]。The four-channel Raman spectrometer is set up by the connection method shown in Figure 1, in which the Raman scattered light obtained by the irradiation of the two channels is finally projected on the
两个独立的体全息透射光栅的选择:Choice of two independent volume holographic transmission gratings:
532nm激光光栅:拉曼位移设为200~4000cm-1,532nm转换成频率为1/532nm=18796.99cm-1,拉曼散射光的范围为[18796.99-4000,18796.99-200]cm-1,换算成波长为537.7~675.8nm,确定系统的光谱范围为530~670,中心波长为600nm,考虑系统尺寸和色散角大小,选择光栅线密度为600l/mm。532nm laser grating: Raman shift is set to 200~4000cm -1 , 532nm is converted to a frequency of 1/532nm=18796.99cm -1 , the range of Raman scattered light is [18796.99-4000,18796.99-200]cm -1 , conversion The wavelength is 537.7-675.8nm, the spectral range of the system is determined to be 530-670, and the center wavelength is 600nm. Considering the size of the system and the dispersion angle, the linear density of the grating is selected to be 600l/mm.
785nm激光光栅:拉曼位移设为250~3000cm-1,785nm转换成频率为1/785nm=12738.85cm-1,拉曼散射光的范围为[12738.85-2800,12738.85-250]cm-1,换算成波长为800.7~1026.8nm,确定系统的光谱范围为800~1000,中心波长为900nm,考虑系统尺寸和色散角大小,选择光栅线密度为1200l/mm。785nm laser grating: Raman shift is set to 250~3000cm -1 , 785nm is converted into a frequency of 1/785nm=12738.85cm -1 , the range of Raman scattered light is [12738.85-2800,12738.85-250]cm -1 , conversion The wavelength is 800.7-1026.8 nm, the spectral range of the system is determined to be 800-1000, and the center wavelength is 900 nm. Considering the size of the system and the dispersion angle, the linear density of the grating is selected to be 1200 l/mm.
CCD探测器的选择:Choice of CCD detectors:
探测器选择1650×200active pixels(16×16μm pixel size),光通过狭缝经光学系统成像到探测器上,一个光谱通道的像在探测器上弥散2个像素宽度,两个光谱通道之间隔一个像素,则光谱通道数为1650/3=550,对于785nm光源,分辨率为(1000-800)/550=0.36nm,换算成频率为4.44cm-1;对于532nm光源,分辨率为(670-530)/550=0.25nm,换算成波数为6.95cm-1。The detector selects 1650 × 200 active pixels (16 × 16 μm pixel size), the light is imaged on the detector through the optical system through the slit, the image of one spectral channel is scattered on the detector by 2 pixel widths, and the interval between the two spectral channels is one pixel. pixel, then the number of spectral channels is 1650/3=550, for a 785nm light source, the resolution is (1000-800)/550=0.36nm, which is converted into a frequency of 4.44cm -1 ; for a 532nm light source, the resolution is (670- 530)/550=0.25 nm, which is 6.95 cm −1 when converted into a wave number.
本实施例的分光原理如图2所示,本实施例中将两个独立的体全息透射光栅的狭缝设置为平行状态,且两个体全息透射光栅的狭缝方向均与经前端准直器进入的拉曼散射光方向处于垂直状态,从而保证打到CCD探测器上的光束为按照一定顺序的平行光束。The light splitting principle of this embodiment is shown in FIG. 2 . In this embodiment, the slits of two independent volume holographic transmission gratings are set to be parallel, and the slit directions of the two volume holographic transmission gratings are the same as those of the front-end collimator. The direction of the incoming Raman scattered light is in a vertical state, so as to ensure that the light beam hitting the CCD detector is a parallel light beam in a certain order.
前述对本实用新型的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本实用新型限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本实用新型的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本实用新型的各种不同的示例性实施方案以及各种不同的选择和改变。针对上述示例性实施方案所做的任何简单修改、等同变化与修饰,都应落入本实用新型的保护范围。The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. These descriptions are not intended to limit the invention to the precise form disclosed, and obviously many changes and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described for the purpose of explaining certain principles of the invention and its practical applications, to thereby enable those skilled in the art to make and utilize various exemplary embodiments of the invention and various Different choices and changes. Any simple modifications, equivalent changes and modifications made to the above exemplary embodiments should fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122735514.XU CN216208595U (en) | 2021-11-09 | 2021-11-09 | Dual wavelength light source Raman spectrometer system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122735514.XU CN216208595U (en) | 2021-11-09 | 2021-11-09 | Dual wavelength light source Raman spectrometer system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216208595U true CN216208595U (en) | 2022-04-05 |
Family
ID=80907438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202122735514.XU Active CN216208595U (en) | 2021-11-09 | 2021-11-09 | Dual wavelength light source Raman spectrometer system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216208595U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113899728A (en) * | 2021-11-09 | 2022-01-07 | 北京泓泰天诚科技有限公司 | Dual-wavelength light source Raman spectrometer system |
-
2021
- 2021-11-09 CN CN202122735514.XU patent/CN216208595U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113899728A (en) * | 2021-11-09 | 2022-01-07 | 北京泓泰天诚科技有限公司 | Dual-wavelength light source Raman spectrometer system |
CN113899728B (en) * | 2021-11-09 | 2025-03-07 | 北京泓泰天诚科技有限公司 | Dual wavelength light source Raman spectrometer system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9200961B2 (en) | Systems and methods for high resolution spatial heterodyne raman spectroscopy | |
KR20100063112A (en) | Spectrometer for measuring moving sample material and the method | |
KR101139401B1 (en) | Raman spectroscopy for detection of chemical residues at surface of specimen and Raman spectroscopy using the same | |
CN112414992A (en) | Raman spectrum excitation enhancement module | |
CN111175282A (en) | Raman spectrometer based on objective signal acquisition | |
JP6622723B2 (en) | Multifocal spectroscopic measurement device and optical system for multifocal spectroscopic measurement device | |
US20170307530A1 (en) | Optical analysis device and biomolecular analysis device | |
CN113804671A (en) | High-sensitivity Raman spectrum detection system | |
US20110068279A1 (en) | Ultra dark field microscope | |
KR20170052256A (en) | Apparatus and method for measuring concentration of material | |
CN216208595U (en) | Dual wavelength light source Raman spectrometer system | |
CN202189010U (en) | Optical detection system for spectrophotometer of automatic biochemical analyzer | |
CN113899728B (en) | Dual wavelength light source Raman spectrometer system | |
CN108037111A (en) | Hand-held LIBS optical systems | |
CN110530783B (en) | Lateral beam collection method and device for flow cytometer and flow cytometer | |
CN214096364U (en) | Raman probe based on double compound eye lens set | |
CN213986200U (en) | Raman spectrum excitation enhancement module | |
CN212059104U (en) | Wide-spectrum high-sensitivity Raman spectrometer | |
CN112782149A (en) | Multifunctional Raman spectrometer | |
CN216082493U (en) | High-sensitivity Raman spectrum detection system | |
CN212111141U (en) | Portable optical detector | |
CN212111140U (en) | Portable optical detector | |
US7817275B2 (en) | Scanning optical microscope with long working distance objective | |
CN212059105U (en) | High-resolution and high-sensitivity Raman spectrometer | |
CN101446546A (en) | Dispersion direct reading spectroscopic detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |