CN212694131U - Anti-shrinkage multi-unit parallel beam tube optical cable - Google Patents
Anti-shrinkage multi-unit parallel beam tube optical cable Download PDFInfo
- Publication number
- CN212694131U CN212694131U CN202021983471.6U CN202021983471U CN212694131U CN 212694131 U CN212694131 U CN 212694131U CN 202021983471 U CN202021983471 U CN 202021983471U CN 212694131 U CN212694131 U CN 212694131U
- Authority
- CN
- China
- Prior art keywords
- shrink
- optical cable
- tube
- shrinkage
- cladding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 54
- 239000013307 optical fiber Substances 0.000 claims abstract description 41
- 238000005253 cladding Methods 0.000 claims abstract description 35
- 230000002787 reinforcement Effects 0.000 claims abstract description 22
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims abstract description 17
- 235000011613 Pinus brutia Nutrition 0.000 claims abstract description 17
- 241000018646 Pinus brutia Species 0.000 claims abstract description 17
- 238000000576 coating method Methods 0.000 claims abstract description 13
- 239000011248 coating agent Substances 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims abstract description 8
- 230000003014 reinforcing effect Effects 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 8
- 239000003063 flame retardant Substances 0.000 claims description 6
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- 239000000779 smoke Substances 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- 239000004568 cement Substances 0.000 claims 1
- KAATUXNTWXVJKI-UHFFFAOYSA-N cypermethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-UHFFFAOYSA-N 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 239000010410 layer Substances 0.000 description 29
- 238000004040 coloring Methods 0.000 description 13
- 239000003365 glass fiber Substances 0.000 description 9
- 239000000976 ink Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000003825 pressing Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- 238000013475 authorization Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 1
- 208000025274 Lightning injury Diseases 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- -1 polybutylene terephthalate Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- DXZMANYCMVCPIM-UHFFFAOYSA-L zinc;diethylphosphinate Chemical compound [Zn+2].CCP([O-])(=O)CC.CCP([O-])(=O)CC DXZMANYCMVCPIM-UHFFFAOYSA-L 0.000 description 1
Images
Landscapes
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
The utility model discloses an anti parallel beam tube optical cable of shrink polycell, including cable core and the restrictive coating of cladding outside the cable core, the cable core includes central reinforcement, two piece at least parallel arrangement's beam tube and anti shrink covering, many the beam tube is around central reinforcement setting and be on a parallel with central reinforcement, and the beam tube includes optical fiber unit and the pine sleeve pipe of cladding outside optical fiber unit, and the surface of pine sleeve pipe is provided with the multichannel recess, and the multichannel recess sets up along the axial extension direction interval of pine sleeve pipe, and anti shrink covering cladding is outside the pine sleeve pipe, and anti shrink covering is partly embedded into in the recess. The utility model discloses an optical cable compact structure, light in weight, optic fibre duty cycle is high to the shrink problem of beam tube in the optical cable has been solved.
Description
Technical Field
The utility model relates to an optical cable structural design field, concretely relates to anti parallel beam tube optical cable of shrink polycell.
Background
At present, optical cable structures suitable for transmission lines in the field of optical communication generally comprise a layer stranded type optical cable and a central beam tube type optical cable, wherein the number of optical fiber cores of the layer stranded type optical cable is large, but the structure is large, the weight is heavy, and the manufacturing material cost is relatively high; the central beam tube type optical cable has the advantages of less optical fiber cores, compact structure, light weight and relatively lower manufacturing material cost, but the number of the cores is not more than 12. Various large optical cable manufacturers at home and abroad actively search for new optical cable structures, and the manufacturing cost is reduced while technical indexes are met and stable quality is ensured. Therefore, it is necessary to design an optical cable that has a compact structure and a light dead weight and can accommodate optical fibers with a large number of cores.
Generally, the access optical cable is preferably of a central beam tube type structure, however, when the external temperature of the central beam tube optical cable changes, the loose tube will shrink to a certain extent, and this shrinkage will cause the optical fiber in the tube to be stressed, and when the optical system is laid in a region with large temperature difference, this situation will be further aggravated, and even communication interruption accidents will be caused. To date, optical cables that prevent loose tube retraction have been investigated in the industry;
the application date is 2005.8.25, the application number is 200520106358.9, the authorization notice number is CN2824073Y, and the name is: a retraction-proof, full-water-resistant and easy-to-open optical cable adopts waterproof viscose glue which is uniformly and continuously coated on a central beam tube, and the central beam tube is stuck on an outer jacket to realize retraction prevention; although the mode achieves the purpose of preventing shrinkage, the optical cable is not easy to strip. The application date is 2000.12.27, the application number is 00264096.1, the authorization notice number is CN2456180Y, and the name is: the central tube type optical cable for preventing the beam tube from retracting adopts the hot melt adhesive rings which are tightly connected with the plastic steel sheath and the central beam tube along the longitudinal direction at intervals to realize the retraction prevention, and has the same defects as the patent; the application date is 2006.1.13, the application number is 200680005231.15, the publication number is CN 101120277A, and the name is: a low shrinkage telecommunications cable and method of making the same, wherein a shrinkage reducing member made of a liquid crystal polymer is disposed between an outer jacket and a buffer layer to provide anti-shrinkage; although the function of preventing shrinkage is achieved, the liquid crystal polymer is expensive and is not easy to place in processing, so that the practicability is poor, the cost is high, and the yield is low.
SUMMERY OF THE UTILITY MODEL
The to-be-solved technical problem of the utility model is to provide an anti parallel beam tube optical cable of shrink polycell, compact structure, light in weight, optic fibre duty cycle is high to the shrink problem of beam tube in the optical cable has been solved.
In order to solve the technical problem, the utility model provides an anti parallel beam tube optical cable of shrink polycell, including cable core and the restrictive coating of cladding outside the cable core, the cable core includes central reinforcement, two piece at least parallel arrangement's beam tube and anti shrink covering, many the beam tube centers on central reinforcement sets up and is on a parallel with central reinforcement, the beam tube includes optical fiber unit and the pine sleeve pipe of cladding outside optical fiber unit, the surface of pine sleeve pipe is provided with multichannel recess, multichannel the recess sets up along the axial direction of extension interval of pine sleeve pipe, anti shrink covering cladding is outside the pine sleeve pipe, anti shrink covering is partly embedded into in the recess.
In a preferred embodiment of the present invention, the shrink-resistant covering is coated with a water-blocking layer, and the water-blocking layer includes a water-blocking tape and a water-blocking yarn.
In a preferred embodiment of the present invention, the anti-shrinkage coating layer is wrapped with a reinforcing layer, the reinforcing layer is made of glass fiber, and a plurality of glass fibers are wrapped around the anti-shrinkage coating layer.
The utility model discloses a preferred embodiment, further include the restrictive coating surface is provided with a plurality of V type grooves, V type groove is seted up between two adjacent beam tubes, the tank bottom in V type groove points to central reinforcement.
In a preferred embodiment of the present invention, further comprising a tear string disposed in the shrink-resistant covering.
In a preferred embodiment of the present invention, the method further comprises coating a water-resistant layer and a reinforcing layer on the shrink-resistant cladding before entering the sheathing process.
In a preferred embodiment of the present invention, the central reinforcement is a non-metal reinforcement made of FRP.
The utility model discloses a preferred embodiment, further include the pine cover intussuseption is filled with fine oleamen.
In a preferred embodiment of the present invention, the optical fiber unit further comprises a plurality of colored optical fibers distributed in a scattered manner.
In a preferred embodiment of the present invention, the sheath layer is made of low smoke halogen-free flame retardant sheath material.
The utility model has the advantages that:
the utility model discloses an anti parallel beam tube optical cable of shrink polycell compares in traditional central beam tube optical cable, becomes many beam tube structures by a central beam tube, has increased the inside optical fiber unit duty cycle of optical cable, inserts 2-3 times that optic fibre quantity can reach ordinary beam tube, very big construction cost and product cost of having saved, and, the utility model discloses an anti shrink covering cladding is outside at the loose tube, and the part imbeds the loose tube, and when the loose tube met cold shrink, the anti shrink covering can prevent the shrink of loose tube.
Drawings
Fig. 1 is a schematic structural view of the anti-shrinkage multi-unit parallel bundle tube optical cable of the present invention;
FIG. 2 is a schematic view of the structure of the coloring apparatus of the present invention;
FIG. 3 is a schematic structural view of the grooving apparatus of the present invention;
fig. 4 is a schematic structural diagram of the sheathing process of the present invention.
The reference numbers in the figures illustrate: 1. a central reinforcement; 2. an optical fiber unit; 3. loosening the sleeve; 4. a groove; 5. a shrink-resistant cladding; 6. a water resistant layer; 7. a reinforcing layer; 8. a sheath layer; 9. a V-shaped groove; 10. tearing the rope; 11. an optical fiber pay-off reel; 12. the pay-off control wheel set; 13. a nitrogen filling device; 14. an ink application device; 15. a UV curing oven; 16. a traction wheel; 17. a winding control wheel set; 18. an optical fiber take-up reel; 19. an upper squeeze roll; 20. pressing a cutter; 21. a lower squeeze roll; 22. gantry pay-off rack; 23. paying off a tension pulley; 24. a water blocking tape placing frame; 25. a water-blocking yarn wrapping machine; 26. a guide wheel device; 27. placing a glass fiber rack; 28. longitudinally wrapping and supporting; 29. an extruder; 30. a hot, warm and cold water tank; 31. a diameter gauge; 32. a dryer; 33. a printer; 34. a crawler tractor; 35. gantry take-up frame.
Detailed Description
The present invention is further described with reference to the following drawings and specific embodiments so that those skilled in the art can better understand the present invention and can implement the present invention, but the embodiments are not to be construed as limiting the present invention.
Referring to fig. 1, the utility model discloses an embodiment of anti parallel beam tube optical cable of shrink polycell, including cable core and the restrictive coating 8 of cladding outside the cable core, the cable core includes central reinforcement 1, two parallel arrangement's beam tube and anti shrink covering 5, and two beam tubes set up respectively the both sides of central reinforcement 1, and be on a parallel with central reinforcement 1, the beam tube includes optical fiber unit 2 and the cladding pine sleeve pipe 3 outside optical fiber unit, the surface of pine sleeve pipe 3 is provided with multichannel recess 4, multichannel recess 4 sets up along the axial extending direction interval of pine sleeve pipe 3, anti shrink covering 5 cladding is outside pine sleeve pipe 3, anti shrink covering 5 part is embedded into in recess 4.
In general, in a low temperature state, the loose tube 3 tends to shrink, which results in an excessive length of the optical fiber unit 2 in the loose tube 3, and the optical fiber unit 2 bends and bends in the tube, thereby increasing the loss of the optical fiber unit 2.
In this embodiment, the anti-shrinkage cladding 5 is coated outside the loose tube 3, and the anti-shrinkage cladding 5 is partially embedded in the groove 4 of the loose tube 3, so that when the loose tube 3 tends to shrink when cooled, the anti-shrinkage cladding 5 can prevent the loose tube 3 from shrinking, and the anti-shrinkage cladding 5 can support and restrain the loose tube 3, so that the optical cable of this embodiment can be used in a low-temperature environment.
Specifically, the central reinforcing member 1 in this embodiment is made of FRP (fiber reinforced plastic), and has the advantages of light weight, hardness, non-conductivity, high mechanical strength, less recycling, and corrosion resistance.
Specifically, the water resistance of the optical cable is divided into cable core water resistance and water resistance in the loose tube 3, in order to improve the water resistance performance of the cable core, a water resistance layer 6 is coated outside the anti-shrinkage cladding 5, the water resistance layer 6 comprises a water resistance tape and water resistance yarns, the water resistance yarns are wrapped outside the anti-shrinkage cladding 5, the water resistance tape is longitudinally wrapped outside the anti-shrinkage cladding 5, and in order to prevent edge water seepage, the longitudinally wrapped water resistance tape is lapped and wrapped; in order to improve the water-blocking performance in the loose tube 3, the loose tube 3 is filled with fiber ointment, and the fiber ointment can play a role in water-blocking effect on one hand and can also play a role in buffering and protecting the optical fiber unit 2 on the other hand.
Specifically, in order to improve the mechanical property of the optical cable for resisting stretching, the anti-shrinkage cladding 5 is wrapped with a reinforcing layer 7, the reinforcing layer 7 is made of glass fiber, and a plurality of glass fibers are wrapped around the anti-shrinkage cladding 5.
The central reinforcement 1, the water-blocking layer 6 and the reinforcing layer 7 in the embodiment are all made of non-metal materials, compared with metal materials, the weight of the optical cable is further reduced, and electromagnetic interference and lightning stroke can be prevented.
In the construction process, in order to distinguish and weld the optical fiber unit 2 conveniently, the optical fiber unit 2 in the embodiment comprises colored fibers with different colors, the optical fiber unit 2 is colored according to an optical fiber standard color spectrum, and coloring ink is adopted during coloring.
In this embodiment, in order to separate the plurality of bundled tubes and peel off the anti-shrinkage cladding 5 outside the bundled tubes, the outer surface of the sheath layer 8 is provided with a plurality of V-shaped grooves 9, the V-shaped grooves 9 are formed between two adjacent bundled tubes, the bottoms of the V-shaped grooves 9 point to the central reinforcement 1, and the anti-shrinkage cladding 5 is internally provided with a tearing rope 10; in the actual use process, firstly, the sheath layer 8 can be torn along the V-shaped groove 9, the beam tube is separated from the central reinforcing piece 1, then the shrinkage-resistant cladding 5 is cut by a knife, the tearing rope 10 in the shrinkage-resistant cladding 5 is taken out, the shrinkage-resistant cladding 5 can be peeled off by pulling the tearing rope 10, and the loose tube 3 is taken out.
In the embodiment, the sheath layer 8 is made of a low-smoke halogen-free flame-retardant sheath material, and is uvioresistant, waterproof, mildewproof and resistant to environmental stress cracking; and no acid gas is released, the equipment in a machine room is not corroded, and the flame-retardant cable is suitable for indoor environments with high flame-retardant grade (such as wiring in a ceiling, open wiring and the like).
The manufacturing process of the shrinkage-resistant multi-unit parallel bundle tube optical cable in the embodiment comprises the following steps:
a coloring step: in the coloring process, coloring treatment is carried out on the optical fiber unit 2 by using coloring equipment;
plastic sheathing: PBT (polybutylene terephthalate) particles are stretched by adopting a plastic extruding machine in a pipe extruding mode to form a loose tube 3, an optical fiber unit 2 is placed in the loose tube 3, meanwhile, fiber ointment is filled in the loose tube 3, 0.1% -1% of extra length is left in the loose tube 3 by the optical fiber unit 2, a certain extra length is reserved, the optical fiber unit 2 is in a wave-shaped bending state in the loose tube 3, the extra length is not too large easily, and the optical fiber unit 2 is ensured not to contact the inner wall of the loose tube 3;
a groove pressing procedure: the outer surface of the loose tube 3 is provided with a plurality of grooves 4, the plurality of grooves 4 are arranged at intervals along the axial extension direction of the loose tube 3, and the grooves 4 are formed by processing a groove pressing device;
coating the shrinkage-resistant cladding 5: the anti-shrinkage material is coated outside the loose tube 3 after the groove is pressed by adopting an extruding machine in an extruding mode, the anti-shrinkage material is embedded into the groove 4 to form the anti-shrinkage cladding 5, the anti-shrinkage cladding 5 can be tightly coated outside the loose tube 3 by adopting an extruding extrusion mode, and the shrinkage of the loose tube 3 can be inhibited.
Sheathing: a plurality of loose tubes 3 coated with anti-shrinkage coatings 5 and a plurality of reinforcements 1 penetrate through a die arranged on a machine head of a sheath extruding machine, the sheath extruding machine forms sheath layers 8 outside the loose tubes 3 and the reinforcements 1 in a tube extruding mode, and the sheath layers 8 are cooled, dried, measured in diameter and subjected to jet printing.
Referring to fig. 2, the coloring apparatus includes: the optical fiber unit 2 is drawn from the optical fiber pay-off reel 11 and sequentially passes through the pay-off control wheel set 12 to control the pay-off tension of the optical fiber unit 2, the ink coating device 14 is used for coating coloring inks of different colors on the surface of the optical fiber unit 2, the UV curing furnace 15 irradiates and cures the coloring inks to prevent the coloring inks from fading, the traction wheel 16 pulls the optical fiber unit 2 to move, the take-up control wheel set 17 controls the take-up tension of the optical fiber unit 2, and the optical fiber take-up reel 18 winds and takes up the colored optical fiber unit 2; since the coloring ink is liable to be oxidized, the coloring ink is introduced into the ink coating device 14 by pressurizing with the nitrogen gas filling device 13.
Referring to fig. 3, the indent device includes an upper squeeze roller 19 and a lower squeeze roller 21, a loose tube 3 channel is arranged between the upper squeeze roller 19 and the lower squeeze roller 21, a pressing knife 20 is arranged on each of the upper squeeze roller 19 and the lower squeeze roller 21, the pressing knife 20 is arranged along the axial direction, the pressing knife 20 is arranged in the corresponding upper squeeze roller 19 and the corresponding lower squeeze roller 21, and the blade part of the pressing knife protrudes to the outside, the upper squeeze roller 19 and the lower squeeze roller 21 are matched to rotate to squeeze the loose tube 3 to move, and a groove 4 is cut on the loose tube 3 through the pressing knife 20, the indent device of the embodiment drives the loose tube 3 to move, and presses the groove 4 on the upper and lower surfaces of the loose tube 3, and under the condition that the rotating speeds of the upper squeeze roller 19 and the lower squeeze roller 21 are not changed, the uniform interval arrangement of the plurality of grooves 4 can be ensured.
In order to ensure that the positions of the central reinforcing part 1 and the beam tubes are limited in the process of coating the sheath layer 8, a reinforcing part through hole positioned at the center and a beam tube through hole arranged around the reinforcing part through hole are formed in the die, so that the central reinforcing part 1 is positioned at the central position of the die, a plurality of loose tubes 3 are arranged around the central reinforcing part 1 and are parallel to the central reinforcing part 1, in addition, in order to arrange a V-shaped groove 9 on the outer surface of the sheath layer 8, a protruding V-shaped stop block is arranged on the injection molding outer die.
Referring to fig. 4, in order to simultaneously coat the water-resistant layer 6 and the reinforcing layer 7 when the sheath layer 8 is coated, and to perform the works such as rapid cooling and drying, diameter measurement, spray printing treatment, etc. after the sheath is completed, the sheath coating process includes: the device comprises a gantry pay-off rack 22, a pay-off tension wheel 23, a water-blocking tape placing rack 24, a water-blocking yarn wrapping machine 25, a guide wheel device 26, a glass fiber placing rack 27, a longitudinal wrapping rack 28, an extruder 29, a hot water tank, a warm water tank, a cold water tank 30, a diameter measuring instrument 31, a dryer 32, a printer 33, a caterpillar tractor 34 and a gantry take-up rack 35.
The loose tube 3 and the central reinforcement 1 that will be cladded with anti shrink cladding 5 are placed respectively on longmen pay off rack 22 of difference, loose tube 3 passes water blocking tape rack 24, the yarn that blocks water around chartered plane 25, guide wheel device 26, glass silk rack 27 in proper order after the guidance of unwrapping wire tension pulley 23, and the operation order is: at first let loose sleeve pipe 3 enter into and carry out the indulging package of water-blocking tape on the water-blocking tape rack 24, then wrap up through indulging package frame 28, later enter into the yarn that blocks water around the chartered plane 25, the yarn that blocks water is around the package, and the pitch can be set for: and the diameter is 50-150 mm, and then the glass fiber is fed into a glass fiber placing rack 27 through a guide wheel device 26 to be wrapped, so that the glass fiber is uniformly wrapped outside the water blocking tape and the water blocking yarn.
In the process, the speed of the paying-off tension wheel 23 and the speed of the guide wheel device 26 are controlled, so that the friction force and the traction force in each placing frame are moderate, the loose tube 3 is not easy to deform in the transmission process, the overall stability is improved, and the working efficiency is improved.
Enter into extruder 29 behind the parcel cellosilk, the extruder divide into 5 grades of heater block and board extrusion part, uses low smoke and zero halogen flame retardant sheath material to carry out the sheath parcel, and 5 grades of heater block heating temperature sets for respectively: temperature of the first-stage heating pipe: 195 ℃, second stage heating tube temperature: 225 ℃ third stage heating tube temperature: 245 ℃ fourth stage heating tube temperature: 225 ℃ and fifth-stage heating pipe temperature: 205 ℃, head extrusion part temperature: 195 ℃, and the significance of temperature change control is as follows: the raw materials are gradually heated in the heating part, and are pushed and stirred by using a screw to be uniformly melted, and the lower the temperature of the extrusion part, the more the raw materials are gradually shaped, so that the raw materials are uniformly wrapped outside the glass filaments.
The even parcel of raw materials enters into heat immediately, warm, cold water tank 30 and stereotypes on loose tube 3 and central reinforcement 1 after, can not cause extrusion deformation, and the basin divide into heat, warm, cold water tank 30, and its temperature is hot water district temperature respectively: 65 ℃, warm water zone temperature: 40 ℃, cold water zone temperature: the temperature of the water tank is gradually reduced at 25 ℃, so that the optical cable can be gradually cooled, the phenomena that the surface of the optical cable cracks due to sudden temperature reduction and the like cannot be caused, and the outer diameter of the optical cable is measured through the diameter measuring instrument 31 after the optical cable is shaped.
The optical cable enters the dryer 32 immediately after passing through the water tank and is dried rapidly by strong wind, so that the surface of the optical cable is free from water splash and is increasingly smooth and round at present.
The dried characters enter the printer 33, and plasma printing or laser printing is carried out according to the requirements of customers, and the characters printed by the two printing modes are not easy to fall off and have extremely long service life.
After the lettering is finished, the optical cable enters a caterpillar tractor 34, and a caterpillar drives the optical cable to enter a gantry take-up frame 35 for taking up the optical cable by using a set disc tool.
The above-mentioned embodiments are merely preferred embodiments for fully illustrating the present invention, and the scope of the present invention is not limited thereto. Equivalent substitutes or changes made by the technical personnel in the technical field on the basis of the utility model are all within the protection scope of the utility model. The protection scope of the present invention is subject to the claims.
Claims (9)
1. The utility model provides an anti parallel beam tube optical cable of shrink polycell, includes cable core and the restrictive coating of cladding outside the cable core, a serial communication port, the cable core includes central reinforcement, two piece at least parallel arrangement's beam tube and anti shrink covering, many the beam tube centers on central reinforcement sets up and is on a parallel with central reinforcement, the beam tube includes optical fiber unit and the pine sleeve pipe of cladding outside optical fiber unit, pine sheathed tube surface is provided with multichannel recess, multichannel the recess sets up along pine sheathed tube axial extending direction interval, anti shrink covering cladding is outside at the pine sleeve pipe, anti shrink covering is partly embedded into in the recess.
2. The shrinkage-resistant multi-unit parallel-bundle tube optical cable of claim 1, wherein the shrinkage-resistant cladding is coated with a water-blocking layer comprising a water-blocking tape and water-blocking yarns.
3. The shrink-resistant multi-unit parallel-bundle tube optical cable according to claim 1, wherein the shrink-resistant covering is coated with a reinforcing layer, the reinforcing layer being glass filaments, a plurality of the glass filaments being wound around the shrink-resistant covering.
4. The shrink-resistant multi-unit parallel-bundle tube optical cable of claim 1, wherein the jacket layer outer surface is provided with a plurality of V-grooves, the V-grooves opening between two adjacent bundles, the groove bottoms of the V-grooves pointing towards the central strength member.
5. The shrink-resistant multi-unit parallel-bundle tube optical cable of claim 1, wherein a ripcord is disposed within the shrink-resistant cladding.
6. The shrinkage-resistant multi-unit parallel-bundle tube optical cable of claim 1, wherein the central strength member is a non-metallic strength member made of FRP.
7. The shrinkage-resistant multi-unit parallel-bundle tube optical cable of claim 1, wherein the loose tube is filled with a fiber cement.
8. The shrink-resistant multi-unit parallel-bundle tube optical cable of claim 1, wherein the optical fiber units comprise a plurality of dispersed colored optical fibers.
9. The shrinkage-resistant multi-unit parallel-bundle tube optical cable according to claim 1, wherein the sheath layer is made of a low-smoke halogen-free flame-retardant sheath material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021983471.6U CN212694131U (en) | 2020-09-11 | 2020-09-11 | Anti-shrinkage multi-unit parallel beam tube optical cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021983471.6U CN212694131U (en) | 2020-09-11 | 2020-09-11 | Anti-shrinkage multi-unit parallel beam tube optical cable |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212694131U true CN212694131U (en) | 2021-03-12 |
Family
ID=74903775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202021983471.6U Active CN212694131U (en) | 2020-09-11 | 2020-09-11 | Anti-shrinkage multi-unit parallel beam tube optical cable |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212694131U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112034571A (en) * | 2020-09-11 | 2020-12-04 | 宏安集团有限公司 | A kind of anti-shrinkage multi-unit parallel bundle tube optical cable and its manufacturing method |
-
2020
- 2020-09-11 CN CN202021983471.6U patent/CN212694131U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112034571A (en) * | 2020-09-11 | 2020-12-04 | 宏安集团有限公司 | A kind of anti-shrinkage multi-unit parallel bundle tube optical cable and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8620124B1 (en) | Binder film for a fiber optic cable | |
US4172106A (en) | Optical fibre cables and their manufacture | |
US9091830B2 (en) | Binder film for a fiber optic cable | |
US5148509A (en) | Composite buffer optical fiber cables | |
CN105427948B (en) | Skeleton optoelectronic composite cable and its manufacture method | |
WO2020253158A1 (en) | Binding-yarn-layer-free stranded optical cable and manufacturing method therefor | |
WO2017107373A1 (en) | Indoor and outdoor rodent-resistant optical cable and manufacturing method therefor | |
EP2385027B1 (en) | Method for making tight-buffered optical fiber having improved fiber access
 | |
US20030081918A1 (en) | Optical fiber cable | |
JP2006505006A (en) | Peelable buffer layer having a preferential tearing portion and method for manufacturing the same | |
JPH0713056A (en) | Reinforced plastic armored cable and method of manufacturing the same | |
EP1982223A1 (en) | Fiber optic cable having a dry insert and methods of making the same | |
CN111983761A (en) | Full-dry optical cable and preparation method thereof | |
CN101153942B (en) | Loose tube optical waveguide cable | |
CA2569748C (en) | Optical tube assembly having a dry insert and methods of making the same | |
CN111965776A (en) | Spiral micro-groove type air-blowing micro-cable, manufacturing equipment and manufacturing method | |
CN212694131U (en) | Anti-shrinkage multi-unit parallel beam tube optical cable | |
CN112034571A (en) | A kind of anti-shrinkage multi-unit parallel bundle tube optical cable and its manufacturing method | |
CN101614842B (en) | Indoor-laying optical fiber | |
CN209746209U (en) | Novel easily-branched 8-shaped optical cable and forming die thereof | |
CA1295500C (en) | Optical fibre cable | |
CN111679384A (en) | Bundled grouped optical fiber multi-core mini optical cable and manufacturing method thereof | |
GB1581554A (en) | Manufacture of optical fibre cables | |
CN112630912A (en) | Layer-stranded air-blowing micro cable and production equipment and processing method thereof | |
CN106772849B (en) | Micro optical cable, preparation method thereof and outer sheath material of micro optical cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |