[go: up one dir, main page]

CN212061907U - Conductive layer structure and foldable electronic device - Google Patents

Conductive layer structure and foldable electronic device Download PDF

Info

Publication number
CN212061907U
CN212061907U CN202021145402.8U CN202021145402U CN212061907U CN 212061907 U CN212061907 U CN 212061907U CN 202021145402 U CN202021145402 U CN 202021145402U CN 212061907 U CN212061907 U CN 212061907U
Authority
CN
China
Prior art keywords
layer
conductive
conductive layer
thickness
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN202021145402.8U
Other languages
Chinese (zh)
Inventor
蔡宜珍
方玮嘉
朱俊鸿
萧仲钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cambrios Film Solutions Xiamen Corp
Original Assignee
Cambrios Film Solutions Xiamen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambrios Film Solutions Xiamen Corp filed Critical Cambrios Film Solutions Xiamen Corp
Priority to CN202021145402.8U priority Critical patent/CN212061907U/en
Application granted granted Critical
Publication of CN212061907U publication Critical patent/CN212061907U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

一种导电层叠构和折叠式电子装置,导电层叠构包含导电层和增厚层,导电层沿第一方向延伸。增厚层位于导电层上方或下方。导电层叠构在曲率半径R=3毫米,垂直或平行第一方向弯折180°时,能够承受折叠次数超过40000次不断裂。

Figure 202021145402

A conductive stack structure and a foldable electronic device. The conductive stack structure includes a conductive layer and a thickening layer, and the conductive layer extends along a first direction. The thickening layer is located above or below the conductive layer. The conductive layer structure can withstand more than 40,000 folding times without breaking when the conductive layer structure is bent 180° perpendicular to or parallel to the first direction with a radius of curvature R=3 mm.

Figure 202021145402

Description

导电层叠构和折叠式电子装置Conductive layer structure and foldable electronic device

技术领域technical field

本揭示内容是关于导电层叠构,特别是用于折叠式电子装置的走线中的导电层叠构。The present disclosure relates to conductive stack structures, particularly conductive stack structures used in traces of foldable electronic devices.

背景技术Background technique

电子元件不断趋向小型化、高速化发展,其中可保有高性能且让电子元件具有柔软性的可挠式电子技术为下一世代最受瞩目的新技术,包含可挠式面板、显示器、电池、穿戴式电子装置等。Electronic components are constantly developing towards miniaturization and high-speed development. Among them, flexible electronic technology, which can maintain high performance and make electronic components flexible, is the most eye-catching new technology in the next generation, including flexible panels, displays, batteries, Wearable electronic devices, etc.

但是,在折叠式电子装置中,在弯折处的走线经过多次弯折可能容易出现断裂问题,从而影响信号的传送,而影响折叠式电子装置的性能。However, in the foldable electronic device, the wires at the bend may be prone to breakage after being bent for many times, thereby affecting the transmission of signals and the performance of the foldable electronic device.

实用新型内容Utility model content

有鉴于上述问题,本揭示内容的目的在于提供一种具有增厚层的导电层叠构,以提高折叠式电子装置的耐弯折性。In view of the above problems, an object of the present disclosure is to provide a conductive laminate structure with a thickened layer to improve the bending resistance of a foldable electronic device.

本揭示内容的一些实施方式提供了一种导电层叠构,包含导电层以及增厚层。导电层沿第一方向延伸。增厚层位于导电层上方或下方,且导电层叠构在曲率半径R=3毫米,垂直或平行第一方向延伸方向弯折180°时,可承受折叠次数超过40000次不断裂。Some embodiments of the present disclosure provide a conductive layered structure including a conductive layer and a thickened layer. The conductive layer extends along the first direction. The thickened layer is located above or below the conductive layer, and the conductive layer structure can withstand more than 40,000 folding times without breaking when the conductive layer is bent at 180° with a radius of curvature R=3 mm and perpendicular or parallel to the extending direction of the first direction.

在一些实施方式中,增厚层在第一方向上的长度大于9毫米且不超过导电层沿第一方向延伸的长度。In some embodiments, the length of the thickened layer in the first direction is greater than 9 millimeters and does not exceed the length of the conductive layer extending in the first direction.

在一些实施方式中,增厚层在第一方向上的长度大于15毫米且不超过导电层沿第一方向延伸的长度。In some embodiments, the length of the thickened layer in the first direction is greater than 15 millimeters and does not exceed the length of the conductive layer extending in the first direction.

在一些实施方式中,导电层叠构的弯折轴心与增厚层两端的夹角为180°~360°。In some embodiments, the included angle between the bending axis of the conductive layer structure and the two ends of the thickened layer is 180°˜360°.

在一些实施方式中,增厚层使导电层叠构弯折时的应力应变量增加0.1至10%,且导电层叠构的曲率半径减小0.5至3毫米。In some embodiments, the thickened layer increases the amount of stress-strain of the conductive stack when it is bent by 0.1 to 10%, and reduces the radius of curvature of the conductive stack by 0.5 to 3 millimeters.

在一些实施方式中,增厚层位于导电层叠构弯折时的应力拉伸侧。In some embodiments, the thickened layer is on the stress-stretch side of the conductive laminate when it is bent.

在一些实施方式中,提出了一种折叠式电子装置,其包含以上和以下的实施方式或实施例所描述的导电层叠构。In some embodiments, a foldable electronic device is proposed, which includes the conductive laminate structures described in the above and below embodiments or examples.

本揭示内容的一些实施方式提供了一种折叠式电子装置,包含显示区以及非显示区。非显示区位于显示区外侧,其中非显示区具有多条走线其沿第一方向延伸,所述多条走线中的每一条走线包含:基板和导电层其位于基板上方。其中非显示区具有局部增厚区域,其包含折叠式电子装置的弯折处,在局部增厚区域中这些多条走线中的每一条走线更包含增厚层,其在导电层上方或下方,且位于折叠式电子装置弯折时的应力拉伸侧。Some embodiments of the present disclosure provide a foldable electronic device including a display area and a non-display area. The non-display area is located outside the display area, wherein the non-display area has a plurality of wirings extending along the first direction, and each wiring in the plurality of wirings includes a substrate and a conductive layer located above the substrate. Wherein the non-display area has a local thickening area, which includes the bend of the foldable electronic device, and each of the multiple wires in the local thickening area further includes a thickening layer, which is above the conductive layer or below, and is located on the stress stretching side when the foldable electronic device is bent.

在一些实施方式中,在折叠式电子装置中,局部增厚区域的宽度其沿着垂直于第一方向的第二方向延伸,且这些走线中的一走线宽度为W1,这些走线之间的间距为P1,这些走线的数目为N,局部增厚区域的宽度范围在介于W1至(W1+P1)x N之间。In some embodiments, in the foldable electronic device, the width of the locally thickened region extends along a second direction perpendicular to the first direction, and one of the traces has a width W 1 , and the traces have a width of W 1 . The spacing between them is P 1 , the number of these traces is N, and the width of the locally thickened region ranges from W 1 to (W 1 +P 1 )×N.

在一些实施方式中,在折叠式电子装置中,增厚层沿第一方向的长度大于3毫米。In some embodiments, in the foldable electronic device, the length of the thickened layer in the first direction is greater than 3 millimeters.

在一些实施方式中,在折叠式电子装置中,增厚层为由金属材料形成,且增厚层与导电层的厚度的比值为约0.05~5。In some embodiments, in the foldable electronic device, the thickened layer is formed of a metal material, and the ratio of the thickness of the thickened layer to the conductive layer is about 0.05-5.

在一些实施方式中,在折叠式电子装置中,增厚层为由非金属材料或复合导电材料形成,且增厚层与导电层的厚度的比值为约0.1~50。In some embodiments, in the foldable electronic device, the thickened layer is formed of a non-metallic material or a composite conductive material, and the ratio of the thickness of the thickened layer to the conductive layer is about 0.1-50.

在一些实施方式中,在折叠式电子装置中,增厚层为由金属材料形成,且基板的厚度乘以基板的杨氏模量的值为约100~300,导电层的厚度乘以导电层的杨氏模量的值为约20~70,增厚增的厚度乘以杨氏模量的值为约5~30。In some embodiments, in the foldable electronic device, the thickening layer is formed of a metal material, and the value of multiplying the thickness of the substrate by the Young's modulus of the substrate is about 100-300, and the thickness of the conductive layer is multiplied by the conductive layer. The value of the Young's modulus is about 20 to 70, and the value of the increased thickness multiplied by the Young's modulus is about 5 to 30.

在一些实施方式中,在折叠式电子装置中,增厚层为由非金属材料或复合导电材料形成,且基板的厚度乘以基板的杨氏模量的值为约100~300,导电层的厚度乘以导电层的杨氏模量的值为约20~70,增厚层的厚度乘以增厚层的杨氏模量的值为约2~60。In some embodiments, in the foldable electronic device, the thickening layer is formed of a non-metallic material or a composite conductive material, and the value of the thickness of the substrate multiplied by the Young's modulus of the substrate is about 100-300, and the thickness of the conductive layer is about 100-300. The value of the thickness multiplied by the Young's modulus of the conductive layer is about 20 to 70, and the value of the thickness of the thickened layer multiplied by the Young's modulus of the thickened layer is about 2 to 60.

在一些实施方式中,在折叠式电子装置中,增厚层包含:第一聚合物层和第二聚合物层。第二聚合物层在第一聚合物层上方,其中第一聚合物层的材料不同于第二聚合物层的材料。In some embodiments, in a foldable electronic device, the thickening layer comprises: a first polymer layer and a second polymer layer. The second polymer layer is above the first polymer layer, wherein the material of the first polymer layer is different from the material of the second polymer layer.

在一些实施方式中,在折叠式电子装置中,第一聚合物层的杨氏模量与第二聚合物层的杨氏模量的比值为约103~106In some embodiments, in the foldable electronic device, the ratio of the Young's modulus of the first polymer layer to the Young's modulus of the second polymer layer is about 10 3 to 10 6 .

在一些实施方式中,在折叠式电子装置中,第一聚合物的厚度与导电层的厚度的比值为约30~100,第二聚合物的厚度与导电层的厚度的比值为约30~100,且第一聚合物的厚度与第二聚合物的厚度的比值为约0.5~2。In some embodiments, in the foldable electronic device, the ratio of the thickness of the first polymer to the thickness of the conductive layer is about 30-100, and the ratio of the thickness of the second polymer to the thickness of the conductive layer is about 30-100 , and the ratio of the thickness of the first polymer to the thickness of the second polymer is about 0.5-2.

附图说明Description of drawings

本揭示内容可由以下的详细描述,并且与所附附图一起阅读,得到最佳的理解。要强调的是,根据产业中的标准实践,各个特征未按比例绘制,并且仅用于说明目的。事实上,为了讨论的清楚性起见,各个特征可能任意地增加或减小。The present disclosure can be best understood from the following detailed description, when read in conjunction with the accompanying drawings. It is emphasized that, in accordance with standard practice in the industry, the various features are not drawn to scale and are for illustrative purposes only. In fact, various features may be arbitrarily increased or decreased for clarity of discussion.

图1A为根据本揭示内容的一些实施方式的面板的示意图;1A is a schematic diagram of a panel according to some embodiments of the present disclosure;

图1B至图1D为根据本揭示内容的一些实施方式的走线的局部的截面视图;1B-1D are partial cross-sectional views of traces according to some embodiments of the present disclosure;

图1E为图1A中的面板的区域114的局部放大图;FIG. 1E is a partial enlarged view of region 114 of the panel in FIG. 1A ;

图2A和图2B为导电层叠构在弯折状态的示意图;2A and 2B are schematic diagrams of the conductive layer structure in a bent state;

图3A和图3B为一比较例的导电层叠构的弯折状态和非弯折状态的示意图;3A and 3B are schematic diagrams of a bent state and a non-bent state of a conductive laminate structure of a comparative example;

图4A至图4C分别为根据一些实验例的导电层叠构;4A to 4C are respectively conductive layered structures according to some experimental examples;

图5A至图5D为根据一些实施方式的导电层叠构的配置示意图;5A-5D are schematic diagrams of the configuration of a conductive stack structure according to some embodiments;

图6A和图6B为根据一些实施方式的导电层叠构在弯折状态与展开状态的示意图;6A and 6B are schematic diagrams of a conductive layer structure in a bent state and an unfolded state according to some embodiments;

图6C和图6D为根据一些实施方式的导电层叠构在弯折状态与展开状态的示意图;6C and 6D are schematic diagrams of a conductive layer structure in a bent state and an unfolded state according to some embodiments;

图6E和图6F为根据一些实施方式的导电层叠构在弯折状态与展开状态的示意图;6E and 6F are schematic diagrams of a conductive layer structure in a bent state and an unfolded state according to some embodiments;

图7A和图7B为根据一些实施方式的导电层叠构在弯折状态与展开状态的示意图;7A and 7B are schematic diagrams of a conductive layer structure in a bent state and an unfolded state according to some embodiments;

图7C和图7D为根据一些实施方式的导电层叠构在弯折状态与展开状态的示意图;7C and 7D are schematic diagrams of a conductive layer structure in a bent state and an unfolded state according to some embodiments;

图7E和图7F为根据一些实施方式的导电层叠构在弯折状态与展开状态的示意图;7E and 7F are schematic diagrams of a conductive layer structure in a bent state and an unfolded state according to some embodiments;

图8A至图8I为根据本揭示内容的一些实施方式的一折叠式电子装置在制造制程中不同的中间阶段的截面视图;8A-8I are cross-sectional views of a foldable electronic device at various intermediate stages in the manufacturing process according to some embodiments of the present disclosure;

图9A至图9J为根据本揭示内容的一些实施方式的一折叠式电子装置在制造制程中不同的中间阶段的截面视图;9A-9J are cross-sectional views of a foldable electronic device at various intermediate stages in the manufacturing process according to some embodiments of the present disclosure;

图10A至图10G为根据本揭示内容的一些实施方式的一折叠式电子装置在制造制程中不同的中间阶段的截面视图;10A-10G are cross-sectional views of a foldable electronic device at various intermediate stages in the manufacturing process according to some embodiments of the present disclosure;

图11A至图11H为根据本揭示内容的一些实施方式的一折叠式电子装置在制造制程中不同的中间阶段的截面视图;11A-11H are cross-sectional views of a foldable electronic device at various intermediate stages in the manufacturing process according to some embodiments of the present disclosure;

图12A至图12H为根据本揭示内容的一些实施方式的一折叠式电子装置在制造制程中不同的中间阶段的截面视图。12A-12H are cross-sectional views of a foldable electronic device at various intermediate stages in the manufacturing process according to some embodiments of the present disclosure.

【符号说明】【Symbol Description】

20:导电层叠构20: Conductive layered structure

22:基板22: Substrate

24:走线材料层24: Trace material layer

26:增厚层26: Thickening layer

30:导电层叠构30: Conductive layered structure

32:基板32: Substrate

34:走线材料层34: Trace material layer

36:增厚层36: Thickening layer

40:导电层叠构40: Conductive layered structure

42:基板42: Substrate

44:金属层44: Metal layer

50:导电层叠构50: Conductive layered structure

52:基板52: Substrate

54:导电层54: Conductive layer

56:金属层56: Metal layer

58:增厚层58: Thickening layer

60:导电层叠构60: Conductive layered structure

62:基板62: Substrate

64:导电层64: Conductive layer

66:金属层66: Metal layer

68:增厚层68: Thickening layer

70:导电层叠构70: Conductive layered structure

72:基板72: Substrate

74:导电层74: Conductive layer

76:金属层76: Metal layer

78:第一聚合物层78: First polymer layer

80:第二聚合物层80: Second polymer layer

100:面板100: Panel

110:走线110: Route

112、114、116:区域112, 114, 116: Area

120:导电层叠构120: Conductive layered structure

122:基板122: Substrate

124:金属层124: metal layer

126:增厚层126: thickening layer

128:导电层128: Conductive layer

130:导电层叠构130: Conductive Laminate

132:基板132: Substrate

134:导电层134: Conductive layer

136:金属层136: metal layer

138:增厚层138: Thickening layer

140:导电层叠构140: Conductive Laminate

142:基板142: Substrate

144:金属层144: metal layer

146:导电层146: Conductive layer

148:增厚层148: Thickening layer

210:导电层叠构210: Conductive Laminate

212:基板212: Substrate

214:走线材料层214: Trace material layer

216:增厚层216: Thickening layer

220:导电层叠构220: Conductive Laminate

222:基板222: Substrate

224:走线材料层224: Trace material layer

226:第一聚合物层226: First polymer layer

228:第二聚合物层228: Second Polymer Layer

230:导电层叠构230: Conductive Laminate

232:基板232: Substrate

234:触媒层234: catalyst layer

236:导电层236: Conductive layer

238:增厚层238: Thickening Layer

240:导电层叠构240: Conductive Laminate

242:基板242: Substrate

244:触媒层244: Catalyst Layer

246:导电层246: Conductive layer

248:第一聚合物层248: First Polymer Layer

250:第二聚合物层250: Second Polymer Layer

310:导电层叠构310: Conductive Laminate

312:基板312: Substrate

314:金属层314: Metal Layer

316:增厚层316: Thickening layer

318:导电层318: Conductive layer

330:导电层叠构330: Conductive Laminate

332:基板332: Substrate

334:金属层334: Metal Layer

336:导电层336: Conductive layer

338:增厚层338: Thickening Layer

350:导电层叠构350: Conductive Laminate

352:基板352: Substrate

354:导电层354: Conductive layer

356:金属层356: Metal Layer

358:增厚层358: Thickening Layer

410:导电层叠构410: Conductive Laminate

412:导电层412: Conductive layer

414:具有双侧金属膜的结构层414: Structural layer with double-sided metal film

414A:金属层414A: Metal Layer

414B:基板414B: Substrate

414C:金属层414C: Metal Layer

416:增厚层416: Thickening layer

418:导电层418: Conductive layer

430:导电层叠构430: Conductive Laminate

432:导电层432: Conductive layer

434:具有双侧金属膜的结构层434: Structural layer with double-sided metal film

434A:金属层434A: Metal Layer

434B:基板434B: Substrate

434C:金属层434C: Metal Layer

436:导电层436: Conductive layer

438:增厚层438: Thickening layer

450:导电层叠构450: Conductive Laminate

452:金属层452: Metal Layer

454:具有双侧导电膜的结构层454: Structural layer with double-sided conductive film

454A:导电层454A: Conductive layer

454B:基板454B: Substrate

454C:导电层454C: Conductive layer

456:金属层456: Metal Layer

458:增厚层458: Thickening layer

502:基板502: Substrate

504:金属层504: Metal Layer

506:光阻层506: photoresist layer

508:增厚层508: Thickening layer

510:光阻层510: photoresist layer

512:导电层512: Conductive layer

514:光阻层514: photoresist layer

516:保护层516: Protective layer

522:基板522: Substrate

524:金属层524: metal layer

526:光阻层526: photoresist layer

528:导电层528: Conductive layer

530:光阻层530: photoresist layer

532:增厚层532: Thickening layer

534:光阻层534: photoresist layer

536:保护层536: Protective Layer

602:基板602: Substrate

604:导电层604: Conductive layer

606:金属层606: Metal layer

608:光阻层608: photoresist layer

610:增厚层610: Thickening layer

612:光阻层612: photoresist layer

614:保护层614: Protective layer

702:基板702: Substrate

704:金属层704: Metal Layer

706:光阻层706: Photoresist layer

708:导电层708: Conductive layer

710:光阻层710: photoresist layer

712:保护层712: Protective layer

714:增厚层714: Thickening layer

722:基板722: Substrate

724:导电层724: Conductive layer

726:金属层726: Metal Layer

728:光阻层728: photoresist layer

730:第一聚合物层730: First Polymer Layer

732:第二聚合物层732: Second Polymer Layer

AA、BB、CC:线AA, BB, CC: line

R1、R2:曲率半径R 1 , R 2 : radius of curvature

W1、W2:长度W 1 , W 2 : length

θ1、θ2:角度θ 1 , θ 2 : angle

具体实施方式Detailed ways

本揭示内容提供了许多不同的实施方式或实施例,以实现本揭示内容的不同的特征。以下描述组件和配置的具体实施例,以简化本揭示内容。这些当然仅是实施例,并不意图为限制性的。例如,在随后的描述中,第二特征形成于第一特征上方或之上,可能包括其中第一和第二特征形成直接接触的实施方式,并且还可能包括在第一和第二特征之间可能形成附加的特征,因此第一和第二特征可能不是直接接触的实施方式。The present disclosure provides many different implementations or examples for implementing the various features of the present disclosure. Specific embodiments of components and configurations are described below to simplify the present disclosure. These are of course only examples and are not intended to be limiting. For example, in the description that follows, a second feature is formed on or over a first feature, may include embodiments in which the first and second features form direct contact, and may also be included between the first and second features Additional features may be formed so that the first and second features may not be in direct contact embodiments.

可能在此使用空间上的相对用语,诸如“之下”、“低于”、“下部”、“高于”、“上部”、和类似用语,以描述如在附图中所绘示的一个元件或特征与另一个元件或特征之间的关系。除了在附图中所描绘的方向之外,空间上的相对用语旨在涵盖装置或设备在使用中或操作中的不同位向。装置或设备可能有其他位向(旋转90度或其他位向),并且此处所使用的空间上相对用语也可能相应地解释。Spatially relative terms such as "below," "below," "lower," "above," "upper," and similar terms may be used herein to describe a The relationship of an element or feature to another element or feature. In addition to the orientation depicted in the figures, spatially relative terms are intended to cover different orientations of the device or apparatus in use or operation. The device or apparatus may be otherwise oriented (rotated 90 degrees or otherwise) and the spatially relative terms used herein may be interpreted accordingly.

目前在显示装置中,常用例如氧化铟锡(ITO)的金属氧化物为导电层叠构的材料,形成走线。但是,氧化铟锡等金属氧化物材料脆性大、柔性差,因此制成的导电层叠构容易折断。此外,在以纳米银为导电层的导电层叠构中,由于在显示装置的弯折区除了纳米银线外仍包含其他的金属的导线,其金属材料本身能承受的应力值相对小,易产生形变而造成电阻值升高。Currently, in display devices, metal oxides such as indium tin oxide (ITO) are commonly used as conductive layered materials to form traces. However, metal oxide materials such as indium tin oxide are brittle and poor in flexibility, so the fabricated conductive laminate structure is easily broken. In addition, in the conductive layer structure with nano-silver as the conductive layer, since the bending area of the display device still contains other metal wires in addition to the nano-silver wires, the stress value that the metal material itself can bear is relatively small, and it is easy to generate The deformation causes the resistance value to increase.

折叠式电子装置的走线设计有两个重点:其一,由于弯折处必须承受数万次的折叠,弯折处需要具有一定的结构强度;其二,折叠式电子装置的走线需具有较好的可折叠性,亦即具有较小的弯折的曲率半径。There are two key points in the design of the wiring of the foldable electronic device: first, since the bend must withstand tens of thousands of folds, the bend needs to have a certain structural strength; second, the wiring of the foldable electronic device must have Better foldability, ie with a smaller radius of curvature of the bend.

本揭示内容的一些实施方式提供一种导电层叠构,在承受最大应力的弯折处的拉伸侧,增加了增厚层,因此达到在较小的曲率半径时折叠特性的提升。Some embodiments of the present disclosure provide a conductive laminate structure with the addition of a thickened layer on the stretch side at the bend that is most stressed, thereby achieving improved folding properties at smaller radii of curvature.

在一些实施方式中,导电层叠构可形成为电子装置的走线,应用于可折叠的电子装置中,例如,具有面板的电子装置,诸如,手机、平板、穿戴式电子装置(例如智能手环、智能手表、虚拟实境装置等)、电视、显示器、笔记型电脑、电子书、数字相框、导航仪、或类似者。In some embodiments, the conductive layered structure can be formed as a trace of an electronic device, and applied in a foldable electronic device, for example, an electronic device with a panel, such as a mobile phone, a tablet, a wearable electronic device (such as a smart bracelet) , smart watches, virtual reality devices, etc.), televisions, monitors, laptops, e-books, digital photo frames, navigators, or the like.

图1A绘示根据本揭示内容的一些实施方式的面板的示意图。面板100为折叠式面板,可沿线AA为轴弯折(垂直走线延伸方向),或是沿线BB为轴弯折(平行走线延伸方向)。在面板100的边缘具有多个走线110用以传导信号。如图所示,面板100的走线110所在的位置具有多个局部增厚的区域112、114、和116。1A illustrates a schematic diagram of a panel according to some embodiments of the present disclosure. The panel 100 is a foldable panel, which can be bent along the line AA as the axis (vertical line extending direction), or can be bent along the line BB as the axis (parallel line extending direction). There are a plurality of traces 110 on the edge of the panel 100 for conducting signals. As shown, the location of the traces 110 of the panel 100 has a plurality of locally thickened regions 112 , 114 , and 116 .

图1B为根据一些实施方式,沿着图1A的局部增厚的区域114中的线CC的走线(导电层叠构)局部的截面示意图。导电层叠构120包含基板122、在基板122上方的金属层124、在金属层124上方的增厚层126、以及在增厚层126上方的导电层128。其中,基板122、金属层124、和导电层128为在走线110的其他区域也具有的层面。在一些实施方式中,在走线110的局部区域中(例如,在导电层叠构120中),在金属层124和导电层128之间增加了增厚层126。在另一些实施方式中,沿着走线110延伸方向的增厚层126的长度不大于导电层128的长度。1B is a schematic cross-sectional view of a portion of a trace (conductive stack) along line CC in locally thickened region 114 of FIG. 1A , according to some embodiments. The conductive stack 120 includes a substrate 122 , a metal layer 124 over the substrate 122 , a thickened layer 126 over the metal layer 124 , and a conductive layer 128 over the thickened layer 126 . Wherein, the substrate 122 , the metal layer 124 , and the conductive layer 128 are layers that also exist in other regions of the traces 110 . In some embodiments, a thickening layer 126 is added between the metal layer 124 and the conductive layer 128 in a localized area of the trace 110 (eg, in the conductive layer stack 120 ). In other embodiments, the length of the thickened layer 126 along the extending direction of the trace 110 is not greater than the length of the conductive layer 128 .

在一些实施方式中,基板122的材料可为聚对苯二甲酸乙二酯(polyethyleneterephthalate,PET)、环烯烃聚合物(Cyclo olefin polymer,COP)、聚酰亚胺(polyimide,PI)、聚碳酸酯(polycarbonate,PC)、无色聚酰亚胺(Colorless Polyimide,CPI)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、或类似者。在一些实施方式中,金属层124的材料可为金、钯、银、铜、镍、其合金、或其组合。在一些实施方式中,导电层118的材料可为氧化铟锡(ITO)、纳米银线、金属网格、导电高分子(例如:聚(3,4-伸乙二氧基噻吩)/聚(苯乙烯磺酸)(PEDOT/PSS))、纳米碳管、石墨烯、或类似者。In some embodiments, the material of the substrate 122 may be polyethyleneterephthalate (PET), cycloolefin polymer (COP), polyimide (PI), polycarbonate ester (polycarbonate, PC), colorless polyimide (Colorless Polyimide, CPI), polyethylene naphthalate (polyethylene naphthalate, PEN), or the like. In some embodiments, the material of the metal layer 124 may be gold, palladium, silver, copper, nickel, alloys thereof, or combinations thereof. In some embodiments, the material of the conductive layer 118 may be indium tin oxide (ITO), silver nanowires, metal grids, conductive polymers (eg: poly(3,4-ethylenedioxythiophene)/poly(3,4-ethylenedioxythiophene) styrene sulfonic acid) (PEDOT/PSS)), carbon nanotubes, graphene, or the like.

在一些实施方式中,增厚层126的材料可为金属、非金属、或复合导电材料。金属可例如为金、钯、银、铜、镍、其合金、或其组合。非金属可例如为高分子绝缘材料(例如:保护层)或高分子导电材料(例如:PEDOT/PSS)。复合导电材料可例如为纳米银/碳黑/纳米碳管/石墨烯掺杂金属粒子和树酯。在一些实施方式中,增厚层的材料与在其下方的层的材料具有好的连接与附着而形成良导体。In some embodiments, the material of the thickened layer 126 may be a metal, a non-metal, or a composite conductive material. The metal can be, for example, gold, palladium, silver, copper, nickel, alloys thereof, or combinations thereof. The non-metal can be, for example, a polymer insulating material (eg, a protective layer) or a polymer conductive material (eg, PEDOT/PSS). The composite conductive material can be, for example, nanosilver/carbon black/carbon nanotube/graphene doped metal particles and resins. In some embodiments, the material of the thickened layer has good connection and adhesion to the material of the layer below it to form a good conductor.

在一些实施方式中,形成增厚层可经由图案化制程达成,例如:微影(Lithography)、喷墨列印(IJP)、喷涂(Spray)、丝网印刷(Screen printing)、柔版印刷(Flexo printing)、或类似者。In some embodiments, the formation of the thickened layer may be achieved through a patterning process, such as: Lithography, Inkjet Printing (IJP), Spray, Screen printing, Flexo printing ( Flexo printing), or similar.

请参看图1C,在另一些实施方式中,沿着图1A的局部增厚的区域114中的线CC的走线部分(导电层叠构)为图1C所示的导电层叠构130。导电层叠构130包含基板132、在基板132上方的导电层134、在导电层134上方的金属层136、以及在金属层136上方的增厚层138。其中,基板132、导电层134、和金属层136为在走线110的其他区域也具有的层面。在一些实施方式中,在走线110的局部区域中(例如,在导电层叠构130中),在导电层134和金属层136上方增加了增厚层138。在另一些实施方式中,沿着走线110延伸方向的增厚层138的长度不大于导电层134的长度。Referring to FIG. 1C , in other embodiments, the trace portion (conductive stack structure) along the line CC in the locally thickened region 114 of FIG. 1A is the conductive stack structure 130 shown in FIG. 1C . The conductive stack 130 includes a substrate 132 , a conductive layer 134 over the substrate 132 , a metal layer 136 over the conductive layer 134 , and a thickened layer 138 over the metal layer 136 . The substrate 132 , the conductive layer 134 , and the metal layer 136 are also layers in other regions of the trace 110 . In some embodiments, a thickened layer 138 is added over conductive layer 134 and metal layer 136 in localized areas of trace 110 (eg, in conductive stack 130 ). In other embodiments, the length of the thickened layer 138 along the extending direction of the trace 110 is not greater than the length of the conductive layer 134 .

导电层叠构130的各个层的材料可与图1B的导电层叠构120的各个层的材料相同,并且可利用如上述相同的制程而形成。The material of each layer of the conductive stack 130 may be the same as the material of each layer of the conductive stack 120 of FIG. 1B , and may be formed using the same process as described above.

请参看图1D,在又另一些实施方式中,沿着图1A的局部增厚的区域114中的线CC的走线部分(导电层叠构)为图1D所示的导电层叠构140。导电层叠构140包含基板142、在基板142上方的金属层144、在金属层144上方的导电层146、以及在导电层146上方的增厚层148。其中,基板142、金属层144、和导电层146为在走线110的其他区域也具有的层面。在一些实施方式中,在走线110的局部区域中(例如,在导电层叠构140中),在金属层144和导电层146上方增加了增厚层148。在另一些实施方式中,沿着走线110延伸方向的增厚层138的长度不大于导电层134的长度。Referring to FIG. 1D , in still other embodiments, the trace portion (conductive stack structure) along the line CC in the locally thickened region 114 of FIG. 1A is the conductive stack structure 140 shown in FIG. 1D . The conductive stack 140 includes a substrate 142 , a metal layer 144 over the substrate 142 , a conductive layer 146 over the metal layer 144 , and a thickened layer 148 over the conductive layer 146 . The substrate 142 , the metal layer 144 , and the conductive layer 146 are also layers in other regions of the traces 110 . In some embodiments, a thickening layer 148 is added over metal layer 144 and conductive layer 146 in localized areas of trace 110 (eg, in conductive layer stack 140 ). In other embodiments, the length of the thickened layer 138 along the extending direction of the trace 110 is not greater than the length of the conductive layer 134 .

导电层叠构140的各个层的材料可与图1B的导电层叠构120的各个层的材料相同,并且可利用如上述相同的制程而形成。The material of each layer of the conductive stack 140 may be the same as the material of each layer of the conductive stack 120 of FIG. 1B , and may be formed using the same process as described above.

请参看图1E,其为图1A的局部增厚的区域114的放大示意图。走线110的宽度尺寸为W1,走线间之间的间距尺寸为P1,虚线为装置弯折时的弯折线。在一些实施方式中,具有增厚层的区域为在非显示区的走线的部分中。在第一方向(走线延伸的方向,亦即y方向)上,具有增厚层的区域的长度为L1Please refer to FIG. 1E , which is an enlarged schematic view of the locally thickened region 114 of FIG. 1A . The width dimension of the traces 110 is W 1 , the space between the traces is P 1 , and the dotted line is the bending line when the device is bent. In some embodiments, the area with the thickened layer is in the portion of the trace that is not in the display area. In the first direction (the direction in which the trace extends, that is, the y-direction), the length of the region with the thickened layer is L 1 .

在一些实施方式中,在第二方向上(与第一方向垂直的方向,亦即x方向),增厚层的宽度可能为单个走线110的宽度,亦即,个别的增厚层位于不同的走线中。也就是说,增厚层的宽度尺寸为W1。在另一些实施方式中,当增厚层由非金属材料形成,例如聚合物材料,可形成一整体的增厚层其位于多条走线110的范围中,亦即,一单独的增厚层覆盖多条走线110的导电层。也就是说,当有N条走线时,增厚层的宽度尺寸Wt为等于或略大于N x W1+(N-1)x P1。或者,增厚层的宽度尺寸Wt为约等于N x(W1+P1)。因此,增厚层在第二方向上的宽度尺寸范围可介于约W1和约(W1+P1)x N之间。In some embodiments, in the second direction (the direction perpendicular to the first direction, that is, the x-direction), the width of the thickened layer may be the width of a single trace 110 , that is, the individual thickened layers are located in different in the line. That is, the width dimension of the thickened layer is W 1 . In other embodiments, when the thickening layer is formed of a non-metallic material, such as a polymer material, an integral thickening layer may be formed within the range of the plurality of traces 110, that is, a single thickening layer A conductive layer covering the plurality of traces 110 . That is, when there are N traces, the width dimension Wt of the thickened layer is equal to or slightly larger than N x W 1 +(N-1) x P 1 . Alternatively, the width dimension W t of the thickened layer is approximately equal to Nx(W 1 +P 1 ). Accordingly, the width dimension of the thickened layer in the second direction may range between about W 1 and about (W 1 +P 1 )×N.

图2A和图2B绘示导电层叠构的弯折区在弯折状态的示意图。增厚层所覆盖的区域的长度与弯折时的曲率半径和弯折角度相关。在图2A所绘示的导电层叠构20中,导电层叠构沿着第一方向(x方向)延伸,增厚层26位于基板22和走线材料层(金属或非金属)24上方。在图2A中,曲率半径为R1,弯折的角度为θ1,增厚层26的长度为W1。在图2B的导电层叠构30中,曲率半径为R2,弯折的角度为θ2,增厚层36位于基板32和走线材料层34上方且长度为W2FIG. 2A and FIG. 2B are schematic diagrams illustrating a bending state of the bending region of the conductive laminate structure. The length of the area covered by the thickened layer is related to the radius of curvature and the bending angle when bent. In the conductive stack structure 20 shown in FIG. 2A , the conductive stack structure extends along the first direction (x direction), and the thickening layer 26 is located above the substrate 22 and the wiring material layer (metal or non-metal) 24 . In FIG. 2A , the radius of curvature is R 1 , the angle of bending is θ 1 , and the length of the thickened layer 26 is W 1 . In the conductive stack structure 30 of FIG. 2B , the radius of curvature is R 2 , the bending angle is θ 2 , the thickened layer 36 is located above the substrate 32 and the trace material layer 34 and has a length W 2 .

在一些实施方式中,增厚层沿第一方向的长度取决于可折叠的电子装置的曲率半径和弯折的角度。在一些实施方式中,导电层叠构的曲率半径为1毫米,弯折的角度为180度,增厚层沿第一方向的长度至少为3毫米。In some embodiments, the length of the thickened layer in the first direction depends on the radius of curvature and the angle of bending of the foldable electronic device. In some embodiments, the radius of curvature of the conductive layer structure is 1 mm, the bending angle is 180 degrees, and the length of the thickened layer along the first direction is at least 3 mm.

在一些实施方式中,导电层叠构沿着第一方向延伸,增厚层在第一方向上在弯折区的长度取决于电子元件装置的弯折时的曲率半径和弯折的角度,增厚层长度至少需要大于对应曲率半径180°的弧长范围。In some embodiments, the conductive layer structure extends along the first direction, and the length of the thickened layer in the bending region in the first direction depends on the curvature radius and the bending angle of the electronic component device during bending, and the thickening layer is thickened. The layer length needs to be at least greater than the arc length range of 180° corresponding to the radius of curvature.

在一些实施方式中,增厚层的长度范围大于15毫米(mm),弯折轴心与增厚层两端的夹角为180°~360°(随增厚层长度而异);相较于没有设置增厚层的导电层叠构,本揭示内容的实施方式中的导电层叠构对于弯折时的应力应变量能增加0.1至10%,导电层叠构的曲率半径能减小0.5至3毫米。In some embodiments, the length of the thickened layer is greater than 15 millimeters (mm), and the angle between the bending axis and both ends of the thickened layer is 180°˜360° (varies with the length of the thickened layer); compared to Without the conductive layer structure provided with the thickening layer, the conductive layer structure in the embodiments of the present disclosure can increase the amount of stress-strain upon bending by 0.1 to 10%, and the curvature radius of the conductive layer structure can be reduced by 0.5 to 3 mm.

在一些实施方式中,导电层叠构沿第一方向延伸,在第一方向上增厚层的长度为大于9毫米,当以曲率半径为约3毫米弯折时,曲率半径的中心点与增厚层两端的夹角约180°。In some embodiments, the conductive layer structure extends along a first direction, the length of the thickened layer in the first direction is greater than 9 mm, and when bent with a radius of curvature of about 3 mm, the center point of the radius of curvature is the same as the thickened layer. The angle between the two ends of the layer is about 180°.

在另一些实施方式中,导电层叠构沿第一方向延伸,在第一方向上增厚层的长度为大于15毫米,当以曲率半径为约5毫米弯折时,曲率半径的中心点与增厚层两端的夹角约180°。In other embodiments, the conductive layer structure extends along a first direction, and the length of the thickened layer in the first direction is greater than 15 millimeters. When bent with a radius of curvature of about 5 millimeters, the center point of the radius of curvature is the same as the thickness of the thickened layer. The angle between the two ends of the thick layer is about 180°.

在一些实施方式中,导电层沿第一方向延伸,增厚层在第一方向上的长度与导电层沿第一方向延伸的长度比值为0.001~1,例如0.001、0.005、0.01、0.02、0.05、0.08、0.1、0.2、0.5、0.8。In some embodiments, the conductive layer extends along the first direction, and the ratio of the length of the thickened layer in the first direction to the length of the conductive layer extending along the first direction is 0.001˜1, such as 0.001, 0.005, 0.01, 0.02, 0.05 , 0.08, 0.1, 0.2, 0.5, 0.8.

在一些实施方式中,本揭示内容的导电层叠可应用于可折叠的电子装置的走线。可折叠的电子装置包含第一部分、可重复折叠区域其连接第一部分、以及第二部分其连接可重复折叠区域。走线在可重复折叠区域中包含增厚层,位于可折叠的电子装置折叠时的拉伸应力承受侧,用以降低走线断裂的风险。其中第一部分和第二部分在可折叠的电子装置非折叠时的角度可能为150度-180度或180度-210度,且第一部分和第二部分在可折叠的电子装置呈折叠时的角度可能为0度-30度或330度-360度。In some embodiments, the conductive stacks of the present disclosure may be applied to the routing of foldable electronic devices. A foldable electronic device includes a first portion, a refoldable region connecting the first portion, and a second portion connecting the refoldable region. The traces include a thickened layer in the refoldable area, on the tensile stress bearing side of the foldable electronic device when folded, to reduce the risk of the traces breaking. The angle of the first part and the second part when the foldable electronic device is not folded may be 150-180 degrees or 180-210 degrees, and the angle of the first part and the second part when the foldable electronic device is folded May be 0 degrees-30 degrees or 330 degrees-360 degrees.

当导电层叠构形成为导电的走线应用于折叠式电子装置中,在多次弯折应力的作用下,导电的走线的电阻改变(增加)应尽可能小。一旦导电的走线发生破裂或断裂,导电的走线的电阻增大甚至失效,会导致折叠式电子装置的性能劣化甚至故障。其中本文所述定义的断裂为导电的走线电阻增大超过10%。When the conductive stack is configured as a conductive trace used in a foldable electronic device, under the action of multiple bending stresses, the resistance change (increase) of the conductive trace should be as small as possible. Once the conductive traces are broken or broken, the resistance of the conductive traces increases or even fails, which may lead to performance degradation or even failure of the foldable electronic device. Where the break as defined herein is conductive, the resistance of the trace increases by more than 10%.

以下结合比较例(参看图3A至图3B)和实验例(参见图4A至图4C),说明本案实施方式的导电层叠构的弯折试验的测试结果。The test results of the bending test of the conductive laminate structure of the embodiment of the present invention will be described below with reference to comparative examples (see FIGS. 3A to 3B ) and experimental examples (see FIGS. 4A to 4C ).

进行弯折试验采用汤浅电池(Yuasa Battery)公司生产的型号为DMLHP-CS的弯折机进行对各实施例和对比例的导电层叠构进行测试。试验条件为曲率半径为3毫米,弯折频率为每分钟30次,最大的折叠力为4Nm。然后记录不同的导电层叠构的弯折次数及电阻变化百分比。Conducting the Bending Test The conductive laminate structures of the respective Examples and Comparative Examples were tested using a bending machine of the model DMLHP-CS produced by Yuasa Battery Company. The test conditions are that the radius of curvature is 3 mm, the bending frequency is 30 times per minute, and the maximum folding force is 4 Nm. The number of bends and the percent change in resistance for the different conductive stack structures were then recorded.

图3A绘示根据一些比较例的导电层叠构40在弯折状态的示意图;图3B绘示导电层叠构40在非弯折状态的示意图。导电层叠构40包含基板42、和在基板42上方的金属层44。此外,导电层叠构40的线长为100μm。在导电叠构40中,基板42的材料为PET,厚度为50微米,杨氏模量为2~3GP。金属层44的材料为铜层,厚度为0.3微米,杨氏模量为140Gpa。在图3B中所示的虚线为弯折时的中性轴的位置。FIG. 3A is a schematic diagram of the conductive laminate structure 40 in a bent state according to some comparative examples; FIG. 3B is a schematic diagram of the conductive laminate structure 40 in a non-bent state. The conductive stack 40 includes a substrate 42 and a metal layer 44 over the substrate 42 . In addition, the wire length of the conductive laminate structure 40 was 100 μm. In the conductive stack 40, the substrate 42 is made of PET, with a thickness of 50 microns and a Young's modulus of 2˜3GP. The material of the metal layer 44 is a copper layer with a thickness of 0.3 microns and a Young's modulus of 140 Gpa. The dotted line shown in FIG. 3B is the position of the neutral axis at the time of bending.

以下表一为不同的比较例的导电层叠构,以曲率半径3毫米,角度180°进行的弯折试验的结果。其中比较例中的金属层(铜层)分别以溅镀、或不同的电镀制程(亦即化学镀(一)、(二)、(三))形成。The following table 1 shows the results of bending tests performed with a radius of curvature of 3 mm and an angle of 180° for the conductive laminate structures of different comparative examples. The metal layer (copper layer) in the comparative example is formed by sputtering or different electroplating processes (ie, electroless plating (1), (2), (3)), respectively.

表一Table I

Figure BDA0002547064660000131
Figure BDA0002547064660000131

Figure BDA0002547064660000141
Figure BDA0002547064660000141

由表一可知,在以曲率半径3毫米,经过2万次的折叠后,上述各个比较例的导电层叠构的电阻明显的增加。其中采用电镀(一)、电镀(二)、和电镀(三)制程所形成的导电叠构走线电阻的变化大于10%。It can be seen from Table 1 that after 20,000 times of folding with a radius of curvature of 3 mm, the resistance of the conductive layer structures of the above-mentioned comparative examples increases significantly. The variation of the wiring resistance of the conductive stack structure formed by the electroplating (1), the electroplating (2), and the electroplating (3) processes is greater than 10%.

图4A绘示根据一些实验例的导电层叠构50在非弯折状态的示意图。导电层叠构50包含基板52、在基板52上方的导电层54、在导电层54上方的金属层56、和在金属层56上方的增厚层58。其中,增厚层58的材料为铜。在图4A中所示的虚线为弯折时的中性轴的位置。FIG. 4A is a schematic diagram of the conductive layer structure 50 in a non-bent state according to some experimental examples. The conductive stack 50 includes a substrate 52 , a conductive layer 54 over the substrate 52 , a metal layer 56 over the conductive layer 54 , and a thickened layer 58 over the metal layer 56 . The material of the thickened layer 58 is copper. The dotted line shown in FIG. 4A is the position of the neutral axis at the time of bending.

图4B绘示根据一些实验例的导电层叠构60在非弯折状态的示意图。导电层叠构60包含基板62、在基板62上方的导电层64、在导电层64上方的金属层66,以及在金属层66上方的增厚层68。其中,基板62由PET形成,厚度为50微米。导电层64包含纳米银材料,厚度为0.2-0.5μm。金属层66的材料为铜,厚度为0.2-0.5μm。增厚层68的为一聚合物层,其材料为压克力,厚度为5至10μm。在图4B中所示的虚线为弯折时的中性轴的位置。FIG. 4B is a schematic diagram of the conductive laminate structure 60 in a non-bent state according to some experimental examples. The conductive stack 60 includes a substrate 62 , a conductive layer 64 over the substrate 62 , a metal layer 66 over the conductive layer 64 , and a thickened layer 68 over the metal layer 66 . Among them, the substrate 62 is formed of PET and has a thickness of 50 microns. The conductive layer 64 contains nano-silver material and has a thickness of 0.2-0.5 μm. The material of the metal layer 66 is copper, and the thickness is 0.2-0.5 μm. The thickening layer 68 is a polymer layer, the material is acrylic, and the thickness is 5 to 10 μm. The dotted line shown in FIG. 4B is the position of the neutral axis at the time of bending.

以下表二为不同的如图4B所示的实施例的导电层叠构,以曲率半径3毫米,角度180°进行的弯折试验的结果。其中对照组为未涂布聚合物(不含增厚层)的导电叠构。The following Table 2 shows the results of bending tests performed with a radius of curvature of 3 mm and an angle of 180° for the conductive laminate structures of different embodiments as shown in FIG. 4B . The control group is a conductive stack without polymer coating (without thickening layer).

表二Table II

Figure BDA0002547064660000142
Figure BDA0002547064660000142

Figure BDA0002547064660000151
Figure BDA0002547064660000151

由表二可知,在经过4万次的折叠后,上述各个实施例的导电层叠构的电阻没有明显的变化;相反地,未涂布聚合物的导电层叠构的走线电阻明显地上升,代表有线路断裂的情况。因此,实施例的导电层叠构有更好的耐弯折性,显著地优于未涂布聚合物的对照组导电层叠构。It can be seen from Table 2 that after 40,000 times of folding, the resistance of the conductive layered structures of the above-mentioned embodiments does not change significantly; on the contrary, the trace resistance of the conductive layered structures without polymer coating increases significantly, representing There is a break in the line. Therefore, the conductive laminates of the Examples have better bending resistance, significantly better than the control laminates without the polymer coating.

图4C绘示根据一些实验例的导电层叠构70在非弯折状态的示意图。导电层叠构70包含基板72、在基板72上方的导电层74、在导电层74上方的金属层76,在金属层76上方的第一聚合物层78、以及在第一聚合物层78上方的第二聚合物层80。也就是说,在导电层叠构70中,增厚层为异质性聚合物形成的多层,包含第一聚合物层78和第二聚合物层80。在导电层叠构70中,基板72由PET形成,厚度为50微米。导电层74包含纳米银材料,厚度为100nm以下。金属层76的材料为铜,厚度为0.2~0.5μm。第一聚合物层78的材料为光学胶(OCA),厚度为50微米。第二聚合物层80的材料为PET,厚度为50微米。在图4C中所示的虚线为弯折时的中性轴的位置。FIG. 4C is a schematic diagram of the conductive layer structure 70 in a non-bent state according to some experimental examples. Conductive stack 70 includes substrate 72 , conductive layer 74 over substrate 72 , metal layer 76 over conductive layer 74 , first polymer layer 78 over metal layer 76 , and a first polymer layer 78 over first polymer layer 78 The second polymer layer 80 . That is, in the conductive layer structure 70 , the thickening layer is a multi-layer formed of a heterogeneous polymer, and includes the first polymer layer 78 and the second polymer layer 80 . In the conductive laminate structure 70, the substrate 72 is formed of PET and has a thickness of 50 microns. The conductive layer 74 contains nano-silver material and has a thickness of 100 nm or less. The material of the metal layer 76 is copper, and the thickness is 0.2-0.5 μm. The material of the first polymer layer 78 is optical adhesive (OCA), and the thickness is 50 microns. The material of the second polymer layer 80 is PET, and the thickness is 50 microns. The dashed line shown in FIG. 4C is the position of the neutral axis at the time of bending.

以下表三为不同的实施例的导电层叠构,以曲率半径3毫米,角度180°进行的弯折试验的结果。其中对照组为未涂布聚合物(不含增厚层)的导电叠构。在表三中,含OCA层/PET层的导电层叠构相当于第4C图所示的实施例的结构。The following Table 3 shows the results of bending tests performed with a radius of curvature of 3 mm and an angle of 180° for the conductive laminate structures of different embodiments. The control group is a conductive stack without polymer coating (without thickening layer). In Table 3, the conductive laminate structure containing the OCA layer/PET layer corresponds to the structure of the example shown in Fig. 4C.

表三Table 3

Figure BDA0002547064660000152
Figure BDA0002547064660000152

Figure BDA0002547064660000161
Figure BDA0002547064660000161

由表三可知,在经过4万次的折叠后,上述具有第一聚合物层和第二聚合物层的实施例的导电层叠构的电阻没有明显的变化;并且,在经过6万次、16万5千次、和20万次的折叠后,上述导电层叠构的电阻也没有明显的变化。亦即,在经过多次折叠后,导电层叠构没有断裂的情况。因此,这些实施例的导电层叠构有更好的耐弯折性,显著地优于未涂布聚合物的对照组导电层叠构。It can be seen from Table 3 that after 40,000 times of folding, the resistance of the conductive layer structure of the above-mentioned embodiment with the first polymer layer and the second polymer layer has no obvious change; After 10,000 folds and 200,000 folds, the electrical resistance of the conductive layer structure did not change significantly. That is, there is no case where the conductive layer structure is broken after being folded several times. Thus, the conductive laminates of these examples have better flex resistance, significantly better than the control laminates of the uncoated polymer.

图5A至图5D绘示根据本揭示内容的一些实施方式的导电层叠构的示意图。5A-5D illustrate schematic diagrams of conductive stack structures according to some embodiments of the present disclosure.

图5A绘示导电层叠构210,其包含基板212、在基板212上方的走线材料层214、和在走线材料层214上方的增厚层216。其中,走线材料层214的材料可为金属、非金属、或其组合。增厚层216的材料可为金属、非金属、或复合导电材料。FIG. 5A shows a conductive stack 210 including a substrate 212 , a layer of trace material 214 over the substrate 212 , and a thickened layer 216 over the layer of trace material 214 . The material of the wiring material layer 214 may be metal, non-metal, or a combination thereof. The material of the thickened layer 216 may be metal, non-metal, or composite conductive material.

在一些实施方式中,当增厚层216的材料为金属时,增厚层216的厚度与走线材料层214的厚度比值为0.05~5,例如,0.05~0.5、0.1~1、0.5~2、或2~5。In some embodiments, when the material of the thickening layer 216 is metal, the ratio of the thickness of the thickening layer 216 to the thickness of the wiring material layer 214 is 0.05-5, for example, 0.05-0.5, 0.1-1, 0.5-2 , or 2 to 5.

在一些实施方式中,当增厚层216的材料为非金属或复合导电材料时,增厚层216的厚度与走线材料层214的厚度比值为0.1~50,例如0.1~10、10~20、或20~50。In some embodiments, when the material of the thickening layer 216 is a non-metal or composite conductive material, the ratio of the thickness of the thickening layer 216 to the thickness of the wiring material layer 214 is 0.1-50, for example, 0.1-10, 10-20 , or 20 to 50.

在一些实施方式中,导电层叠构210的基板212的厚度(单位:μm)乘以杨氏模量(单位:Gpa)的值为约100~300,走线材料层214的厚度乘以杨氏模量的值为约20~70,增厚层216的材料为金属,且增厚层216的厚度乘以杨氏模量的值为约5~30。In some embodiments, the thickness (unit: μm) of the substrate 212 of the conductive stack structure 210 multiplied by the Young's modulus (unit: Gpa) is about 100-300, and the thickness of the trace material layer 214 is multiplied by the Young's modulus. The value of the modulus is about 20-70, the material of the thickened layer 216 is metal, and the value of the thickness of the thickened layer 216 multiplied by the Young's modulus is about 5-30.

在一些实施方式中,导电层叠构210的基板212的厚度乘以杨氏模量的值为约100~300,走线材料层214的厚度乘以杨氏模量的值为约20~70,增厚层216的材料为非金属或复合导电材料,且增厚层216的厚度乘以杨氏模量的值为约2~60。In some embodiments, the value of the thickness of the substrate 212 of the conductive stack structure 210 multiplied by the Young's modulus is about 100-300, and the value of the thickness of the trace material layer 214 multiplied by the Young's modulus is about 20-70, The material of the thickened layer 216 is a non-metal or composite conductive material, and the value of the thickness of the thickened layer 216 multiplied by the Young's modulus is about 2-60.

图5B绘示导电层叠构220,其包含基板222、在基板222上方的走线材料层224、在走线材料层224上方的第一聚合物层226、和在第一聚合物层226上方的第二聚合物层228。在导电层叠构220中,基板222和走线材料层224的材料类似于图5A所示的导电层叠构210的基板212和走线材料层214。在导电层叠构220中,增厚层为异质性聚合物形成的多层,包含第一聚合物层226和第二聚合物层228。第一聚合物层226和第二聚合物层228为不同的聚合物材料。在一些实施方式中,第一聚合物层226与第二聚合物层228的杨氏模量的比值为约103~106,例如,第一聚合物层226由OCA形成,第二聚合物层228由PET形成。在导电层叠构220中,第一聚合物层226的厚度与走线材料层224的厚度的比值为约30至100,第二聚合物层228的厚度与走线材料层214的厚度的比值为约30至100,并且第一聚合物层的厚度与第二聚合物层的厚度的比值为约0.5至2。5B illustrates a conductive stack structure 220 including a substrate 222 , a layer of trace material 224 over the substrate 222 , a first polymer layer 226 over the layer of trace material 224 , and a layer of The second polymer layer 228 . In the conductive stack structure 220, the materials of the substrate 222 and the wiring material layer 224 are similar to those of the substrate 212 and the wiring material layer 214 of the conductive stack structure 210 shown in FIG. 5A. In the conductive layer structure 220 , the thickening layer is a multi-layer formed of heterogeneous polymers, including a first polymer layer 226 and a second polymer layer 228 . The first polymer layer 226 and the second polymer layer 228 are different polymer materials. In some embodiments, the ratio of the Young's modulus of the first polymer layer 226 to the second polymer layer 228 is about 10 3 to 10 6 , eg, the first polymer layer 226 is formed of OCA, and the second polymer layer 226 is formed of OCA. Layer 228 is formed of PET. In the conductive layer structure 220, the ratio of the thickness of the first polymer layer 226 to the thickness of the trace material layer 224 is about 30 to 100, and the ratio of the thickness of the second polymer layer 228 to the thickness of the trace material layer 214 is about 30 to 100, and the ratio of the thickness of the first polymer layer to the thickness of the second polymer layer is about 0.5 to 2.

在一些实施方式中,导电层叠构220的基板222的厚度乘以杨氏模量的值为约100~300,走线材料层224厚度乘以杨氏模量的值为约20~70,第一聚合物层226的厚度乘以杨氏模量的值为约2~60,第二聚合物层228的厚度乘以杨氏模量的值为约100~300。In some embodiments, the thickness of the substrate 222 of the conductive stack structure 220 multiplied by the Young's modulus is about 100-300, and the thickness of the trace material layer 224 multiplied by the Young's modulus is about 20-70. The thickness of the first polymer layer 226 multiplied by the Young's modulus is about 2-60, and the thickness of the second polymer layer 228 multiplied by the Young's modulus is about 100-300.

图5C绘示导电层叠构230,其包含基板232、在基板232上方的触媒层(Catalystlayer)234、在触媒层234上方的导电层236、和在导电层236上方的增厚层238。在导电层叠构230中,基板232、和增厚层238类似于图5A所示的导电层叠构210中的基板212、和增厚层216。在一些实施方式中,触媒层234的材料可能为钯、铑、铂、铱、锇、金、镍、铁等其中任意一种金属。在导电层叠构230中,导电层236的材料为金属,例如可经由化学镀制程而形成铜层在触媒层234之上,并且导电层236的厚度与触媒层234的厚度的比值为约0.5~5、或约2~10。5C shows a conductive stack 230 including a substrate 232 , a catalyst layer 234 over the substrate 232 , a conductive layer 236 over the catalyst layer 234 , and a thickening layer 238 over the conductive layer 236 . In conductive stack 230, substrate 232 and thickened layer 238 are similar to substrate 212 and thickened layer 216 in conductive stack 210 shown in FIG. 5A. In some embodiments, the material of the catalyst layer 234 may be any one of metals such as palladium, rhodium, platinum, iridium, osmium, gold, nickel, and iron. In the conductive layer structure 230, the material of the conductive layer 236 is metal, for example, a copper layer can be formed on the catalyst layer 234 through an electroless plating process, and the ratio of the thickness of the conductive layer 236 to the thickness of the catalyst layer 234 is about 0.5~ 5, or about 2 to 10.

图5D绘示导电层叠构240,其包含基板242、在基板232上方的触媒层244、在触媒层244上方的导电层246、在导电层246上方的第一聚合物层248、和在第一聚合物层248上方的第二聚合物层250。在导电层叠构240中,基板242、第一聚合物层248、和第二聚合物层250类似于图5B所示的导电层叠构220中的基板222、第一聚合物层226、和第二聚合物层228。在一些实施方式中,触媒层244的材料可能为钯、铑、铂、铱、锇、金、镍、铁等其中任意一种金属。在导电层叠构240中,导电层246的材料为金属,例如可经由化学镀制程而形成铜层在触媒层244之上,并且导电层246的厚度与触媒层244的厚度的比值为约0.5~5、或约2~10。5D illustrates a conductive stack 240 comprising a substrate 242, a catalyst layer 244 over the substrate 232, a conductive layer 246 over the catalyst layer 244, a first polymer layer 248 over the conductive layer 246, and a first polymer layer 248 over the conductive layer 246. Second polymer layer 250 over polymer layer 248 . In conductive stack 240, substrate 242, first polymer layer 248, and second polymer layer 250 are similar to substrate 222, first polymer layer 226, and second polymer layer 220 in conductive stack 220 shown in Figure 5B Polymer layer 228. In some embodiments, the material of the catalyst layer 244 may be any one of metals such as palladium, rhodium, platinum, iridium, osmium, gold, nickel, and iron. In the conductive layer structure 240, the material of the conductive layer 246 is metal, for example, a copper layer can be formed on the catalyst layer 244 through an electroless plating process, and the ratio of the thickness of the conductive layer 246 to the thickness of the catalyst layer 244 is about 0.5~ 5, or about 2 to 10.

图6A至图6F绘示根据一些实施方式的导电层叠构应用于单面折叠式电子装置的示意图。6A to 6F are schematic diagrams illustrating the application of the conductive layer structure to a single-sided foldable electronic device according to some embodiments.

图6A为导电层叠构310以U型折叠时的示意图,图6B为导电层叠构310展开时的示意图。FIG. 6A is a schematic diagram of the conductive laminated structure 310 when folded in a U-shape, and FIG. 6B is a schematic diagram of the conductive laminated structure 310 unfolded.

导电层叠构310包含基板312、在基板312上方的金属层314、和在金属层上方的导电层318,增厚层316在形成在弯折处的金属层314和导电层318之间。在一些实施方式中,在弯折处,金属层314之上先局部增厚,形成材料为金属或复合导电复合的增厚层316,之后涂覆包含纳米银线的导电层318。The conductive stack 310 includes a substrate 312, a metal layer 314 over the substrate 312, and a conductive layer 318 over the metal layer, with a thickened layer 316 formed between the metal layer 314 and the conductive layer 318 at the bend. In some embodiments, at the bend, the metal layer 314 is locally thickened first to form a thickened layer 316 made of metal or a composite conductive composite, and then a conductive layer 318 containing silver nanowires is coated.

图6C为导电层叠构330以U型折叠时的示意图,图6D为导电层叠构330展开时的示意图。FIG. 6C is a schematic diagram of the conductive layered structure 330 when it is folded in a U-shape, and FIG. 6D is a schematic diagram of the conductive layered structure 330 when it is unfolded.

导电层叠构330包含基板332、在基板332上方的金属层334、和在金属层上方的导电层336,增厚层338在形成在弯折处的导电层336之上。在一些实施方式中,在弯折处,先涂覆包含纳米银线的导电层336,之后,在局部形成材料为金属、非金属、或复合导电材料的增厚层338。The conductive stack 330 includes a substrate 332, a metal layer 334 over the substrate 332, and a conductive layer 336 over the metal layer, with a thickened layer 338 over the conductive layer 336 formed at the bend. In some embodiments, at the bend, a conductive layer 336 containing nano-silver wires is coated first, and then a thickened layer 338 made of metal, non-metal, or composite conductive material is locally formed.

图6E为导电层叠构350以U型折叠时的示意图,图6F为导电层叠构350展开时的示意图。FIG. 6E is a schematic diagram of the conductive laminated structure 350 when folded in a U-shape, and FIG. 6F is a schematic diagram of the conductive laminated structure 350 unfolded.

导电层叠构350包含基板352、在基板352上方的导电层354、和在导电层354上方的金属层356,增厚层358在形成在弯折处的金属层356之上。在一些实施方式中,在弯折处,在金属层356之上局部地形成材料为金属、非金属、或复合导电材料的增厚层358。The conductive stack 350 includes a substrate 352, a conductive layer 354 over the substrate 352, and a metal layer 356 over the conductive layer 354 with a thickened layer 358 over the metal layer 356 formed at the bend. In some embodiments, at the bend, a thickened layer 358 of metal, non-metal, or composite conductive material is locally formed over the metal layer 356 .

图7A至图7F绘示根据一些实施方式的导电层叠构应用于双面折叠式电子装置的示意图。7A to 7F are schematic diagrams illustrating the application of the conductive stack structure to a double-sided foldable electronic device according to some embodiments.

图7A为导电层叠构410以S型折叠时的示意图,图7B为导电层叠构410展开时的示意图。FIG. 7A is a schematic diagram of the conductive layered structure 410 when it is folded in an S-shape, and FIG. 7B is a schematic diagram of the conductive layered structure 410 when it is unfolded.

导电层叠构410包含具有双侧金属膜的结构层414、在具有双侧金属膜的结构层414的两侧上的导电层412和418,以及位于弯折处的增厚层416。Conductive stack 410 includes structural layer 414 with double-sided metal films, conductive layers 412 and 418 on both sides of structural layer 414 with double-sided metal films, and thickened layer 416 at the bend.

具有双侧金属膜的结构层414包含基板414B,在基板414B的双侧上形成金属层414A和414C。在弯折处,增厚层416位于介于金属层414A之间和导电层412之间,以及位于介于金属层414C和导电层418之间。在一些实施方式中,在弯折处,金属层314之上先局部增厚,形成材料为金属或复合导电材料的增厚层416,之后涂覆包含纳米银线的导电层412和418。The structural layer 414 with double-sided metal films includes a substrate 414B on which metal layers 414A and 414C are formed. At the bends, thickened layer 416 is located between metal layer 414A and conductive layer 412 , and between metal layer 414C and conductive layer 418 . In some embodiments, at the bend, the metal layer 314 is locally thickened first to form a thickened layer 416 made of metal or composite conductive material, and then the conductive layers 412 and 418 including nano-silver wires are coated.

图7C为导电层叠构430以S型折叠时的示意图,图7D为导电层叠构430展开时的示意图。FIG. 7C is a schematic diagram of the conductive laminated structure 430 when folded in an S-shape, and FIG. 7D is a schematic diagram of the conductive laminated structure 430 unfolded.

导电层叠构430包含具有双侧金属膜的结构层434、在具有双侧金属膜的结构层434的两侧上的导电层432和436,以及位于弯折处的增厚层438。The conductive stack structure 430 includes a structural layer 434 with a double-sided metal film, conductive layers 432 and 436 on both sides of the structural layer 434 with a double-sided metal film, and a thickened layer 438 at the bend.

具有双侧金属膜的结构层434包含基板434B,在基板434B的双侧上形成金属层434A和434C。在弯折处,增厚层438位于导电层432和436上。在一些实施方式中,先涂覆包含纳米银线的导电层432和436之后,在弯折处,形成材料为金属、非金属、或复合导电材料的增厚层438。The structural layer 434 with double-sided metal films includes a substrate 434B on which metal layers 434A and 434C are formed. At the bend, thickened layer 438 is located on conductive layers 432 and 436 . In some embodiments, after coating the conductive layers 432 and 436 containing nano-silver wires, at the bend, a thickened layer 438 made of metal, non-metal, or composite conductive material is formed.

图7E为导电层叠构450以S型折叠时的示意图,图7F为导电层叠构450展开时的示意图。FIG. 7E is a schematic diagram of the conductive stack structure 450 when it is folded in an S-shape, and FIG. 7F is a schematic view of the conductive stack structure 450 when it is unfolded.

导电层叠构450包含具有双侧导电膜(例如,透明导电层)的结构层454、在具有双侧导电膜的结构层454的两侧上的金属层452和456,以及位于弯折处的增厚层458。The conductive stack structure 450 includes a structural layer 454 with a double-sided conductive film (eg, a transparent conductive layer), metal layers 452 and 456 on both sides of the structural layer 454 with a double-sided conductive film, and an additive layer at the bend. Thick layer 458.

具有双侧导电膜的结构层454包含基板454B,在基板454B的双侧上形成导电层454A和454C。在一些实施方式中,在弯折处,在金属层452和456之上局部地形成材料为金属、非金属、或复合导电材料的增厚层458。The structural layer 454 with double-sided conductive films includes a substrate 454B on which conductive layers 454A and 454C are formed. In some embodiments, at the bends, a thickened layer 458 of metal, non-metal, or composite conductive material is locally formed over the metal layers 452 and 456 .

以下提供具有增厚层的导电层叠构的折叠式装置制造方法。The following provides a method of manufacturing a folded device having a conductive laminate structure with a thickened layer.

图8A至图8I绘示根据一些实施方式的一制程,形成一折叠式电子装置其层面依序包含单侧的金属膜(single-side metal film,SMF)、选择性成长的金属(selectivegrowth metal,SGM)和导电层,其中增厚层为金属材料。8A to 8I illustrate a process for forming a foldable electronic device, the layers of which sequentially include a single-side metal film (SMF), a selective growth metal (selective growth metal) according to some embodiments. SGM) and a conductive layer, wherein the thickened layer is a metallic material.

如图8A所示,提供具有金属层504的基板502。可能利用溅镀或电镀,将例如铜的金属材料形成在基板502上。As shown in Figure 8A, a substrate 502 with a metal layer 504 is provided. A metallic material such as copper is formed on the substrate 502, possibly using sputtering or electroplating.

如图8B所示,之后形成光阻层506在金属层504上,并且进行曝光和显影而图案化光阻层506。As shown in FIG. 8B, a photoresist layer 506 is then formed on the metal layer 504, and the photoresist layer 506 is patterned by exposure and development.

如图8C所示,之后进行蚀刻制程,将未被图案化的光阻层506遮盖的金属层504的部分蚀刻,形成图案化的金属层504。之后剥离光阻层506。As shown in FIG. 8C , an etching process is then performed to etch a portion of the metal layer 504 that is not covered by the patterned photoresist layer 506 to form a patterned metal layer 504 . The photoresist layer 506 is then stripped.

如图8D所示,形成光阻层510于图案化的金属层504的间隔之间,并进行曝光和显影。之后在金属层504上方选择性成长增厚层508。在一些实施方式中,经由溅镀或电镀,将铜材料形成在金属层504之上。As shown in FIG. 8D, a photoresist layer 510 is formed between the spaces of the patterned metal layer 504, and exposed and developed. A thickened layer 508 is then selectively grown over the metal layer 504 . In some embodiments, the copper material is formed over the metal layer 504 via sputtering or electroplating.

如图8E所示,移除光阻层510,并且在基板502上、金属层504上和增厚层508上设置导电层512。在一些实施方式中,可经由涂覆的方式,将含有纳米银线或ITO的导电材料形成为导电层512。As shown in FIG. 8E , the photoresist layer 510 is removed, and a conductive layer 512 is provided on the substrate 502 , the metal layer 504 , and the thickened layer 508 . In some embodiments, a conductive material containing silver nanowires or ITO can be formed into the conductive layer 512 by coating.

如图8F所示,设置光阻层514,并且曝光和显影而形成图案化的光阻层514。As shown in FIG. 8F , a photoresist layer 514 is provided, and exposed and developed to form a patterned photoresist layer 514 .

如图8G所示,之后进行蚀刻,蚀刻未被图案化的光阻层遮盖的导电层512、增厚层508、和金属层504。因此,形成了多个分隔的走线。As shown in FIG. 8G, an etch is then performed to etch the conductive layer 512, the thickened layer 508, and the metal layer 504 not covered by the patterned photoresist layer. Therefore, multiple separated traces are formed.

如图8H所示,将光阻层514剥离。As shown in Figure 8H, the photoresist layer 514 is peeled off.

如图8I所示,在基板502、金属层504、增厚层508、和导电层512上方设置保护层(over coating)516。在图8I所示的结构中,在走线中,增厚层508位于金属层504和导电层512之间。As shown in FIG. 8I , over coating 516 is provided over substrate 502 , metal layer 504 , thickened layer 508 , and conductive layer 512 . In the structure shown in FIG. 8I, the thickened layer 508 is located between the metal layer 504 and the conductive layer 512 in the trace.

图9A至图9J绘示根据一些实施方式的一制程,形成一折叠式电子装置其层面依序包含单侧的金属膜、导电层、和选择性成长的金属,其中增厚层为金属材料。9A to 9J illustrate a process of forming a foldable electronic device, the layers of which sequentially include a single-sided metal film, a conductive layer, and a selectively grown metal, wherein the thickened layer is a metal material, according to some embodiments.

如图9A所示,提供具有金属层524的基板522。可能利用溅镀或电镀,将例如铜的金属材料形成在基板522上。As shown in Figure 9A, a substrate 522 with a metal layer 524 is provided. A metallic material, such as copper, may be formed on the substrate 522 using sputtering or electroplating.

如图9B所示,在金属层524上方形成光阻层526,并经曝光和显影而形成图案化的光阻层526。As shown in FIG. 9B, a photoresist layer 526 is formed over the metal layer 524, and is exposed and developed to form a patterned photoresist layer 526.

如图9C所示,之后进行蚀刻制程,将未被图案化的光阻层526遮盖的金属层524的部分蚀刻,形成图案化的金属层。之后剥离光阻层526。As shown in FIG. 9C , an etching process is then performed to etch the part of the metal layer 524 that is not covered by the patterned photoresist layer 526 to form a patterned metal layer. The photoresist layer 526 is then stripped.

如图9D所示,在基板522和金属层524之上设置导电层528。可经由涂覆的方式,将含有纳米银线或ITO的导电材料形成为导电层528。As shown in FIG. 9D , a conductive layer 528 is provided over the substrate 522 and the metal layer 524 . The conductive material containing silver nanowires or ITO can be formed into the conductive layer 528 by coating.

如图9E所示,形成光阻层530,并经曝光和显影形成图案化的光阻层530。As shown in FIG. 9E, a photoresist layer 530 is formed, and a patterned photoresist layer 530 is formed by exposure and development.

如图9F所示,在导电层上方未被图案化的光阻层530覆盖的区域设置增厚层532。在一些实施方式中,可经由选择性成长,例如将铜材料溅镀或电镀在导电层528上。As shown in FIG. 9F, a thickening layer 532 is provided over the conductive layer in areas not covered by the patterned photoresist layer 530. In some embodiments, copper material may be sputtered or electroplated on conductive layer 528 via selective growth, for example.

如图9G所示,剥离光阻层530。As shown in FIG. 9G, the photoresist layer 530 is stripped.

如图9H所示,形成光阻层534,并经曝光和显影而形成图案化的光阻层534。As shown in FIG. 9H , a photoresist layer 534 is formed, and exposed and developed to form a patterned photoresist layer 534 .

如图9I所示,之后进行蚀刻,移除未被图案化的光阻层534遮盖的增厚层532、导电层528、和金属层524。因此,形成多个分隔的走线。之后剥离光阻层534。As shown in FIG. 9I , etching is then performed to remove the thickened layer 532 , the conductive layer 528 , and the metal layer 524 not covered by the patterned photoresist layer 534 . Therefore, multiple separated traces are formed. The photoresist layer 534 is then stripped.

如图9J所示,在基板522、金属层524、导电层528、和增厚层532上方设置保护层536。在图9J所示的结构中,在走线中,增厚层532位于金属层524和导电层528二者的上方。As shown in FIG. 9J , a protective layer 536 is provided over the substrate 522 , the metal layer 524 , the conductive layer 528 , and the thickened layer 532 . In the structure shown in FIG. 9J, thickened layer 532 is located over both metal layer 524 and conductive layer 528 in the trace.

图10A至图10G绘示根据一些实施方式的一制程,形成一折叠式电子装置其层面依序包含导电层、单侧的金属膜、和选择性成长的金属,其中增厚层为金属材料。10A to 10G illustrate a process for forming a foldable electronic device, the layers of which sequentially include a conductive layer, a single-sided metal film, and a selectively grown metal, wherein the thickened layer is a metal material, according to some embodiments.

如图10A所示,首先提供包含导电层604(透明导电膜)的基板602,之后在导电层604之上设置金属层606。在一些实施方式中,可经由溅镀或电镀,将铜材料形成在导电层604之上。As shown in FIG. 10A , a substrate 602 including a conductive layer 604 (transparent conductive film) is first provided, and then a metal layer 606 is provided on the conductive layer 604 . In some embodiments, the copper material may be formed over conductive layer 604 via sputtering or electroplating.

如图10B所示,形成光阻层608,并经曝光和显影而形成图案化的光阻层608。As shown in FIG. 10B , a photoresist layer 608 is formed, and exposed and developed to form a patterned photoresist layer 608 .

如图10C所示,在金属层606未被光阻层608遮盖的部分之上设置增厚层610。在一些实施方式中,可经由选择性成长金属层,例如溅镀或电镀,将铜材料设置于金属层606之上。As shown in FIG. 10C , a thickened layer 610 is provided over the portion of the metal layer 606 that is not covered by the photoresist layer 608 . In some embodiments, the copper material may be disposed over the metal layer 606 via selective growth of the metal layer, such as sputtering or electroplating.

如图10D所示,剥离光阻层608。As shown in Figure 10D, the photoresist layer 608 is stripped.

如图10E所示,在增厚层610和金属层606之上设置光阻层612,并经曝光和显影而形成图案化的光阻层612。As shown in FIG. 10E , a photoresist layer 612 is disposed on the thickened layer 610 and the metal layer 606 , and is exposed and developed to form a patterned photoresist layer 612 .

如图10F所示,之后进行蚀刻,移除未被图案化的光阻层612遮盖的增厚层610、金属层、和导电层604。因此,形成多个分隔的走线。As shown in FIG. 10F , an etch is then performed to remove the thickened layer 610 , the metal layer, and the conductive layer 604 not covered by the patterned photoresist layer 612 . Therefore, multiple separated traces are formed.

如图10G所示,移除在中间区域(例如之后将形成为电子装置的显示区)的金属层606。之后在增厚层610、金属层606、和导电层604上方设置保护层614。在图10G所示的结构中,在走线中,增厚层610位于导电层604和金属层606二者的上方。As shown in FIG. 10G , the metal layer 606 in the middle area (eg, the display area that will later be formed as the electronic device) is removed. A protective layer 614 is then disposed over the thickened layer 610 , the metal layer 606 , and the conductive layer 604 . In the structure shown in FIG. 10G, thickened layer 610 is located over both conductive layer 604 and metal layer 606 in the trace.

图11A至图11H绘示根据一些实施方式的一制程,形成一折叠式电子装置其层面依序包含金属层、导电层、和增厚层,其中增厚层为非金属材料,例如聚合物材料。11A to 11H illustrate a process for forming a foldable electronic device, the layers of which sequentially include a metal layer, a conductive layer, and a thickened layer, wherein the thickened layer is a non-metallic material, such as a polymer material, according to some embodiments. .

如图11A所示,提供具有金属层704的基板702。可能利用溅镀或电镀,将例如铜的金属材料形成在基板702上。As shown in FIG. 11A, a substrate 702 with a metal layer 704 is provided. A metallic material, such as copper, may be formed on the substrate 702 using sputtering or electroplating.

如图11B所示,在金属层704上方形成光阻层706,并经曝光和显影而形成图案化的光阻层706。As shown in FIG. 11B , a photoresist layer 706 is formed over the metal layer 704 and exposed and developed to form a patterned photoresist layer 706 .

如图11C所示,蚀刻未被图案化的光阻层706遮盖的金属层704。之后剥离光阻层706。As shown in FIG. 11C, the metal layer 704 not covered by the patterned photoresist layer 706 is etched. The photoresist layer 706 is then stripped.

如图11D所示,在基板702和金属层704上方设置导电层708。可经由涂覆的方式,将含有纳米银线或ITO的导电材料形成为导电层708。As shown in FIG. 11D , a conductive layer 708 is provided over the substrate 702 and the metal layer 704 . The conductive material containing silver nanowires or ITO can be formed into the conductive layer 708 by coating.

如图11E所示,在导电层708之上形成光阻层710,并经曝光和显影而形成图案化的光阻层710。As shown in FIG. 11E, a photoresist layer 710 is formed on the conductive layer 708, and a patterned photoresist layer 710 is formed by exposure and development.

如图11F所示,之后进行蚀刻,移除未被图案化的光阻层710遮盖的导电层708和金属层704的部分,形成多个分隔的走线。As shown in FIG. 11F , etching is then performed to remove portions of the conductive layer 708 and the metal layer 704 that are not covered by the patterned photoresist layer 710 to form a plurality of separated traces.

如图11G所示,之后剥离光阻层710。在随后的制程中,形成保护层712在各个走线之上。保护层712可由聚合物材料形成。As shown in FIG. 11G, the photoresist layer 710 is then stripped. In a subsequent process, a protective layer 712 is formed on each trace. The protective layer 712 may be formed of a polymer material.

如图11H所示,之后在保护层712之上形成增厚层714。增厚增714可由不同于保护层712的另一种聚合物材料形成。As shown in FIG. 11H , a thickened layer 714 is then formed over the protective layer 712 . Thickening 714 may be formed of another polymeric material than protective layer 712 .

图12A至图12H绘示根据一些实施方式的一制程,形成一折叠式电子装置其层面依序包含导电层、金属层、和增厚层,其中增厚层为非金属材料,例如聚合物材料。FIGS. 12A to 12H illustrate a process for forming a foldable electronic device, the layers of which include a conductive layer, a metal layer, and a thickened layer in sequence, wherein the thickened layer is a non-metallic material, such as a polymer material, according to some embodiments. .

如图12A所示,首先提供包含导电层724的基板722,导电层724可例如为包含纳米银线。在一些实施方式中,在导电层724之上为一保护层(未图示)。之后在导电层724上方设置金属层726。在一些实施方式中,可经由溅镀或电镀,将铜材料形成在导电层724上方。As shown in FIG. 12A , a substrate 722 including a conductive layer 724 is first provided, and the conductive layer 724 may, for example, include silver nanowires. In some embodiments, over the conductive layer 724 is a protective layer (not shown). A metal layer 726 is then disposed over the conductive layer 724. In some embodiments, the copper material may be formed over conductive layer 724 via sputtering or electroplating.

如图12B所示,在金属层726上方形成光阻层728,并经曝光和显影而形成图案化的光阻层728。As shown in FIG. 12B, a photoresist layer 728 is formed over the metal layer 726, and is exposed and developed to form a patterned photoresist layer 728.

如图12C所示,蚀刻未被图案化的光阻层728遮盖的金属层726和导电层724。因此形成多个分隔的走线。As shown in FIG. 12C, the metal layer 726 and the conductive layer 724 not covered by the patterned photoresist layer 728 are etched. Thus, multiple separate traces are formed.

如图12D所示,剥离在中间区域的光阻层728。As shown in Figure 12D, the photoresist layer 728 in the middle region is stripped.

如图12E所示,移除在中间区域的金属层726。As shown in Figure 12E, the metal layer 726 in the middle region is removed.

如图12F所示,剥离光阻层728。As shown in Figure 12F, the photoresist layer 728 is stripped.

如图12G所示,形成第一聚合物层730在各个走线之上和导电层724之上。As shown in FIG. 12G, a first polymer layer 730 is formed over the various traces and over the conductive layer 724.

如图12H所示,形成第二聚合物层732在装置的外围(亦即非显示区)的基板722、导电层724、和金属层726上方。在图12H所示的结构中,第二聚合物层732、或者第一聚合物层730和第二聚合物层732的组合相当于走线的增厚层。As shown in FIG. 12H, a second polymer layer 732 is formed over the substrate 722, the conductive layer 724, and the metal layer 726 at the periphery of the device (ie, the non-display area). In the structure shown in FIG. 12H, the second polymer layer 732, or the combination of the first polymer layer 730 and the second polymer layer 732, is equivalent to a thickening layer of the trace.

本揭示内容的导电层叠构使折叠式电子装置具有较小的弯折曲率半径,可折叠性增强,并且在多次弯折后走线仍能够具有较好的可靠性,提升产品的品质并且增加装置的寿命。The conductive layer structure of the present disclosure enables the foldable electronic device to have a smaller bending radius of curvature, enhances the foldability, and can still have better reliability of the wiring after multiple bending, improves the quality of the product and increases the the life of the device.

以上概述了数个实施方式,以便本领域技术人员可以较佳地理解本揭示内容的各态样。彼等熟悉此技术者应理解,其可将本揭示内容用作设计或修饰其他制程与结构的基础,以实现与本文介绍的实施方式或实施例相同的目的和/或达到相同的优点。本领域技术人员亦会理解,与这些均等的建构不脱离本揭示内容的精神和范围,并且他们可能在不脱离本揭示内容的精神和范围的情况下,进行各种改变、替换、和变更。Several embodiments have been summarized above so that those skilled in the art may better understand the various aspects of the present disclosure. Those skilled in the art should appreciate that they may use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages as the embodiments or examples described herein. Those skilled in the art will also understand that these equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations without departing from the spirit and scope of the present disclosure.

Claims (18)

1. A conductive layer stack, comprising:
a conductive layer extending along a first direction; and
and the thickening layer is arranged above or below the conductive layer, and the conductive layer stack can bear the fracture of more than 40000 times when the conductive layer stack is bent by 180 degrees in a direction perpendicular to or parallel to the first direction, wherein the curvature radius R is 3 mm.
2. The conductive stack of claim 1, wherein the length of the thickening layer in the first direction is greater than 9 mm and does not exceed the length of the conductive layer extending in the first direction.
3. The conductive stack of claim 2, wherein the length of the thickening layer in the first direction is greater than 15 mm and does not exceed the length of the conductive layer extending in the first direction.
4. The conductive layer stack of claim 1, wherein an angle between a bending axis of the conductive layer stack and two ends of the thickening layer is 180 ° to 360 °.
5. The conductive stack of claim 1, wherein a ratio of a length of the thickening layer in the first direction to a length of the conductive layer extending along the first direction is 0.001-1.
6. The conductive stack of claim 1, wherein the thickening layer increases the amount of stress strain in the conductive stack when the conductive stack is bent by 0.1 to 10%, and the radius of curvature of the conductive stack is reduced by 0.5 to 3 mm.
7. The conductive stack of claim 1, wherein the thickening layer is located on a stress-stretching side of the conductive stack when the conductive stack is bent.
8. A foldable electronic device, comprising the conductive stack of any one of claims 1 to 7.
9. A foldable electronic device, comprising:
a display area; and
a non-display area located outside the display area, wherein the non-display area has a plurality of wires extending along a first direction, each of the plurality of wires includes:
a substrate, and
a conductive layer over the substrate;
the non-display area has a local thickened area including a bending part of the foldable electronic device, and each of the plurality of wires in the local thickened area further includes a thickened layer above or below the conductive layer and located on a stress stretching side of the foldable electronic device when the foldable electronic device is bent.
10. The foldable electronic device of claim 9, wherein the locally thickened region has a width extending along a second direction perpendicular to the first direction, and one of the traces has a width W1The distance between the routing lines is P1The number of the routing lines is N, and the width range of the local thickening area is between W1To (W)1+P1) x N, respectively.
11. The foldable electronic device of claim 9, wherein the length of the thickening layer along the first direction is greater than 3 mm.
12. The foldable electronic device of claim 9, wherein the thickening layer is formed of a metal material, and a ratio of the thickness of the thickening layer to the thickness of the conductive layer is 0.05-5.
13. The foldable electronic device of claim 9, wherein the thickening layer is formed of a non-metallic material or a composite conductive material, and a ratio of the thickness of the thickening layer to the thickness of the conductive layer is 0.1-50.
14. The foldable electronic device of claim 9, wherein the thickening layer is made of a metal material, and the value of the thickness of the substrate multiplied by the Young's modulus of the substrate is 100-300, the value of the thickness of the conductive layer multiplied by the Young's modulus of the conductive layer is 20-70, and the value of the thickness of the thickening layer multiplied by the Young's modulus of the thickening layer is 5-30.
15. The foldable electronic device of claim 9, wherein the thickening layer is formed of a non-metallic material or a composite conductive material, and the value of the thickness of the substrate multiplied by the Young's modulus of the substrate is 100-300, the value of the thickness of the conductive layer multiplied by the Young's modulus of the conductive layer is 20-70, and the value of the thickness of the thickening layer multiplied by the Young's modulus is 2-60.
16. The foldable electronic device of claim 9, wherein the thickening layer comprises:
a first polymer layer; and
a second polymer layer over the first polymer layer, wherein the material of the first polymer layer is different from the material of the second polymer layer.
17. The foldable electronic device of claim 16, wherein the ratio of the young's modulus of the first polymer layer to the young's modulus of the second polymer layer is 103~106
18. The foldable electronic device of claim 16, wherein a ratio of the thickness of the first polymer to the thickness of the conductive layer is 30 to 100, a ratio of the thickness of the second polymer to the thickness of the conductive layer is 30 to 100, and a ratio of the thickness of the first polymer to the thickness of the second polymer is 0.5 to 2.
CN202021145402.8U 2020-06-19 2020-06-19 Conductive layer structure and foldable electronic device Withdrawn - After Issue CN212061907U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202021145402.8U CN212061907U (en) 2020-06-19 2020-06-19 Conductive layer structure and foldable electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202021145402.8U CN212061907U (en) 2020-06-19 2020-06-19 Conductive layer structure and foldable electronic device

Publications (1)

Publication Number Publication Date
CN212061907U true CN212061907U (en) 2020-12-01

Family

ID=73513929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021145402.8U Withdrawn - After Issue CN212061907U (en) 2020-06-19 2020-06-19 Conductive layer structure and foldable electronic device

Country Status (1)

Country Link
CN (1) CN212061907U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823439A (en) * 2020-06-19 2021-12-21 天材创新材料科技(厦门)有限公司 Conductive Laminate and Foldable Electronic Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823439A (en) * 2020-06-19 2021-12-21 天材创新材料科技(厦门)有限公司 Conductive Laminate and Foldable Electronic Device
CN113823439B (en) * 2020-06-19 2025-06-06 天材创新材料科技(厦门)有限公司 Foldable electronic device

Similar Documents

Publication Publication Date Title
US10120229B2 (en) Touch panel and method for manufacturing the same
US9229563B2 (en) Foldable touch screen panel
CN103946778B (en) Contact panel and manufacture method thereof
CN111864115A (en) Display panel and display device
KR102193398B1 (en) Laminate for touch panel, flexible device, organic electroluminescent display
US11169630B2 (en) Touch panel with nanowires
TWI827856B (en) Conductive laminated structure and foldable electronic device
KR20190101584A (en) OLED Integrated Digitizer and Method of Preparing the Same
CN209281362U (en) A kind of foldable touch module, touch screen and terminal device
US20170285780A1 (en) Touch sensor and method for preparing the same
TWM604050U (en) Conductive laminated structure and foldable electronic device
CN212061907U (en) Conductive layer structure and foldable electronic device
CN114327118A (en) Transparent conductive film, method for manufacturing transparent conductive film, and touch panel
TWI736098B (en) Bending-resistant structure and display panel
CN113823439B (en) Foldable electronic device
CN216773243U (en) Display panel and display device
TW202315496A (en) Tensile electronic module and electronic device using the same
US11733731B2 (en) Conductive laminated structure and foldable electronic device
TWM608486U (en) Touch module
JP2014067103A (en) Touch panel
TWI742697B (en) Touch device, touch panel, and touch display of using the same
CN205581827U (en) Wearing formula support plate
CN212391785U (en) Transparent conductive film and touch panel
CN212781960U (en) Touch panel and touch device
CN115437523A (en) Touch module and touch device

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20201201

Effective date of abandoning: 20250606

AV01 Patent right actively abandoned

Granted publication date: 20201201

Effective date of abandoning: 20250606

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned