CN212006434U - 双塔落地式冷箱系统及制氮设备 - Google Patents
双塔落地式冷箱系统及制氮设备 Download PDFInfo
- Publication number
- CN212006434U CN212006434U CN201921700968.XU CN201921700968U CN212006434U CN 212006434 U CN212006434 U CN 212006434U CN 201921700968 U CN201921700968 U CN 201921700968U CN 212006434 U CN212006434 U CN 212006434U
- Authority
- CN
- China
- Prior art keywords
- nitrogen
- air
- tower
- pressure tower
- liquid nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 501
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 247
- 239000007788 liquid Substances 0.000 claims abstract description 147
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000001301 oxygen Substances 0.000 claims abstract description 47
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 47
- 238000000605 extraction Methods 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 238000001704 evaporation Methods 0.000 claims abstract description 12
- 230000008020 evaporation Effects 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims description 53
- 238000005057 refrigeration Methods 0.000 claims description 19
- 239000002699 waste material Substances 0.000 claims description 17
- 238000004887 air purification Methods 0.000 claims description 12
- 238000005086 pumping Methods 0.000 claims description 12
- 239000010865 sewage Substances 0.000 claims description 4
- 230000009977 dual effect Effects 0.000 claims 6
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 238000010992 reflux Methods 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 10
- 238000012545 processing Methods 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 description 14
- 238000009833 condensation Methods 0.000 description 11
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000110 cooling liquid Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04424—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
- F25J2205/32—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
- F25J2205/34—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/42—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/42—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/48—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本实用新型公开一种双塔落地式冷箱系统,其高、低压塔落地放置,主、辅冷分别叠置于高、低压塔顶部,高压塔底部富氧液空出口依次与过冷器、主冷冷源入口,高压塔氮气出口同时与氮气产品输出口和主冷氮气入口,低压塔氮气出口与辅冷氮气入口,主冷顶部富氧液空蒸发气体出口与低压塔底部富氧空气入口,低压塔底部富氧液空出口和/或主冷底部富氧液空出口依次与过冷器、辅冷冷源入口分别通过管道连接,辅冷底部液氮出口与高压塔顶部液氮回流入口分别通过管道连接至液氮泵。本实用新型还公开一种制氮设备,通过采用双塔双冷凝带工艺泵精馏冷箱系统,既提高氮提取率,降低空氮比,减少加工空气量;又可产出压力氮气,省去氮压机设备,降低投资成本。
Description
技术领域
本实用涉及工业制氮技术领域,尤其涉及一种双塔落地式冷箱系统及制氮设备。
背景技术
随着经济及科技发展,需要氮气的领域越来越多,各领域对氮气产品需求量也越来越大,这需要大量低能耗、低投资的工业制氮设备方能满足市场需求,否则难以响应国家节约能源、坚持可持续发展的要求。
工业制氮以深冷空分法较为常见,其以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空,利用液氧和液氮的沸点不同,通过液空的精馏来使它们分离而获得氮气或液氮。目前,市场上的深冷空分法制氮设备多采用单塔正流精馏制氮、单塔反流精馏制氮及双塔精馏制氮等类型,其基本结构分别如图4-图6所示。常规双塔精馏制氮及单塔正流精馏制氮只能生产压力较低的氮气,下游需要配置氮压机;而单塔反流精馏制氮能生产压力较高的氮气,但是提取率比较低,无法满足低成本、低能耗的市场需求。
上述单塔或双塔精馏制氮设备均存在不足,它们或者能耗高,或者压力低而需要增加氮压机,因此无法满足用户低成本、低能耗的需求。至于其它类型的制氮设备则能耗更高,特别是在小型制氮设备不产液氮的情况下,传统制氮设备的设备已经成型,其能耗更难以降低。
针对目前各领域对氮气需求量增大,而制氮设备能耗很难降低的突出矛盾,本实用新型旨在对现有高能耗、高投资制氮设备进行优化,并相应提出了新工艺、新方法及新设备,这对于解决现有制氮工艺及设备缺陷至关重要且刻不容缓。
实用新型内容
本实用新型旨在解决上述技术问题,提出一种低能耗、低投资的制氮设备,具体是提供一种深冷空分法的双塔落地式冷箱系统及制氮设备。
为解决以上技术问题,本实用新型提供一种双塔落地式冷箱系统,包括高压塔、低压塔、主冷、辅冷、主换热器、过冷器及液氮泵,高压塔和低压塔分别落地放置,主冷叠置于高压塔的顶部,辅冷叠置于低压塔的顶部,其中高压塔底部的富氧液空出口依次与过冷器、主冷的冷源入口通过管道连接,高压塔的氮气出口同时与氮气产品输出口和主冷的氮气入口通过管道连接,低压塔的氮气出口与辅冷的氮气入口通过管道连接;主冷顶部的富氧液空蒸发气体出口与低压塔底部的富氧空气入口通过管道连接,低压塔底部的富氧液空出口和/或主冷底部的富氧液空出口依次与过冷器、辅冷的冷源入口通过管道连接,低压塔液氮回流管底部液氮抽口与低压塔顶部的液氮回流入口分别通过管道连接至液氮泵。
本实用新型双塔落地式冷箱系统进一步采用以下技术方案之一,其中:
可选地,液氮产品抽取的位置按以下方式确定:由低压塔顶部液氮回流管底部液氮抽口与液氮产品输出口通过管道连接得到液氮产品。
可选地,液氮产品抽取的位置按以下方式确定:由液氮泵后设置液氮抽口与液氮产品输出口连接得到液氮产品。
可选地,液氮产品抽取的位置按以下方式确定:由主冷液氮出口依次与过冷器、液氮产品输出口通过管道连接液氮产品输出口。
可选地,冷箱系统的制冷方式按以下方式确定:选用空气膨胀制冷,其中低压塔设置有膨胀空气入口,低压塔的膨胀空气入口通过管道接入膨胀空气。
可选地,冷箱系统的制冷方式按以下方式确定:选用污氮气膨胀制冷,其中辅冷的顶部设置污氮气出口,污氮气出口依次与过冷器、主换热器、膨胀机通过管道连接,再与主换热器通过管道连接后接至冷箱系统外的空气预冷系统和/或空气纯化系统。
可选地,冷箱系统的制冷方式按以下方式确定:选用污氮气膨胀制冷,其中主冷顶部的富氧液空蒸发气体出口管道上,同时设置污氮气抽口,依次与主换热器、膨胀机通过管道连接,再与主换热器通过管道连接后接至冷箱系统外的空气预冷系统和/或空气纯化系统。
在此基础上,本实用新型还提供一种制氮设备,设置有上述的双塔落地式冷箱系统,双塔落地式冷箱系统上游依次配置通过管道连接的空气过滤器、空气压缩机、空气预冷系统及空气纯化系统,高压塔空气入口与主换热器通过管道连接。
与现有技术相比,本实用新型采用了双塔双冷凝带工艺泵精馏制氮方法,其结合了现有双塔制氮高提取率及单塔制氮可产压力氮产品的特点,既提高了精馏塔的提取率,降低空氮比,减少加工空气量;又可产出压力氮气产品,省去了氮压机等设备,降低设备及土建投资成本。
附图说明
本实用新型所示附图意在表达制氮设备各装置的位置及连接关系,故未按比例绘制,具体实施时可根据场地实际情况进行合理布局即可。并且,在这些附图的制图中,为了清晰明了,并非每个组成部分均被标记。以下将通过具体实例并参考附图来描述本实用新型的各个方面的实施例。
图1为本实用新型制氮设备实施例一的结构示意图;
图2为本实用新型制氮设备实施例二的结构示意图;
图3为本实用新型制氮设备实施例三的结构示意图;
图4为现有单塔正流精馏制氮设备的结构示意图;
图5为现有单塔反流精馏制氮设备的结构示意图;
图6为现有双塔精馏制氮设备的结构示意图;
图1-6中各附图标记说明如下:
AF1-空气过滤器;
AC-空气压缩机;
DCAC-空气预冷系统:AT-空冷塔,WT-水冷塔,WP1、WP2-水泵,RU-冷水机组;
PPU-空气纯化系统:MS1、MS2-吸附器,EH-电加热器,SL1-污氮气放空消音器;
ET-低温膨胀机:SL2-膨胀机风机端消音器,AF2-膨胀机风机端过滤器;
CBX-冷箱系统:E1-主换热器,E2-过冷器,C1-高压塔,C2-低压塔,K1-主冷凝蒸发器(简称“主冷”),K2-辅冷凝蒸发器(简称“辅冷”),NP-液氮泵;
11-高压塔空气入口,12-高压塔富氧液空出口,13-高压塔氮气出口,14-高压塔液氮自回流入口,15-高压塔液氮回流入口;
21-主冷氮气入口,22-主冷液氮出口,23-主冷富氧液空出口,24-主冷冷源(富氧液空)入口,25-主冷富氧液空蒸发气体出口;
31-低压塔氮气出口,32-低压塔液氮回流入口,33-液氮抽口,34-低压塔富氧空气入口,35-低压塔富氧液空出口,36-膨胀空气入口;
41-辅冷氮气入口,42-辅冷液氮出口,43-辅冷冷源(富氧液空)入口,44-辅冷污氮气出口。
具体实施方式
下面结合附图和具体实施方案对本实用新型进一步详细说明。但不应该将此理解为本实用新型的保护范围仅限于下述实施方案。
参见图1,示出本实用新型制氮设备实施例一的结构示意图,其为双塔双冷凝反流制氮结构。该实施例一的制氮设备设置依次配置有空气过滤器AF1、空气压缩机AC、空气预冷系统DCAC及空气纯化系统PPU及冷箱系统CBX,其中:冷箱系统CBX改进为双塔双冷凝落地式结构,其作为精馏系统包括主换热器E1、过冷器E2、高压塔C1、低压塔C2、主冷(主冷凝蒸发器)K1、辅冷(辅冷凝蒸发器)K2、透平式膨胀机ET、工艺液氮泵NP等装置,洁净空气通过管道连接进入精馏系统中后可制得氮气或液氮;其中的空气过滤器AF1、空气压缩机AC、空气预冷系统DCAC及空气纯化系统PPU等则均可采用现有结构。
本实用新型重点描述双塔双冷凝的冷箱系统CBX配置方式,其中各装置的具体结构不是本实用新型的关注点(沿用现有习知技术结构即可),故以下仅对它们的布局及连接关系进行描述。
如图1所示,冷箱系统CBX由通过管道系统连接的高压塔C1、低压塔C2、主冷K1、辅冷K2、主换热器E1、过冷器E2及液氮泵NP等构成,其中高压塔C1和低压塔C2分别落地放置,主冷K1叠置于高压塔C1的顶部,辅冷K2叠置于低压塔C2的顶部,冷箱系统的有关装置通过管道连接。
如图1所示,冷箱系统CBX的具体管道连接方式为:高压塔空气入口11经主换热器E1接至空气纯化系统PPU以输入洁净空气,高压塔富氧液空出口12经过冷器E2接至主冷冷源入口24,高压塔氮气出口13一路经主换热器E1接至氮气产品输出口,另一路接至主冷氮气入口21;主冷液氮出口22接至高压塔液氮回流入口14,主冷富氧液空出口23经过冷器E2接至辅冷冷源入口43,低压塔底部的富氧液空出口35经过冷器E2也接至辅冷冷源入口43,主冷富氧液空蒸发气体出口25与低压塔富氧液空蒸发气体入口34通过管道连接;低压塔氮气出口31接入辅冷氮气入口41,辅冷液氮出口42接至低压塔液氮回流入口32,辅冷污氮气出口44经过冷器E2依次接至主换热器E1、膨胀机ET后,再次经过主换热器E1送出至冷箱系统CBX外,其中一路接至空气纯化系统PPU,另一路接至空气预冷系统DCAC;辅冷液氮出口42与低压塔顶部液氮回流入口32之间的管道上设置液氮抽口33,液氮抽口33接入液氮泵NP入口,液氮泵NP出口接入与高压塔液氮回流入口15,以通过液氮泵NP对液氮进行加压。可以理解的是,该管路系统中还可以相应设置若干控制阀(图中示出未标识),不再赘述。
上述冷箱系统CBX内的低压塔C2、高压塔C1均采用规整填料,这样可以提高效率,降低空压机排压,提高装置提取率,以及降低能耗。在布局及连接方式上:主冷K1放置于高压塔C1上方,辅冷K2放置于低压塔C2上方;高压塔C1、低压塔C2、主冷K1、辅冷K2、过冷器E2、液氮泵NP之间均通过管道相连接;主换热器E1和过冷器E2用来热交换、过冷或复热各流股。
该实施例一中增加了辅冷K2,利用主冷K1底部和低压塔C2底部的富氧液空送入辅冷K2中作为冷源,将低压塔顶部的氮气冷凝为液氮,并将此液氮分别送入低压塔C2和高压塔C1,从而增加了低压塔和高压塔的回流比,提高了氮气提取率,增加了氮气产量,降低了氮气产品能耗。
以下进一步结合图1,对整套制氮设备的工作原理及工作过程进行描述。
自洁式过滤器AF1、空气压缩机AC与空气预冷系统DCAC、空气纯化系统PPU通过管道连接。原料空气经过自洁式空气过滤器AF1过滤掉空气中的灰尘及机械杂质后,通过管道进入空气压缩机AC中压缩。压缩后的空气进入空气预冷系统DCAC(由空冷塔AT、水冷塔WT、水泵WP1及WP2、冷水机组RU等组成)中进行洗涤,被冷却水和冷冻水冷却至10℃,冷却后的空气进入空气纯化系统PPU(由吸附器MS1及MS2、电加热器EH等组成)中净化,由纯化系统吸附掉空气中的水分、二氧化碳及大部分碳氢化合物后分为两部分,其中一小部分作为制氮装置的仪表气及密封气,另一部分进入冷箱的主换热器。此处,纯化系统采用全低压分子筛吸附设备,通过其中的分子筛氧化铝双层床吸附器MS1和MS2吸附掉空气中的水分、二氧化碳及大部分碳氢化合物后,吸附后的洁净空气将送入冷箱系统CBX进行精馏。
纯化后的洁净空气通过高压塔空气入口11进入高压塔C1参与精馏。经高压塔精馏后在高压塔底部得到富氧液空,高压塔顶部得到氮气。高压塔底部的富氧液空通过高压塔富氧液空出口12抽出,经过过冷器E2过冷后,通过主冷冷源入口24进入主冷K1中作为冷源。高压塔顶部分氮气通过高压塔氮气出口13抽出后,一部分作为氮气产品经主换热器E1复热后通过氮气产品管道出冷箱系统送用户,其余通过主冷氮气入口21进入主冷K1中被富氧液空冷凝为液氮。此处的液氮回流液由高压塔液氮回流入口14回流至高压塔C1以参与高压塔精馏。
在主冷K1内富氧液空受热蒸发的气体从主冷富氧液空蒸发气体出口25抽出,通过低压塔富氧空气入口34进入低压塔,作为低压塔C2的上升气体,主冷K1底部通过主冷富氧液空出口23抽取富氧液空,经过冷器E2过冷后通过辅冷冷源入口43送入辅冷K2内作为冷源;同时低压塔底部的低压塔富氧液空出口35抽取富氧液空经过冷器E2过冷后,也通过辅冷冷源入口43送入辅冷K2作冷源。低压塔顶部的氮气通过低压塔氮气出口31抽出,通过辅冷氮气入口41进入辅冷K2中被富氧液空冷凝为液氮,并通过辅冷液氮出口42抽出液氮。此处液氮分为三部分,一部分液氮作为产品液氮通过液氮产品管线出冷箱系统送用户,一部分液氮去工艺液氮泵NP加压后通过高压塔液氮回流入口15进入高压塔C1作为高压塔回流液,其余通过低压塔液氮回流入口32进入低压塔C2作为低压塔回流液,参与低压塔精馏。
辅冷K2内富氧液空受热蒸发为污氮气,在辅冷顶部的辅冷污氮气出口44抽取污氮气后,经过冷器E2和主换热器E1复热至一定温度后去膨胀机ET膨胀制冷,膨胀后的污氮气再次经过主换热器E1复热后出冷箱系统CBX。之后,这些出冷箱系统CBX的污氮气部分作为纯化系统PPU的再生气,其余的送入预冷系统DCAC回收冷量。
上述实施例一中,辅冷液氮出口42与低压塔顶部液氮回流入口之间的管道上设置液氮抽口33,液氮抽口33通过管道连接至液氮产品输出口,且液氮抽口33还与高压塔顶部的液氮回流入口之间的管道上设置液氮泵NP。这样,从辅冷液氮回流至低压塔管道底部抽出液氮,经液氮泵NP加压后通过高压塔液氮回流入口15送入高压塔C1顶部,作为高压塔的回流液参与高压塔精馏,提高了高压塔的提取率。
上述实施例一中,冷箱系统的冷源来自辅冷的污氮气膨胀制冷。当然,也可用其他气源进行膨胀得到冷量,以下另行举例进行说明。
参见图2,示出本实用新型制氮设备实施例二的结构示意图,为双塔双冷凝正流制氮结构。该实施例二中的主要区别是制氮设备的冷量来源是通过空气膨胀,膨胀后的空气送入低压塔参与精馏。如图2所示,膨胀机的膨胀空气来自主换热器中部,膨胀后的空气通过膨胀气体入口36送入低压塔C2中参与精馏。另外是辅冷污氮气出口44抽取污氮气后,经过冷器E2和主换热器E1复热至一定温度后直接出冷箱系统CBX。其它部分与图1所示实施例一相同,不再赘述。
参见图3,示出本实用新型制氮设备实施例三的结构示意图,其从主冷抽取污氮气进行膨胀。该实施例从主冷K1顶部的富氧液空蒸发气体出口抽取部分污氮气依次与主换热器E1、膨胀机ET通过管道连接后,再经主换热器E1送出至冷箱系统CBX外,之后分两路接至纯化系统PPU和预冷系统DCAC。
该实施例三中的双塔双冷凝冷箱系统是从主冷K1抽取污氮气去膨胀机ET膨胀制冷,但抽取这股污氮气会减少低压塔C2的上升蒸发气体量,由此会影响低压塔的精馏,降低氮的提取率。如果直接如图1采用从辅冷抽取污氮气,或如图2直接采用空气膨胀进塔,则既能保证设备所需冷量,又能避免从主冷抽取污氮气对精馏造成的影响,从而提高氮提取率。
以上实施例的双塔双冷凝带工艺泵制氮设备具有以下特点:高压塔C1底部的富氧液空出口依次与过冷器E2、主冷K1通过管道连接;主冷K1底部和低压塔底部的富氧液空出口依次与过冷器E2、辅冷K2通过管道连接。辅冷K2底部的液氮出口与低压塔C2顶部通过管道连接;辅冷K2液氮回流至低压塔C2的液氮管道的低点抽口与液氮泵NP、高压塔C1顶部依次通过管道连接。辅冷K2顶部的污氮气出口依次与过冷器E2、主换热器E1通过管道连接;污氮气从主换热器E1中部抽出进入膨胀机ET,膨胀后的污氮气通过管道再次进入主换热器E1回收冷量后排出精馏冷箱系统;或者膨胀机ET的膨胀气源也可采用空气,空气从主换热器E1中部抽出后去膨胀机ET膨胀制冷,膨胀后通过管道进入低压塔C2。
这样,通过增加辅冷凝蒸发器K2,并从辅冷凝蒸发器抽取污氮气去膨胀制冷(或直接利用空气膨胀制冷后进塔),可以充分发挥低压塔的精馏效果,提高氮提取率。其中,利用低压塔C2精馏后塔底部和主冷K1底部的富氧液空送入辅冷K2中作为冷源,将低压塔顶部的氮气冷凝为液氮,并将此液氮分别送入低压塔C2和高压塔C1,从而增加了高压塔的回流比,提高了氮气提取率,增加了氮气产量,由此有利于降低能耗,保护环境。同时,由于减少了氮压机的配置,由此降低了投资成本。
以上制氮设备性能可采用国际先进的ASPEN及HYSYS软件模拟计算,该软件经有关技术人员经过无数套国内外运行稳定的参数回归处理,来保证模拟计算结果与实际运行的参数吻合。
通过模拟计算可知,与常规反流高氮设备相比,在同样工艺空气条件下,本实用新型制氮设备的氮气产量可提高36.4%。换算成能耗,本实用新型设备比常规反流高氮设备能耗可节省36.6%,节能效果非常明显。
比如,在空压机出口流量、压力相同24300Nm3/h、8.6bar.G的情况下,本实用新型设备可得到产品氮气13000Nm3/h、8.bar.G和产品液氮100Nm3/h,而常规反流高氮设备污氮气全膨胀(膨胀机价格将会是本实用新型设备膨胀机的几倍)可得到产品氮气7050Nm3/h、8bar.G和产品液氮900Nm3/h,液氮按照三倍氮气核算,本实用新型设备氮气产量提高了36.4%。
本实用新型虽然以较佳实施例公开如上,但其并不是用来限定本实用新型,任何本领域技术人员在不脱离本实用新型的精神和范围内,都可以做出可能的变动和修改,因此本实用新型的保护范围应当以本实用新型权利要求所界定的范围为准。
Claims (8)
1.一种双塔落地式冷箱系统,其特征在于,包括高压塔、低压塔、主冷、辅冷、主换热器、过冷器及液氮泵,高压塔和低压塔分别落地放置,主冷叠置于高压塔的顶部,辅冷叠置于低压塔的顶部,其中高压塔底部的富氧液空出口依次与过冷器、主冷的冷源入口通过管道连接,高压塔的氮气出口同时与氮气产品输出口和主冷的氮气入口通过管道连接,低压塔的氮气出口与辅冷的氮气入口通过管道连接;主冷顶部的富氧液空蒸发气体出口与低压塔的底部气体入口通过管道连接,低压塔底部的富氧液空出口和/或主冷底部的富氧液空出口依次与过冷器、辅冷的冷源入口通过管道连接,辅冷底部的液氮出口与低压塔顶部的液氮回流入口分别通过管道连接至液氮泵。
2.如权利要求1所述的双塔落地式冷箱系统,其特征在于,液氮产品抽取的位置按以下方式确定:由低压塔顶部液氮回流管底部液氮抽口与液氮产品输出口通过管道连接得到液氮产品。
3.如权利要求1所述的双塔落地式冷箱系统,其特征在于,液氮产品抽取的位置按以下方式确定:由液氮泵后设置液氮抽口与液氮产品输出口通过管道连接得到液氮产品。
4.如权利要求1所述的双塔落地式冷箱系统,其特征在于,液氮产品抽取的位置按以下方式确定:由主冷液氮出口依次与过冷器、液氮产品输出口通过管道连接得到液氮产品。
5.如权利要求1所述的双塔落地式冷箱系统,其特征在于,冷箱系统的制冷方式按以下方式确定:选用空气膨胀制冷,其中低压塔设置有膨胀空气入口,低压塔的膨胀空气入口通过管道接入膨胀空气。
6.如权利要求1所述的双塔落地式冷箱系统,其特征在于,冷箱系统的制冷方式按以下方式确定:选用污氮气膨胀制冷,其中辅冷的顶部设置污氮气出口,污氮气出口依次与过冷器、主换热器、膨胀机通过管道连接,再与主换热器通过管道连接后接至冷箱系统外的空气预冷系统和/或空气纯化系统。
7.如权利要求1所述的双塔落地式冷箱系统,其特征在于,冷箱系统的制冷方式按以下方式确定:选用污氮气膨胀制冷,其中在主冷顶部的富氧液空蒸发气体出口管道上,同时设置污氮气抽口,抽取一部分蒸发气体依次与主换热器、膨胀机通过管道连接,再与主换热器通过管道连接后接至冷箱系统外的空气预冷系统和/或空气纯化系统。
8.一种制氮设备,其特征在于,设置有如权利要求1-7任一项所述的双塔落地式冷箱系统,双塔落地式冷箱系统上游依次配置通过管道连接的空气过滤器、空气压缩机、空气预冷系统及空气纯化系统,高压塔空气入口与主换热器通过管道连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921700968.XU CN212006434U (zh) | 2019-10-11 | 2019-10-11 | 双塔落地式冷箱系统及制氮设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921700968.XU CN212006434U (zh) | 2019-10-11 | 2019-10-11 | 双塔落地式冷箱系统及制氮设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212006434U true CN212006434U (zh) | 2020-11-24 |
Family
ID=73411781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921700968.XU Active CN212006434U (zh) | 2019-10-11 | 2019-10-11 | 双塔落地式冷箱系统及制氮设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212006434U (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114413570A (zh) * | 2022-01-19 | 2022-04-29 | 四川空分设备(集团)有限责任公司 | 一种双塔落地式制氮装置 |
CN116242099A (zh) * | 2022-12-12 | 2023-06-09 | 广钢气体(深圳)有限公司 | 一种双塔制氮系统 |
CN119268257A (zh) * | 2024-10-23 | 2025-01-07 | 粵豫科技集團有限公司 | 一种用于高纯度制备的单双塔切换工艺及系统 |
-
2019
- 2019-10-11 CN CN201921700968.XU patent/CN212006434U/zh active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114413570A (zh) * | 2022-01-19 | 2022-04-29 | 四川空分设备(集团)有限责任公司 | 一种双塔落地式制氮装置 |
CN114413570B (zh) * | 2022-01-19 | 2023-01-31 | 四川空分设备(集团)有限责任公司 | 一种双塔落地式制氮装置 |
CN116242099A (zh) * | 2022-12-12 | 2023-06-09 | 广钢气体(深圳)有限公司 | 一种双塔制氮系统 |
CN119268257A (zh) * | 2024-10-23 | 2025-01-07 | 粵豫科技集團有限公司 | 一种用于高纯度制备的单双塔切换工艺及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109838975B (zh) | 一种低能耗液氮制取装置及工艺 | |
CN104061757B (zh) | 一种液氧及液氮制取装置及方法 | |
CN107345737B (zh) | 双塔双冷凝返流膨胀制氮机及其制氮方法 | |
CN212006434U (zh) | 双塔落地式冷箱系统及制氮设备 | |
CN105466154B (zh) | 一种空分工艺方法 | |
CN115069057A (zh) | 一种低温精馏提纯回收二氧化碳的方法 | |
CN102230716A (zh) | 空气增压返流膨胀内压缩空气分离的方法及其装置 | |
CN101929790B (zh) | 高纯氮设备 | |
CN104807290A (zh) | 单塔双返流膨胀制取低压氮气的装置和方法 | |
CN101929791B (zh) | 大产量高纯氮设备 | |
CN109442867A (zh) | 一种新型外增压内液化纯氮制取装置及方法 | |
CN105066587A (zh) | 深冷分离及生产低纯度氧、高纯度氧和氮的装置及方法 | |
CN104296500B (zh) | 一种深冷分离提纯氮气及液氮的装置及方法 | |
CN210399702U (zh) | 一种空气分离系统 | |
CN102538397A (zh) | 一种由空气分离制取氮气或制取氮气同时附产氧气的工艺 | |
CN102788476B (zh) | 一种深冷空气分离设备主产高纯氮并附产液氧的空分工艺 | |
CN102445054A (zh) | 一种由空气分离制取氧气和氮气的工艺 | |
CN105910388A (zh) | 空气分离设备以及空气分离方法 | |
CN204006965U (zh) | 一种液氧及液氮制取装置 | |
CN211451552U (zh) | 双塔叠放式冷箱系统及制氮设备 | |
CN104185767B (zh) | 用于产生两股净化的部分空气流的方法和设备 | |
CN215412752U (zh) | 一种双塔低温精馏制取高纯氮气装置 | |
CN207865821U (zh) | 一种低能耗双塔纯氮制取装置 | |
CN207365553U (zh) | 一种生产高纯氧和高纯氮的装置 | |
CN113310282A (zh) | 一种带泵双塔精馏及低温正流膨胀制氮系统及制氮方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |