CN212006287U - Self-excited microfluidic controlled multi-tube oscillator - Google Patents
Self-excited microfluidic controlled multi-tube oscillator Download PDFInfo
- Publication number
- CN212006287U CN212006287U CN202020431468.7U CN202020431468U CN212006287U CN 212006287 U CN212006287 U CN 212006287U CN 202020431468 U CN202020431468 U CN 202020431468U CN 212006287 U CN212006287 U CN 212006287U
- Authority
- CN
- China
- Prior art keywords
- jet
- micro
- flow channel
- communicated
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
Images
Landscapes
- Jet Pumps And Other Pumps (AREA)
Abstract
Description
技术领域technical field
本实用新型属于压力气体的射流控制工程制冷技术领域,涉及自激励微射流控制多管振荡器,是气体射流控制如制冷机械所必备的特种装备。The utility model belongs to the technical field of compressed gas jet flow control engineering refrigeration, relates to a self-excited micro jet flow control multi-tube oscillator, and is a special equipment necessary for gas jet flow control such as refrigeration machinery.
背景技术Background technique
射流是流体运动的一种特殊类型,在航空工业、水利工程、医疗卫生以及自动控制等工程技术领域都关系到射流流动的问题,所以射流成为流体力学研究的一个重要内容。射流振荡器是以射流理论为基础,在射流振荡元件的基础上附加反馈通道产生流体振荡,通过测量流体的振荡频率实现流量测量。对射流本质和特性的理论分析是研究射流振荡器前提条件,为微通道射流振荡器的研究奠定了基础。Jet is a special type of fluid motion. It is related to the problem of jet flow in the fields of aviation industry, hydraulic engineering, medical and health, and automatic control. Therefore, jet has become an important content of fluid mechanics research. The jet oscillator is based on the theory of jet flow. On the basis of the jet oscillation element, an additional feedback channel generates fluid oscillation, and the flow measurement is realized by measuring the oscillation frequency of the fluid. The theoretical analysis of the nature and characteristics of the jet is the prerequisite for the study of the jet oscillator, which lays the foundation for the study of the micro-channel jet oscillator.
射流元件的工作介质为流体,可分为不同类别。根据元件内部流体流动机理的不同,可将其分为湍流式、附壁式和动量交换式三大类。所谓附壁式射流元件,是指主射流在特定形状的腔室里,利用流体卷吸不平衡所产生的附壁效应制成的射流元件。The working medium of the fluidic element is fluid, which can be divided into different categories. According to the different flow mechanism of the fluid inside the element, it can be divided into three categories: turbulent flow, Coanda type and momentum exchange type. The so-called Coanda jet element refers to a jet element made by the main jet in a chamber of a specific shape, using the Coanda effect generated by the unbalance of fluid entrainment.
静止式附壁射流控制器与动设备射流控制器件执行机构相比,具有可靠性好、体积小、功率大、成本低等优点,并能适应强辐射、强腐蚀、强振动和强冲击等恶劣工作环境,且不存在损耗干扰。因此在高辐射、强磁场、易燃易爆等复杂工况下或是纯流体工作系统中,射流控制器得到广泛的应用,如核工业、航空航天等领域的某些控制系统。同时附壁射流具有可切换特性,可以实现流动控制和流体测量,因此射流控制器也被应用于石油开采的液压激振和射流流量计等方面。双稳式附壁射流元件是其发展的重要方向。Compared with the moving equipment jet control device actuator, the static wall-mounted jet controller has the advantages of good reliability, small size, high power and low cost, and can adapt to harsh radiation, strong corrosion, strong vibration and strong impact. working environment, and there is no loss of interference. Therefore, in complex working conditions such as high radiation, strong magnetic field, flammable and explosive, or in pure fluid working systems, jet controllers are widely used, such as certain control systems in the nuclear industry, aerospace and other fields. At the same time, the Coanda jet has switchable characteristics, which can realize flow control and fluid measurement. Therefore, the jet controller is also applied to the hydraulic excitation of oil production and the jet flow meter. Bistable Coanda jet element is an important direction of its development.
静止式气波制冷机中的气体分配单元—附壁振荡器,用于生成振荡脉冲射流,是附壁式双稳射流元件在实际应用中的体现。以往附壁振荡器均采用将主射流分流再返回作用于主射流的激励方法,使主射流不断切换附壁形成振荡,称为自激励附壁振荡器。根据反馈线路的不同,又可分为反馈式、音波式、共鸣式和负载式。自激励实施简便,但不足是振荡的能量损失大多竞高达三分之一。The gas distribution unit in the static gas wave refrigerator, the Coanda oscillator, is used to generate the oscillating pulse jet, which is the embodiment of the Coanda bistable jet element in practical application. In the past, Coanda oscillators used the excitation method of splitting the main jet and returning it to the main jet, so that the main jet continuously switched the Coanda to form oscillation, which is called self-excited Coanda oscillator. According to the different feedback circuits, it can be divided into feedback type, sonic type, resonance type and load type. Self-excitation is easy to implement, but the disadvantage is that the energy loss of oscillation is mostly as high as one-third.
自激励附壁振荡器作为静止式气波机中的气体分配单元,为后续制冷提供周期性振荡射流。迄今为止,对于反馈式、音波式和共鸣式三种附壁振荡器已有较多研究。音波式附壁振荡器引入静止式气波制冷机,音波式附壁振荡器将振荡器腔体两侧开口并通过音波管连通,将射流附壁切换时产生的压力变化信号传递至另一侧,使射流往复切换,发生附壁振荡。音波振荡型射流附壁振荡制冷机具备比以前优越的工作性能。对音波式附壁振荡器的几何参数做了细致研究。但其研究重点倾向于几何尺寸对振荡器可振性的影响、振荡器内部流场流动特性分析及振荡频率的影响方面,在能效方面的探讨相对较少。定义附壁振荡器能效特性及射流偏转特性的评价指标总压保持率K,自激励式附壁振荡器(正反馈式、音波式和共鸣式)的总压损失很大,自激励流总压因流道损失而降低和过早衰落,是造成产生能量损失的主要原因。但仅靠主射流分流反馈激励,无论以何种方式实现,都无法满足提高激励流总压和提供持续激励推动力这两个条件。The self-excited Coanda oscillator acts as a gas distribution unit in a static gas wave machine, providing periodic oscillating jets for subsequent refrigeration. So far, there have been many studies on the three types of Coanda oscillators: feedback type, sonic type and resonance type. The sonic Coanda oscillator is introduced into a static gas wave refrigerator. The sonic Coanda oscillator opens both sides of the oscillator cavity and communicates with the sonic tube, and transmits the pressure change signal generated when the jet Coanda is switched to the other side. , the jet is switched back and forth, and the Coanda oscillation occurs. The sonic oscillation type jet wall-coated oscillation refrigerator has superior working performance than before. The geometric parameters of the sonic Coanda oscillator are studied in detail. However, the focus of its research tends to be the influence of geometric size on the vibrability of the oscillator, the analysis of the flow characteristics of the internal flow field of the oscillator and the influence of the oscillation frequency, and there are relatively few discussions on the energy efficiency. The total pressure retention rate K that defines the energy efficiency characteristics of the Coanda oscillator and the jet deflection characteristics Degradation and premature fading due to flow loss are the main causes of energy loss. However, only relying on the main jet shunt feedback excitation, no matter how it is realized, cannot meet the two conditions of increasing the total pressure of the excitation flow and providing a continuous excitation driving force.
实用新型内容Utility model content
为解决上述自激励造成能耗高的问题,本实用新型提供一种无运动元件、结构简单、操作维护方便,以及无需外加动力(能量)、运行稳定可靠、适合于处理高压气体介质的自激励微射流控制多管振荡器。In order to solve the problem of high energy consumption caused by the above self-excitation, the utility model provides a self-excitation with no moving elements, simple structure, convenient operation and maintenance, no need for external power (energy), stable and reliable operation, and suitable for processing high-pressure gas medium. Microfluidic controlled multi-tube oscillator.
本实用新型采用从主射流分离与主射流总压相等的同气源流体从外部引入自激励振荡腔,进行自激励振荡产生周期性微射流,并从垂直激励口在附壁侧推压主射流,用推挽主射流的方式使主射流振荡,从而提高和持续总压。自激励振荡腔使用的是音波式振荡射流发生器,作为本实用新型的微射射流控制器,从而使主射流发生分配。The utility model adopts the same gas source fluid, which is separated from the main jet and equal to the total pressure of the main jet, and is introduced into a self-excited oscillation cavity from the outside, performs self-excited oscillation to generate periodic micro-jets, and pushes the main jet from the vertical excitation port on the side of the attached wall , the main jet is oscillated by means of push-pull main jet, thereby increasing and sustaining the total pressure. The self-excited oscillating cavity uses a sonic oscillating jet generator as the micro-jet jet controller of the present utility model, so that the main jet is distributed.
振荡射流发生器的原理,是基于射流附壁双稳态效应和射流稳态扰动切换特性。由于静止式制冷机不可能由外部提供周期性的扰动源,故必须像电子振荡电路那样,需要自激励条件以产生自激励振荡。音波式附壁振荡器的振荡器结构,振荡腔两侧控制口直接连成封闭的管路,称为音波管(控制管)。控制管是自激励附壁振荡器的重要组成部分,其结构位置的差异决定了自激励式振荡器的类别及激励原理。在音波式附壁振荡器中,音波管的管口会发生流体卷吸,在音波管的管口两侧开口处形成压差。射流在压差的作用下,周期性地发生附壁切换,形成振荡射流。The principle of the oscillating jet generator is based on the bistable effect of the jet Coanda and the switching characteristics of the jet steady state disturbance. Since it is impossible for a static refrigerator to provide a periodic disturbance source from the outside, it must, like an electronic oscillation circuit, require self-excited conditions to generate self-excited oscillations. In the oscillator structure of the sonic wall-mounted oscillator, the control ports on both sides of the oscillating cavity are directly connected to form a closed pipeline, which is called a sonic tube (control tube). The control tube is an important part of the self-excited Coanda oscillator, and the difference of its structure and position determines the type and excitation principle of the self-excited oscillator. In the sonic Coanda oscillator, fluid entrainment occurs at the nozzle of the sonic tube, and a pressure difference is formed at the openings on both sides of the nozzle of the sonic tube. Under the action of the pressure difference, the jet periodically switches the Coanda to form an oscillating jet.
自激励式附壁振荡器(正反馈式、音波式和共鸣式)的总压损失大,自激励流总压因流道损失而降低和过早衰落,是造成产生能量损失的主要原因。The total pressure loss of self-excited Coanda oscillators (positive feedback type, sonic type and resonance type) is large, and the total pressure of self-excited flow is reduced and prematurely decayed due to the loss of the flow channel, which is the main reason for the energy loss.
本实用新型中的振荡射流发生器,对应能量损失的问题方法是:从主射流分离小部分与主射流总压相等的同气源流体从外部引入自激励振荡腔,进行自激励振荡射流,该振荡微射流成为主射流激励源,对主射流进行切换控制。In the oscillating jet generator of the present utility model, the method corresponding to the problem of energy loss is to separate a small part of the same gas source fluid from the main jet, which is equal to the total pressure of the main jet, and introduce it into the self-excited oscillating cavity from the outside to carry out the self-excited oscillating jet. The oscillating microjet becomes the excitation source of the main jet, and the switching control of the main jet is carried out.
本实用新型解决其技术问题所采用的技术方案是:The technical scheme adopted by the utility model to solve its technical problems is:
自激励微射流控制多管振荡器,主要包括振荡机体18和冷气回收器21;The self-excited micro-fluidic controlled multi-tube oscillator mainly includes an oscillating
所述的振荡机体18,包括底板、上盖12、微射流入口管13、弯头14、三通 15、主射流入口管16、入口管17、固管器24和接受管11;底板上表面开设有不同的腔体和流道,相互连通后形成振荡机体18的流道19,流道19为左右对称结构,包括微射流入口腔1、微射流喷嘴流道2、音波控制管3、分岔流道4、主射流入口腔5、主射流喷嘴流道6、射流控制口7、振荡腔8、多管分岔流道9、排气口10和排气通道20;音波控制管3位于振荡机体18的前端,围成方形环状流道,微射流入口腔1和微射流喷嘴流道2位于音波控制管3围成的方形环内,微射流喷嘴流道2一端与微射流入口腔1连通,另一端与音波控制管3的一条边的中部位置连通;分岔流道4为左右对称结构,围成水滴状环流道,左右两部分各包括直线段和弯曲段,直线段与弯曲段首尾相接连通,两个直线段的外侧端交汇于音波控制管3的一条边的中部位置,从而分岔流道4与微射流入口腔1和微射流喷嘴流道2连通,弯曲段的外侧端交汇于射流控制口7;主射流入口腔5和主射流喷嘴流道6位于分岔流道4围成的水滴状环内,主射流喷嘴流道6一端与主射流入口腔5连通,另一端与射流控制口7连通;振荡腔8 和多管分岔流道9位于振荡机体18的后端,振荡腔8的一端与射流控制口7连通,另一端与多管分岔流道9前端连通;振荡机体18的尾部设有多个排气口10,排气口10分别与多管分岔流道9后端的每个分岔相连通;接受管11从振荡机体18的尾部外侧安装在排气口10上,并通过固管器24进行固定;The oscillating
所述上盖12盖在底板上,上盖12上开设有两个通孔,分别与微射流入口腔 1和主射流入口腔5相对应,通孔上分别安装微射流入口管13和主射流入口管 16,微射流入口管13与微射流入口腔1连通,主射流入口管16与主射流入口腔5连通;入口管17安装在上盖12的外部,通过弯头14和三通15使入口管 17与微射流入口管13和主射流入口管16连通;The
所述底板的尾部开设有多个贯穿底板底部的、倾斜的排气通道20,排气通道20与排气口10相对应,二者相互连通;The tail of the bottom plate is provided with a plurality of
所述冷气回收器21安装在振荡机体18尾端的底部,包括冷气出口腔23和冷气出口22,冷气出口腔23与冷气出口22相连通;多个排气通道20均与冷气出口腔23连通,冷气从冷气出口22排出。The
所述底板、上盖12与冷气回收器21之间采用通过螺栓25进行固定。The bottom plate, the
所述排气通道20的倾斜角度为45°,所述多管分岔流道9的各个分岔之间的角度为10°~50°。The inclination angle of the
所述振荡机体18的材质为亚克力板或金属,通过激光切割加工,并在振荡射流出口矩形截面位置缓慢过渡到圆截面。The material of the oscillating
所述接受管11末端延长段的长度以实际需求可定,以管接头与外部连接。The length of the extension section at the end of the receiving pipe 11 can be determined according to actual needs, and is connected to the outside with a pipe joint.
本实用新型有益效果是:用微射流控制主射流在于无任何运行动件密封,具有可靠性好、体积小、功率大、成本低且适合于处理高压气体介质的膨胀制冷机的振荡器。并能适应强辐射、强腐蚀、强振动和强冲击等恶劣工作环境,且不存在电子干扰。因此在高辐射、强磁场、易燃易爆等复杂工况下或是纯流体工作系统中,能得到广泛的应用,如核工业、航空航天等领域的某些控制系统。同时附壁射流具有可切换特性,可以实现流动控制。The beneficial effect of the utility model is that the main jet is controlled by the micro-jet without any moving parts being sealed, and the utility model has the advantages of good reliability, small volume, high power, low cost, and is suitable for the oscillator of the expansion refrigerator for processing high-pressure gas medium. And can adapt to harsh working environment such as strong radiation, strong corrosion, strong vibration and strong impact, and there is no electronic interference. Therefore, it can be widely used in complex working conditions such as high radiation, strong magnetic field, flammable and explosive, or in pure fluid working systems, such as some control systems in the nuclear industry, aerospace and other fields. At the same time, the Coanda jet has switchable characteristics, which can realize flow control.
附图说明Description of drawings
图1是本实用新型自激励微射流控制多管振荡器的装置原理图。FIG. 1 is a schematic diagram of the device of the self-excited micro-fluidic control multi-tube oscillator of the present invention.
图2是本实用新型自激励微射流控制多管振荡器的俯视图。FIG. 2 is a top view of the self-excited micro-fluidic control multi-tube oscillator of the present invention.
图3是本实用新型自激励微射流控制多管振荡器的主视图。FIG. 3 is a front view of the self-excited micro-fluidic control multi-tube oscillator of the present invention.
图4是本实用新型自激励微射流控制多管振荡器的侧视图。FIG. 4 is a side view of the self-excited micro-fluidic controlled multi-tube oscillator of the present invention.
图中:1射流入口腔,2微射流喷嘴流道,3音波控制管,4分岔流道,5主射流入口腔,6主射流喷嘴流道,7射流控制口,8振荡腔,9多管分岔流道, 10排气口,11接受管,12上盖,13微射流入口管,14弯头,15三通,16主射流入口管,17入口管,18振荡机体,19流道,20排气通道,21气回收器,22 冷气出口,23气出口腔,24固管器,25螺栓。In the picture: 1 jet into the oral cavity, 2 micro-jet nozzle flow channels, 3 sonic control tubes, 4 bifurcated flow channels, 5 main jet flow into the oral cavity, 6 main jet nozzle flow channels, 7 jet control ports, 8 oscillation chambers, 9 more Tube bifurcation flow channel, 10 exhaust port, 11 receiving tube, 12 upper cover, 13 micro-jet inlet tube, 14 elbow, 15 tee, 16 main jet inlet tube, 17 inlet tube, 18 oscillator body, 19 flow channel , 20 exhaust passages, 21 air recovery, 22 cold air outlet, 23 air outlet, 24 pipe fixer, 25 bolts.
具体实施方式Detailed ways
以下结合附图和技术方案,进一步说明本实用新型的具体实施方式。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings and technical solutions.
本实用新型的一种典型的实施方式如下:A typical embodiment of the present invention is as follows:
采用从主射流分离与主射流总压相等的同气源流体从外部引入自激励振荡腔,进行自激励振荡产生周期性微射流,并从垂直激励口在附壁侧推压主射流,用推挽主射流的方式使主射流振荡,从而提高和持续总压。自激励振荡腔使用的是音波式振荡射流发生器,作为本实用新型的微射射流控制器,从而使主射流发生分配。而音波控制管的长度变化即可使微射流附壁的切换频率改变。The same gas source fluid separated from the main jet and equal to the total pressure of the main jet is introduced into the self-excited oscillation cavity from the outside, and the self-excited oscillation is carried out to generate periodic micro-jets, and the main jet is pushed from the vertical excitation port on the side of the wall. The way of pulling the main jet makes the main jet oscillate, thereby increasing and sustaining the total pressure. The self-excited oscillating cavity uses a sonic oscillating jet generator as the micro-jet jet controller of the present utility model, so that the main jet is distributed. The change of the length of the sonic control tube can change the switching frequency of the micro-jet Coanda.
如图3所示,本实用新型的自激励微射流控制多管振荡器,主要包括振荡机体18和冷气回收器21。As shown in FIG. 3 , the self-excited micro-fluidic controlled multi-tube oscillator of the present invention mainly includes an
如图2所示,振荡机体18,包括底板、上盖12、微射流入口管13、弯头14、三通15、主射流入口管16、入口管17、固管器24和接受管11;底板上表面开设有不同的腔体和流道,相互连通后形成振荡机体18的流道19,流道19为左右对称结构,包括微射流入口腔1、微射流喷嘴流道2、音波控制管3、分岔流道4、主射流入口腔5、主射流喷嘴流道6、射流控制口7、振荡腔8、多管分岔流道9、排气口10和排气通道20。As shown in FIG. 2, the
如图3所示,上盖12盖在底板上,上盖12上开设有两个通孔,用于安装微射流入口管13和主射流入口管16;入口管17安装在上盖12的外部,通过弯头 14和三通15使入口管17与微射流入口管13和主射流入口管16连通;底板的尾部开设有多个贯穿底板底部的、倾斜的排气通道20,排气通道20与排气口 10连通。As shown in FIG. 3 , the
如图4所示,冷气回收器21包括冷气出口腔23和冷气出口22,多个排气通道20均与冷气出口腔23连通,冷气从冷气出口22排出。As shown in FIG. 4 , the cold
本实用新型工作原理如图1所示,具体如下:与主射流总压相等的同气源流体从入口管17和微射流入口管13进入微射流入口腔1,再进入微射流喷嘴流道 2,然后通过两侧的音波控制管3压力信号切换使微射流进入分岔流道4,微射流从而成为主射流的激励源;主射流从入口管17和主射流入口管16通过主射流入口腔5进入主射流喷嘴流道6,然后通过射流控制口7进入振荡腔8,射流控制口位于振荡器8前端、主射流喷嘴流道6末端,射流控制口7射入的微射流对主射流进行推挽,使主射流发生振荡,然后从振荡腔8进入多管分岔流道9。多管分岔流道9前端锐角的分流劈角结构能保证附壁的全部射流都流进所对位的那一流道中。振荡射流发生器对应两侧的射流附壁,延伸出分岔的5条流道,在5条流道的向后延伸处,接受管11之前的位置,对称地各自以10°~50°划分流道,并通过45°斜向下形成的排气通道20通入冷气回收器21,管内的射流气在后段滞留气较高压力的作用下从排气通道20流到压力相对较低的冷气出口腔 23中汇集,再从冷气出口22流出。The working principle of the utility model is shown in Figure 1, and the details are as follows: the same gas source fluid with the total pressure of the main jet enters the micro-jet and flows into the oral cavity 1 from the
高压气体从微射流入口腔1和主射流入口腔5同时进入流道19,微射流在音波式附壁振荡器中,音波控制管3管口会发生流体卷吸,在音波控制管3的管口两侧开口处形成压差。主射流在压差的作用下,周期性地发生附壁切换,射流就会轮流进入两个流道。The high-pressure gas flows from the micro-jet into the oral cavity 1 and the main jet into the oral cavity 5 and enters the
正对振荡射流发生器两个流道的出口为射流控制口7,射入的微射流对主射流进行推挽,使主射流发生振荡,进入多管分岔流道9。振荡射流发生器对应两侧的射流附壁,延伸出分岔的5条流道,在5条流道的向后延伸处,有对应的5 个接受管11末端对应气波管,脉冲射流周期性向气波管内入射,每一次脉冲射气都会压缩管内原有气体,两气体之间形成一道接触面,在接触面前方,将产生一系列压缩波,因当地音速的不断增加而汇聚成激波前行。激波扫过的行程,气体压力和温度跃升,即射流通过快速压缩,借助波系将能量传递给管内滞留气体,并通过管壁散发到环境。当脉冲射气停止,管口会产生一束膨胀波向内前行,扫过接触面后的射流气体,使其温度和压力等参数降低,接下来,管内的射流气在后段滞留气较高压力的作用下从在接受管11前端多管分岔流道9位置下端以45°斜向下设置排气口10并通过排气通道20流到压力相对较低的冷气出口腔23中汇集,再从冷气出口22流出,完成制冷。The outlets of the two flow channels facing the oscillating jet generator are the jet control ports 7 . The oscillating jet generator corresponds to the jet wall on both sides, and extends out five bifurcated flow channels. At the backward extension of the five flow channels, there are corresponding five receiving tubes 11 at the ends corresponding to the gas wave tube, and the pulse jet cycle The gas is incident into the gas wave tube. Each pulse jet will compress the original gas in the tube, forming a contact surface between the two gases. In front of the contact surface, a series of compression waves will be generated, which will converge into shock waves due to the continuous increase of the local speed of sound. Forward. During the stroke swept by the shock wave, the gas pressure and temperature jump, that is, the jet is rapidly compressed, and the energy is transferred to the stagnant gas in the tube by means of the wave system, and is emitted to the environment through the tube wall. When the pulse jet stops, an expansion wave will be generated at the nozzle to move inward, sweeping the jet gas behind the contact surface, reducing its temperature and pressure and other parameters. Under the action of high pressure, the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020431468.7U CN212006287U (en) | 2020-03-30 | 2020-03-30 | Self-excited microfluidic controlled multi-tube oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020431468.7U CN212006287U (en) | 2020-03-30 | 2020-03-30 | Self-excited microfluidic controlled multi-tube oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN212006287U true CN212006287U (en) | 2020-11-24 |
Family
ID=73422739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020431468.7U Withdrawn - After Issue CN212006287U (en) | 2020-03-30 | 2020-03-30 | Self-excited microfluidic controlled multi-tube oscillator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN212006287U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111306828A (en) * | 2020-03-30 | 2020-06-19 | 大连大学 | Self-excited microfluidic controlled multi-tube oscillator |
-
2020
- 2020-03-30 CN CN202020431468.7U patent/CN212006287U/en not_active Withdrawn - After Issue
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111306828A (en) * | 2020-03-30 | 2020-06-19 | 大连大学 | Self-excited microfluidic controlled multi-tube oscillator |
CN111306828B (en) * | 2020-03-30 | 2024-07-12 | 大连大学 | Self-exciting micro-jet controlled multitube oscillator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5892582B2 (en) | Thermoacoustic engine | |
CN212006287U (en) | Self-excited microfluidic controlled multi-tube oscillator | |
CN101294751B (en) | Variable capacity frequency modulation self-excited oscillating jet refrigerator | |
CN111397235A (en) | Frequency-adjustable sonic wave jet oscillator | |
CN111306828A (en) | Self-excited microfluidic controlled multi-tube oscillator | |
CN103861748B (en) | Recommend external excitation formula fluidic oscillation generator | |
CN101294750B (en) | Feedback Oscillating Jet Refrigerator | |
CN207610837U (en) | airflow actuator | |
Wang et al. | Experimental and numerical study of the frequency response of a fluidic oscillator for active flow control | |
CN101566405B (en) | Heat-driven thermoacoustic refrigerator device with traveling and standing wave type sound field | |
CN104315740B (en) | The multistage oscillating jet air wave refrigerating device of external excitation | |
CN206082879U (en) | Strengthen excitation formula fluidic oscillator from switching over | |
CN106179791B (en) | Adaptive switched reinforcing Exciting-simulator system fluidic oscillator | |
CN104180550B (en) | External excitation and concentrated dissipation Character of The Static Gas Wave Refrigerator | |
CN1267685C (en) | Multi-tube jetting oscillating refrigerator and its refrigeration method | |
CN113019789B (en) | An off-wall feedback jet oscillator | |
CN212656936U (en) | A magnetic fluid sealed resonator, thermoacoustic engine and thermoacoustic refrigeration system | |
Jeong | Secondary flow in basic pulse tube refrigerators | |
CN212656935U (en) | A bellows sealed resonator, thermoacoustic engine and thermoacoustic refrigeration system | |
CN203778217U (en) | Push-pull external-excitation type fluidic oscillation generator | |
Kim et al. | Effect of a localized time-periodic wall motion on a turbulent boundary layer flow | |
CN109798686B (en) | Stirling refrigerator driven by pneumatic sound source | |
CN113915088B (en) | A magnetic fluid sealed resonator, thermoacoustic engine and thermoacoustic refrigeration system | |
CN101230471A (en) | Thermoacoustic module device for waste heat utilization of aluminum electrolytic cell | |
CN201229083Y (en) | Gas capacity variable frequency modulation self-excitation oscillation jet stream refrigerating machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20201124 Effective date of abandoning: 20240712 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20201124 Effective date of abandoning: 20240712 |