CN211978166U - Active temperature sensitive device based on Mach-Zehnder structure - Google Patents
Active temperature sensitive device based on Mach-Zehnder structure Download PDFInfo
- Publication number
- CN211978166U CN211978166U CN202020842726.0U CN202020842726U CN211978166U CN 211978166 U CN211978166 U CN 211978166U CN 202020842726 U CN202020842726 U CN 202020842726U CN 211978166 U CN211978166 U CN 211978166U
- Authority
- CN
- China
- Prior art keywords
- mode
- mach
- fiber
- zehnder
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lasers (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及光纤传感技术领域,具体涉及一种基于马赫曾德尔结构的有源型温度敏感器件。The utility model relates to the technical field of optical fiber sensing, in particular to an active temperature sensitive device based on a Mach-Zehnder structure.
背景技术Background technique
本实用新型对于背景技术的描述属于与本实用新型相关的相关技术,仅仅是用于说明和便于理解本实用新型的实用新型内容,不应理解为申请人明确认为或推定申请人认为是本实用新型在首次提出申请的申请日的现有技术。The description of the background technology of the present utility model belongs to the related technology related to the present utility model, and is only used to illustrate and facilitate the understanding of the utility model content of the present utility model. The new type of prior art on the filing date of the first application.
光纤有源温度传感系统中,输出波长、强度等会随着外界折射率、温度、应变、磁场、曲率等物理量的变化而改变,从而实现对外界物理量的检测。In the optical fiber active temperature sensing system, the output wavelength, intensity, etc. will change with the changes of physical quantities such as external refractive index, temperature, strain, magnetic field, curvature, etc., so as to realize the detection of external physical quantities.
但是目前的传感系统普遍存在成本高,适应性差和易受电磁干扰的缺点。However, the current sensing systems generally have the disadvantages of high cost, poor adaptability and susceptibility to electromagnetic interference.
实用新型内容Utility model content
本实用新型实施例的目的是提供一种基于马赫曾德尔结构的有源型温度敏感器件。本实用新型的马赫曾德尔结构的有源型温度敏感器件以马赫曾德尔干涉原理为依据,利用其对环境温度敏感特点实现固定范围内的温度测量,在传感区域选用材料为传统单模光纤和多模光纤,该传感器件具有成本低、调谐简单、使用方便等优点。The purpose of the embodiments of the present invention is to provide an active temperature sensitive device based on the Mach-Zehnder structure. The Mach-Zehnder structure active temperature sensitive device of the utility model is based on the Mach-Zehnder interference principle, and utilizes its sensitivity to ambient temperature to achieve temperature measurement within a fixed range, and the material selected in the sensing area is traditional single-mode optical fiber and multimode fiber, the sensor device has the advantages of low cost, simple tuning, and convenient use.
本实用新型的目的是通过如下技术方案实现的:The purpose of this utility model is achieved through the following technical solutions:
第一方面,本实用新型提供了一种基于马赫曾德尔结构的有源型温度敏感器件,包括:In a first aspect, the present utility model provides an active temperature sensitive device based on a Mach-Zehnder structure, comprising:
光源、环形腔和光谱仪,所述的环形腔由波分复用器、掺铒光纤、光纤隔离器、马赫曾德尔温度敏感元件结构和耦合器依次首尾连接而成;所述的光源通过单模光纤与所述的波分复用器连接,所述的耦合器通过单模光纤与所述的光谱仪连接。A light source, a ring cavity and a spectrometer, the ring cavity is formed by a wavelength division multiplexer, an erbium-doped fiber, a fiber isolator, a Mach-Zehnder temperature sensitive element structure and a coupler connected end to end in sequence; the light source is connected by a single mode The optical fiber is connected with the wavelength division multiplexer, and the coupler is connected with the spectrometer through a single-mode fiber.
进一步的,所述的马赫曾德尔温度敏感元件结构包括两个多模光纤,所述的两个多模光纤之间连接有第二单模光纤。Further, the Mach-Zehnder temperature sensitive element structure includes two multi-mode fibers, and a second single-mode fiber is connected between the two multi-mode fibers.
进一步的,所述的第二单模光纤的长度为5cm或6cm,所述的多模光纤的长度为0.5cm。Further, the length of the second single-mode optical fiber is 5 cm or 6 cm, and the length of the multi-mode optical fiber is 0.5 cm.
进一步的,所述的光源为980nmLD泵浦光源,波分复用器为980nm/1550nm波分复用器,掺铒光纤长为10.4m;耦合器分光比为40:60。Further, the light source is a 980nm LD pump light source, the wavelength division multiplexer is a 980nm/1550nm wavelength division multiplexer, the length of the erbium-doped fiber is 10.4m, and the splitting ratio of the coupler is 40:60.
第二方面,本实用新型提供一种基于马赫曾德尔结构的有源型温度敏感器件的制备方法,所述的温度敏感器件为上述的温度敏感器件,包括如下步骤:In the second aspect, the present invention provides a preparation method of an active temperature sensitive device based on a Mach-Zehnder structure, wherein the temperature sensitive device is the above temperature sensitive device, comprising the following steps:
采用单模光纤将波分复用器、掺铒光纤、光纤隔离器、马赫曾德尔温度敏感元件结构和耦合器依次首尾连接形成环形腔,将光源与所述的波分复用器通过单模光纤连接将光源接入所述的环形腔;将所述的耦合器通过单模光纤与光谱仪连接将所述的光谱仪接入所述的环形腔得到所述的温度敏感器件。A single-mode fiber is used to connect the wavelength division multiplexer, erbium-doped fiber, fiber isolator, Mach-Zehnder temperature sensitive element structure and coupler in turn to form a ring cavity, and connect the light source and the wavelength division multiplexer through the single-mode The optical fiber connection connects the light source to the annular cavity; the coupler is connected to the spectrometer through a single-mode optical fiber, and the spectrometer is connected to the annular cavity to obtain the temperature sensitive device.
进一步的,所述的马赫曾德尔温度敏感元件结构的制备包括如下步骤:Further, the preparation of the Mach-Zehnder temperature sensitive element structure includes the following steps:
分别将第二单模光纤、多模光纤的端面用酒精棉擦拭干净后切割平整,按照多模-单模-多模的顺序进行光纤熔接,得到多模-单模-多模温度敏感结构即为所述的马赫曾德尔温度敏感元件结构。Wipe the end faces of the second single-mode optical fiber and the multi-mode optical fiber with alcohol cotton respectively, then cut them flat, and perform optical fiber fusion in the order of multi-mode-single-mode-multi-mode to obtain a multi-mode-single-mode-multi-mode temperature-sensitive structure. It is the structure of the Mach-Zehnder temperature sensitive element.
本实用新型实施例具有如下有益效果:The embodiments of the present utility model have the following beneficial effects:
本实用新型的传感器件利用全光纤型结构进行传感,具有抗电磁干扰、电绝缘、灵敏度高、体积小、质量轻、外形结构灵活多变适应性强、应用范围广泛、可靠性高等优点。The sensor device of the utility model uses an all-fiber structure for sensing, and has the advantages of anti-electromagnetic interference, electrical insulation, high sensitivity, small size, light weight, flexible shape and structure, strong adaptability, wide application range and high reliability.
本实用新型采用在线型马赫曾德尔结构,与传统的马赫曾德尔结构相比,具有结构精巧,生产成本较低,调谐方式多等优点。Compared with the traditional Mach-Zehnder structure, the utility model adopts the on-line Mach-Zehnder structure, and has the advantages of compact structure, lower production cost, many tuning modes and the like.
本实用新型采用的在光纤有源传感结构中在线型多模-单模-多模马赫曾德尔结构的温度敏感元件对温度十分敏感。The temperature sensitive element of the online multimode-single-mode-multimode Mach-Zehnder structure in the optical fiber active sensing structure adopted by the utility model is very sensitive to temperature.
本实用新型的传感器件具有良好的稳定性。The sensor device of the utility model has good stability.
附图说明Description of drawings
图1为本实用新型装置的应用传感结构示意图1 is a schematic diagram of the application sensing structure of the device of the present invention
1、LD泵浦光源;2、波分复用器;3、掺铒光纤;4、光纤隔离器;5、多模-单模-多模马赫曾德尔(MZI)温度敏感元件结构(5-1单模光纤;5-2多模光纤);6、1×2耦合器;7、光谱仪;8、单模光纤。1. LD pump light source; 2. Wavelength division multiplexer; 3. Erbium-doped fiber; 4. Fiber isolator; 5. Multimode-single-mode-multimode Mach-Zehnder (MZI) temperature sensitive element structure (5- 1 single mode fiber; 5-2 multimode fiber); 6, 1×2 coupler; 7, spectrometer; 8, single mode fiber.
图2为单模长度为5cm时温度-输出波长线性拟合图。Figure 2 is a linear fitting diagram of temperature-output wavelength when the single-mode length is 5 cm.
具体实施方式Detailed ways
下面结合实施例对本申请进行进一步的介绍。The present application will be further introduced below with reference to the embodiments.
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。不同实施例之间可以替换或者合并组合,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些实施例获得其他的实施方式。In order to describe the embodiments of the present invention or the technical solutions in the prior art more clearly, in the following description, different "an embodiment" or "embodiments" do not necessarily refer to the same embodiment. Different embodiments can be replaced or combined, and for those skilled in the art, other implementations can also be obtained according to these embodiments without creative efforts.
如图1所示,一种基于马赫曾德尔结构的有源型温度敏感器件,包括:As shown in Figure 1, an active temperature sensitive device based on Mach-Zehnder structure includes:
光源1、环形腔和光谱仪7,所述的环形腔由波分复用器2、掺铒光纤3、光纤隔离器4、马赫曾德尔温度敏感元件结构5和耦合器6依次首尾连接而成;所述的光源1通过单模光纤8与所述的波分复2用器连接,所述的耦合器6通过单模光纤8与所述的光谱仪7连接。Light source 1, annular cavity and
进一步的,所述的马赫曾德尔温度敏感元件结构5包括两个多模光纤5-2,所述的两个多模光纤之间连接有第二单模光纤5-1。Further, the Mach-Zehnder temperature sensitive element structure 5 includes two multi-mode optical fibers 5-2, and a second single-mode optical fiber 5-1 is connected between the two multi-mode optical fibers.
进一步的,所述的第二单模光纤5-1的长度为5cm或6cm,所述的多模光纤5-2的长度为0.5cm。Further, the length of the second single-mode optical fiber 5-1 is 5 cm or 6 cm, and the length of the multi-mode optical fiber 5-2 is 0.5 cm.
进一步的,所述的光源1为980nmLD泵浦光源,波分复用器2为980nm/1550nm波分复用器,掺铒光纤3长为10.4m;耦合器5分光比为40:60。Further, the light source 1 is a 980nm LD pump light source, the
一种基于马赫曾德尔结构的有源型温度敏感器件的制备方法,所述的温度敏感器件为上述的温度敏感器件,包括如下步骤:A preparation method of an active temperature-sensitive device based on a Mach-Zehnder structure, wherein the temperature-sensitive device is the above-mentioned temperature-sensitive device, comprising the following steps:
采用单模光纤8将波分复用器2、掺铒光纤3、光纤隔离器4、马赫曾德尔温度敏感元件结构5和耦合器6依次首尾连接形成环形腔,将光源1与所述的波分复用器2通过单模光纤8连接将光源1接入所述的环形腔;将所述的耦合器6通过单模光纤8与光谱仪7连接将所述的光谱仪7接入所述的环形腔得到所述的温度敏感器件。The single-
进一步的,所述的马赫曾德尔温度敏感元件结构6的制备包括如下步骤:Further, the preparation of the Mach-Zehnder temperature
分别将第二单模光纤5-1、多模光纤5-2的端面用酒精棉擦拭干净后切割平整,按照多模-单模-多模的顺序进行光纤熔接,得到多模-单模-多模温度敏感结构即为所述的马赫曾德尔温度敏感元件结构。Wipe the end faces of the second single-mode optical fiber 5-1 and the multi-mode optical fiber 5-2 respectively with alcohol cotton, cut them flat, and perform optical fiber fusion in the order of multi-mode-single-mode-multi-mode to obtain multi-mode-single-mode- The multimode temperature sensitive structure is the Mach-Zehnder temperature sensitive element structure.
一种基于马赫曾德尔结构的有源型温度传感器件如图1所示,LD泵浦光源通过单模光纤波分复用器(WDM)耦合进环形腔内,经掺铒光纤(EDF)3后与一个光纤隔离器(ISO)4相连接,多模-单模-多模的马赫曾德尔(MZI)结构5作为滤波器可以实现温度调谐。光束经1×2光纤耦合器6分束后一路输出到光谱仪7,另一路返回到环型腔内继续传输。An active temperature sensor device based on Mach-Zehnder structure is shown in Figure 1. The LD pump light source is coupled into the ring cavity through a single-mode fiber wavelength division multiplexer (WDM), and the erbium-doped fiber (EDF) 3 After being connected with an optical fiber isolator (ISO) 4, a multi-mode-single-mode-multi-mode Mach-Zehnder (MZI) structure 5 can be used as a filter to achieve temperature tuning. The beam is split by the 1×2
上述马赫曾德尔结构有源型温度传感装置中选用980nmLD泵浦光,980nm/1550nm波分复用器(WDM),10.4m长的掺铒光纤(EDF),分光比为40:60的耦合器。多模-单模-多模的马赫曾德尔(MZI)温度敏感元件(5)中,第二单模光纤5-1长度为5cm或6cm,多模光纤5-2长度为0.5cm。In the above-mentioned Mach-Zehnder structure active temperature sensing device, 980nm LD pump light, 980nm/1550nm wavelength division multiplexer (WDM), 10.4m long erbium-doped fiber (EDF), and the coupling ratio of 40:60 are selected. device. In the multimode-single-mode-multimode Mach-Zehnder (MZI) temperature sensitive element (5), the length of the second single-mode optical fiber 5-1 is 5 cm or 6 cm, and the length of the multi-mode optical fiber 5-2 is 0.5 cm.
选择多模-单模-多模结构作为马赫曾德尔温度敏感元件,入射光经单模光纤8传输到多模光纤5-2结构中,当入射光传输到与中间部位第二单模光纤5-1熔接端面处时,一部分光会沿着第二单模光纤5-1的纤芯传输,另外一部分光会进入到第二单模光纤5-1的包层中继续进行传输。当两部分光同时传输到第二单模光纤5-1另一端与多模光纤5-2的熔接端面时,两部分光会被重新耦合进多模光纤5-2中,在满足相位匹配条件下,纤芯和包层之间的光会发生模间干涉,从而得到输出干涉谱。The multi-mode-single-mode-multi-mode structure is selected as the Mach-Zehnder temperature sensitive element, and the incident light is transmitted to the multi-mode fiber 5-2 structure through the single-
其中分别通过多模光纤纤芯和包层的光之间产生相位差Among them, a phase difference is generated between the light passing through the core and cladding of the multimode fiber, respectively
ncore表示多模光纤纤芯有效折射率,nclad表示多模光纤包层有效折射率,L表示多模光纤的长度,λ表示传输光的波长。n core represents the effective refractive index of the multimode fiber core, n cla d represents the effective refractive index of the multimode fiber cladding, L represents the length of the multimode fiber, and λ represents the wavelength of the transmitted light.
由于热光效应,温度的改变将导致纤芯、包层的折射率和干涉臂长度发生变化。Due to thermo-optic effects, changes in temperature will result in changes in the refractive index of the core, cladding and the length of the interference arms.
其中光纤的热膨胀系数为:The thermal expansion coefficient of the fiber is:
α=dL/LdT (3)α=dL/LdT (3)
同时,纤芯和包层的折射率也会发生变化,设纤芯和包层的热光系数分别为ζcore和ζclad,可得:At the same time, the refractive index of the core and the cladding will also change. Let the thermo-optic coefficients of the core and the cladding be ζ core and ζ clad respectively, we can get:
当温度发生变化时,干涉臂长度L和模间相位差会发生变化,进而导致输出干涉波长移动。When the temperature changes, the interferometric arm length L and the inter-mode phase difference will change, resulting in a shift in the output interference wavelength.
图1为基于马赫曾德尔结构的有源型温度传感器件。其中选用980nm的LD泵浦光,980nm/1550nm波分复用器(WDM),10.4m长的掺铒光纤(EDF);分光比为40:60的耦合器。多模-单模-多模的马赫曾德尔(MZI)温度敏感元件(5)中,第二单模光纤5-1长度为5cm或6cm,多模光纤5-2长度为0.5cm。Figure 1 shows an active temperature sensing device based on a Mach-Zehnder structure. Among them, 980nm LD pump light, 980nm/1550nm wavelength division multiplexer (WDM), 10.4m long erbium-doped fiber (EDF), and a coupler with a splitting ratio of 40:60 are selected. In the multimode-single-mode-multimode Mach-Zehnder (MZI) temperature sensitive element (5), the length of the second single-mode optical fiber 5-1 is 5 cm or 6 cm, and the length of the multi-mode optical fiber 5-2 is 0.5 cm.
该装置中传感结构制作方法:分别将第二单模光纤5-1、多模光纤5-2的端面用酒精棉擦拭干净后用光纤切割刀切割平整,用熔接机按照多模-单模-多模的顺序进行光纤熔接,其中第二单模光纤5-1选择5cm,多模光纤5-2采用0.5cm,熔接过程中控制好熔接损耗。按照同样操作方式将6cm单模光纤,0.5cm多模光纤,制成多模-单模-多模温度敏感结构。The manufacturing method of the sensing structure in the device: Wipe the end faces of the second single-mode optical fiber 5-1 and the multi-mode optical fiber 5-2 with alcohol cotton respectively, then cut them flat with a fiber cutter, and use a fusion splicer to follow the multi-mode-single-mode - Multi-mode fiber splicing is performed in sequence, wherein the second single-mode fiber 5-1 is 5 cm, and the multi-mode fiber 5-2 is 0.5 cm, and the splicing loss is controlled during the splicing process. According to the same operation method, a 6cm single-mode fiber and a 0.5cm multi-mode fiber were made into a multimode-single-mode-multimode temperature-sensitive structure.
有源传感器件选用980nmLD泵浦光,980nm/1550nm波分复用器(WDM),10.4m长的掺铒光纤(EDF),分光比为40:60的耦合器。LD泵浦光1通过单模光纤8连接波分复用器(WDM)2耦合进腔内,经掺铒光纤(EDF)3对泵浦光进行增益放大,后接一个光纤隔离器(ISO)4以保证光的单向传输,防止部分返回的光对光路系统产生影响。之后通过多模-单模-多模的马赫曾德尔(MZI)温度敏感元件结构5对光路中的光进行滤波,再接一个1×2耦合器Coupler16形成环路。选用分光比为40:60的耦合器,光由耦合器Coupler1的1口进入后分成两路,一路连接到LD泵浦光后的波分复用器,另一路连接到光谱仪(OSA)7。如通过温控箱控制环境的温度便可得到不同温度环境下的透射光谱。The active sensor device uses 980nm LD pump light, 980nm/1550nm wavelength division multiplexer (WDM), 10.4m long erbium-doped fiber (EDF), and a coupler with a split ratio of 40:60. The LD pump light 1 is coupled into the cavity through a single-
多模-单模-多模的马赫曾德尔(MZI)温度敏感元件做滤波构成有源传感器件,控制温控箱升高温度,在温度从30℃上升到55℃的过程中,每上升5℃测一次输出波形,并对实验结果进行拟合。结合数据分析。在30℃到35℃,温度敏感器件灵敏度达到0.216nm/℃,如图2中y1拟合曲线所示。在40℃到55℃,温度敏感器件灵敏度达到0.2115nm/℃,如图2中y2拟合曲线所示。其中35℃到40℃时灵敏度达到0.682nm/℃。是普通多模-单模-多模干涉型传感结构灵敏度的10倍,且在保持外界环境不变的情况下,该有源温度敏感器件具有良好的稳定性。Multimode-single-mode-multimode Mach-Zehnder (MZI) temperature sensitive element is used for filtering to form an active sensing device, which controls the temperature of the temperature control box to increase. ℃ measure the output waveform once and fit the experimental results. Combined with data analysis. At 30°C to 35°C, the sensitivity of the temperature-sensitive device reaches 0.216 nm/°C, as shown in the fitting curve of y1 in Fig. 2 . At 40°C to 55°C, the sensitivity of the temperature-sensitive device reaches 0.2115 nm/°C, as shown by the y2 fitting curve in Fig. 2 . Among them, the sensitivity reaches 0.682nm/°C from 35°C to 40°C. It is 10 times more sensitive than the common multi-mode-single-mode-multi-mode interference sensing structure, and the active temperature sensitive device has good stability under the condition of keeping the external environment unchanged.
应当说明的是,上述实施例均可根据需要自由组合。以上介绍仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。It should be noted that the above embodiments can be freely combined as required. The above descriptions are only preferred embodiments of the present utility model, and are not intended to limit the present utility model. For those skilled in the art, the present utility model may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020842726.0U CN211978166U (en) | 2020-05-20 | 2020-05-20 | Active temperature sensitive device based on Mach-Zehnder structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020842726.0U CN211978166U (en) | 2020-05-20 | 2020-05-20 | Active temperature sensitive device based on Mach-Zehnder structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211978166U true CN211978166U (en) | 2020-11-20 |
Family
ID=73371779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020842726.0U Expired - Fee Related CN211978166U (en) | 2020-05-20 | 2020-05-20 | Active temperature sensitive device based on Mach-Zehnder structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211978166U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111521291A (en) * | 2020-05-20 | 2020-08-11 | 黑龙江大学 | Active temperature sensitive device and preparation method based on Mach-Zehnder structure |
-
2020
- 2020-05-20 CN CN202020842726.0U patent/CN211978166U/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111521291A (en) * | 2020-05-20 | 2020-08-11 | 黑龙江大学 | Active temperature sensitive device and preparation method based on Mach-Zehnder structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bilodeau et al. | Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure | |
Sun et al. | An optical fiber Fabry–Perot interferometer sensor for simultaneous measurement of relative humidity and temperature | |
CN101464539B (en) | Mach-Zehnder interferometer based on coaxial optical fiber | |
CN110726374B (en) | Optical fiber Fabry-Perot strain sensor based on single-mode optical fiber, manufacturing method and measuring method | |
Mathew et al. | Fiber optic hybrid device for simultaneous measurement of humidity and temperature | |
CN105277135A (en) | High sensitivity optical fiber curvature sensing construction having temperature insensitive characteristic | |
CN101813459B (en) | Temperature-compensated optical fiber sagnac interference ring strain sensor | |
CN109781300A (en) | A device and method for simultaneous measurement of temperature and curvature based on optical fiber | |
CN105928549B (en) | More physical quantity Active Optical Fiber sensors and method for sensing based on cascade less fundamental mode optical fibre | |
CN104297208A (en) | Interferometric optical fiber sensor based on pohotonic crystal optical fiber | |
CN112414581B (en) | Temperature sensor based on multicore optic fibre | |
CN108195482A (en) | Based on the cascade temperature of FBG and MZI and the two-parameter fibre optical sensor of alcoholic solution concentration | |
CN101458363B (en) | Coaxial fiber-based Michelson interferometer | |
CN108387173A (en) | A kind of ultra-compact all -fiber Mach-Zehnder interferometer and preparation method thereof | |
CN109632133A (en) | A kind of temperature measuring device and method based on optical fiber | |
CN110987230A (en) | A dual-parameter optical fiber sensing module, system and measurement method | |
CN108267241A (en) | A kind of high sensitivity optical fiber temperature sensor based on mixed type honeysuckle life knot | |
CN112525372B (en) | Strain temperature simultaneous measurement device and method based on polarization maintaining optical fiber double-arm different-axis interferometer | |
CN110160571A (en) | It is a kind of based on the Fabry Perot sensor of silicon core fibre and its preparation and application | |
CN211978166U (en) | Active temperature sensitive device based on Mach-Zehnder structure | |
CN209559364U (en) | A kind of temperature, strain sensor | |
Georgiou et al. | Low-loss single-mode optical couplers | |
JPH0799407B2 (en) | Optical fiber coupler | |
CN109580037A (en) | Temperature sensor and preparation method thereof based on photonic crystal fiber FP structure | |
CN102494702A (en) | Long period fiber grating sensor and remote-sensing demodulating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201120 |
|
CF01 | Termination of patent right due to non-payment of annual fee |