CN211909480U - Converters, HVDC transmission facilities and reactive power compensation facilities - Google Patents
Converters, HVDC transmission facilities and reactive power compensation facilities Download PDFInfo
- Publication number
- CN211909480U CN211909480U CN201690001821.XU CN201690001821U CN211909480U CN 211909480 U CN211909480 U CN 211909480U CN 201690001821 U CN201690001821 U CN 201690001821U CN 211909480 U CN211909480 U CN 211909480U
- Authority
- CN
- China
- Prior art keywords
- energy storage
- coolant
- electronic switching
- storage device
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
- H02J3/1857—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
- H05K7/1432—Housings specially adapted for power drive units or power converters
- H05K7/14339—Housings specially adapted for power drive units or power converters specially adapted for high voltage operation
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inverter Devices (AREA)
Abstract
本实用新型涉及一种变流器,其具有多个模块,所述模块分别具有至少两个电子开关元件和电的能量储存装置。所述能量储存装置是液体冷却的能量储存装置。本实用新型还涉及一种具有所述变流器的高压直流传输设施和一种具有所述变流器的无功功率补偿设施。
The utility model relates to a converter, which has a plurality of modules, and the modules respectively have at least two electronic switching elements and an electric energy storage device. The energy storage device is a liquid cooled energy storage device. The utility model also relates to a high-voltage direct current transmission facility with the converter and a reactive power compensation facility with the converter.
Description
技术领域technical field
本实用新型涉及一种变流器,其具有多个模块,所述模块分别具有至少两个电子开关元件和电的能量储存装置。此外,本实用新型涉及一种具有变流器的高压直流传输设施和一种具有变流器的无功功率补偿设施。The utility model relates to a converter, which has a plurality of modules, and the modules respectively have at least two electronic switching elements and an electric energy storage device. In addition, the utility model relates to a high-voltage direct current transmission facility with a converter and a reactive power compensation facility with a converter.
背景技术Background technique
变流器是用于转换电能的功率电子电路。借助于变流器能够将交流电流转换为直流电流,将直流电流转换为交流电流,将交流电流转换为其他频率和/或幅值的交流电流或者将直流电流转换为其他电压的直流电流。变流器能够具有多个上述同类的模块(其也称作为子模块),所述模块串联电连接。这种变流器称为模块化的多级变流器并且属于VSC变流器 (VSC=voltage source converter电压源变流器)。通过模块的电串联电路能实现高的输出电压。变流器可简单地匹配于不同的电压(可扩展)并且能够相对准确地产生期望的输出电压。模块化的多级变流器通常使用在高压范围内,例如用作为在高压直流传输设施中的变流器。A converter is a power electronic circuit used to convert electrical energy. By means of a converter it is possible to convert alternating current to direct current, direct current to alternating current, alternating current to alternating current of other frequencies and/or amplitudes or direct current to direct current of other voltages. The converter can have a plurality of modules of the same type described above (which are also referred to as submodules), which are electrically connected in series. Such converters are called modular multilevel converters and belong to the category of VSC converters (VSC=voltage source converter). High output voltages can be achieved by the electrical series circuit of the modules. The converter can be simply matched to different voltages (scalable) and can produce the desired output voltage relatively accurately. Modular multilevel converters are often used in the high voltage range, eg as converters in HVDC transmission installations.
在这种变流器的运行中,用电能对电的能量储存装置充电和再次放电。由于在此流动的高的电流,电的能量储存装置可能强烈地变热;在能量储存装置中可能出现大量的功率损失并且产生大的热量(废热)。因此,在多个电的能量储存装置之间或者在电的能量储存装置和相邻的构件之间必须构成相对大的间距,以便能够将废热从电的能量储存装置排放到周围空气并且能够将废热借助于周围空气运走(通过空气对流被动地冷却电的能量储存装置)。During operation of such a converter, the electrical energy storage device is charged and discharged again with electrical energy. Due to the high currents flowing there, the electrical energy storage device can heat up significantly; a large power loss can occur in the energy storage device and a large amount of heat (waste heat) can be generated. Therefore, relatively large distances must be formed between a plurality of electrical energy storage devices or between the electrical energy storage devices and adjacent components in order to be able to discharge waste heat from the electrical energy storage devices to the surrounding air and to be able to dissipate The waste heat is carried away by means of the surrounding air (passive cooling of the electrical energy storage device by air convection).
实用新型内容Utility model content
本实用新型基于的目的是,提出一种变流器和一种方法,其中能够增大电的能量储存装置的组装密度。The present invention is based on the object of proposing a converter and a method in which the packing density of the electrical energy storage device can be increased.
所述目的通过一种变流器、一种高压直流传输设施和一种无功功率补偿设施实现,所述变流器具有多个模块,所述模块分别具有至少两个电子开关元件和电的能量储存装置,其特征在于,所述能量储存装置是液体冷却的能量储存装置,所述高压直流传输设施具有所述变流器,所述无功功率补偿设施具有所述变流器。变流器和所述方法的有利的实施方式在下文中给出。The object is achieved by a converter, a high-voltage direct current transmission facility and a reactive power compensation facility, the converter having a plurality of modules each having at least two electronic switching elements and an electrical An energy storage device, characterized in that the energy storage device is a liquid-cooled energy storage device, the HVDC transmission facility has the converter, and the reactive power compensation facility has the converter. Advantageous embodiments of the converter and the method are given below.
如果公开一种具有多个模块的变流器,所述模块分别具有至少两个电子开关元件和电的能量储存装置,其中能量储存装置是液体冷却的能量储存装置。也就是说,能量储存装置借助于液体冷却来冷却。换言之,能量储存装置借助于液态的冷却剂(冷却液体)冷却。能量储存装置例如能够是电容器。在此,特别有利的是,能量储存装置将在其中产生的热量(废热)排放给冷却液体并且不排放给周围空气。由此,围绕能量储存装置的大的自由空间或间距是不必要的,因为对能量储存装置的冷却不基于对流。能量储存装置在变流器中的组装密度(也就是说每体积单位的能量储存装置的数量)能够有利地提高,也就是说能量储存装置例如能够紧密地并排安装。通过改进的冷却,也可使用具有更大的能量密度或功率密度的能量储存装置。通过能量储存装置的更好的冷却和由此得到的更少的变热也提高了能量储存装置的使用寿命。此外,能量储存装置的周围空气仅略微加热,以至于用于对其中设置有变流器的空间进行空气调节的耗费,与在被动的空气冷却的情况相比,能够减少非常多。A converter with a plurality of modules is disclosed, each of which has at least two electronic switching elements and an electrical energy storage device, wherein the energy storage device is a liquid-cooled energy storage device. That is, the energy storage device is cooled by means of liquid cooling. In other words, the energy storage device is cooled by means of a liquid coolant (cooling liquid). The energy storage device can be, for example, a capacitor. It is particularly advantageous here if the energy storage device discharges the heat (waste heat) generated in it to the cooling liquid and not to the surrounding air. Thus, large free spaces or spacings around the energy storage device are not necessary, since the cooling of the energy storage device is not based on convection. The packing density of the energy storage devices in the converter, that is to say the number of energy storage devices per volume unit, can advantageously be increased, that is to say that the energy storage devices can, for example, be installed closely next to one another. With improved cooling, energy storage devices with greater energy density or power density can also be used. The service life of the energy storage device is also increased by better cooling and thus less heating of the energy storage device. Furthermore, the surrounding air of the energy storage device is only slightly heated, so that the outlay for air conditioning the space in which the converter is arranged can be considerably reduced compared to the case of passive air cooling.
变流器能够设计为,使得变流器具有冷却装置,所述冷却装置具有液态的冷却剂。作为液态的冷却剂例如能够使用去离子的水(去除离子的水) 或乙二醇。The converter can be designed such that the converter has a cooling device with a liquid coolant. As the liquid coolant, for example, deionized water (deionized water) or ethylene glycol can be used.
变流器能够设计为,使得能量储存装置与冷却剂热耦合。通过热耦合能够将废热快速地并且全面地从能量储存装置排放给液态的冷却剂。The converter can be designed such that the energy storage device is thermally coupled to the coolant. The waste heat can be quickly and comprehensively discharged from the energy storage device to the liquid coolant by means of the thermal coupling.
变流器也能够设计为,使得能量储存装置与冷却剂热耦合,其中能量储存装置设有冷却体(能量储存装置冷却体)并且所述冷却体与冷却剂热耦合。在本实施例中,废热首先从冷凝器排放给冷却体然后从冷却体排放给冷却剂。The converter can also be designed such that the energy storage device is thermally coupled to the coolant, wherein the energy storage device is provided with a cooling body (energy storage device cooling body) and the cooling body is thermally coupled to the coolant. In this embodiment, the waste heat is first discharged from the condenser to the cooling body and then from the cooling body to the coolant.
变流器能够设计为,使得电子开关元件是液体冷却的电子开关元件。换言之,电子开关元件能够借助于液态的冷却剂(冷却液体)冷却。由此也能够有利地借助于液态的冷却剂冷却电子开关元件。The converter can be designed such that the electronic switching elements are liquid-cooled electronic switching elements. In other words, the electronic switching element can be cooled by means of a liquid coolant (cooling liquid). As a result, the electronic switching element can also advantageously be cooled by means of a liquid coolant.
变流器也能够设计为,使得电子开关元件与冷却剂热耦合。The converter can also be designed such that the electronic switching element is thermally coupled to the coolant.
尤其地,变流器能够设计为,使得电子开关元件与冷却剂热耦合,其中电子开关元件设有冷却体(开关元件冷却体)并且冷却体与冷却剂热耦合。In particular, the converter can be designed such that the electronic switching element is thermally coupled to the coolant, wherein the electronic switching element is provided with a cooling body (switching element cooling body) and the cooling body is thermally coupled to the coolant.
变流器也能够设计为,使得冷却装置具有用于冷却能量储存装置的冷却剂-回路(冷却剂的回路)。冷却剂回路能够实现有效地运走能量储存装置的废热。The converter can also be designed such that the cooling device has a coolant circuit (circuit of coolant) for cooling the energy storage device. The coolant circuit enables efficient removal of waste heat from the energy storage device.
变流器也能够设计为,使得冷却装置具有冷却剂泵和换热器(热交换器)。The converter can also be designed such that the cooling device has a coolant pump and a heat exchanger (heat exchanger).
变流器能够设计为,使得电的能量储存装置是电容器。尤其地,电的能量储存装置能够是单极的电容器,也就是说,具有两个电容器端子的预设的极性的电容器。The converter can be designed such that the electrical energy storage device is a capacitor. In particular, the electrical energy storage device can be a unipolar capacitor, that is to say a capacitor with a predetermined polarity of the two capacitor terminals.
变流器能够设计为,使得The converter can be designed such that
–模块的两个电子开关元件设置成半桥电路,或者– the two electronic switching elements of the module are arranged as a half-bridge circuit, or
–模块分别具有两个所述电子开关元件和两个其他的电子开关元件,– the modules each have two of said electronic switching elements and two further electronic switching elements,
其中所述两个电子开关元件和两个其他电子开关元件设置成全桥电路。The two electronic switching elements and the two other electronic switching elements are configured as a full-bridge circuit.
在此,能够将两个其他的电子开关元件与所述两个电子开关元件一样地冷却。在第一替选方案的情况下,这种模块也称作为半桥模块或称作为半桥子模块。在第二替选方案的情况下,这种模块也称作为全桥模块或称作为全桥子模块。Here, the two other electronic switching elements can be cooled in the same way as the two electronic switching elements. In the case of the first alternative, such a module is also referred to as a half-bridge module or as a half-bridge submodule. In the case of the second alternative, such a module is also referred to as a full-bridge module or as a full-bridge submodule.
还公开了具有根据前述变型形式的变流器的高压直流传输设施和无功功率补偿设施。Also disclosed are HVDC transmission installations and reactive power compensation installations with converters according to the aforementioned variants.
还公开一种用于冷却变流器的至少一个电的能量储存装置的方法,其中变流器具有多个模块,其中所述模块分别具有至少两个电子开关元件和电的能量储存装置,其中在所述方法中Also disclosed is a method for cooling at least one electrical energy storage device of a converter, wherein the converter has a plurality of modules, wherein the modules each have at least two electronic switching elements and an electrical energy storage device, wherein in the method
–借助于液态的冷却剂冷却电的能量储存装置。- Cooling of electrical energy storage devices by means of a liquid coolant.
优选地,能够借助于液态的冷却剂冷却多个模块的能量储存装置。Preferably, the energy storage device of the plurality of modules can be cooled by means of a liquid coolant.
所述方法能够以如下方式进行:也借助于液态的冷却剂冷却相应的模块的电子开关元件。The method can be carried out in that the electronic switching elements of the respective modules are also cooled by means of a liquid coolant.
所述方法能够以如下方式进行:将液态的冷却剂借助于冷却剂回路运输至能量储存装置。The method can be carried out by transporting a liquid coolant to the energy storage device by means of a coolant circuit.
所述方法也能够以如下方式进行:将液态的冷却剂借助于冷却剂回路运输至电子开关元件。The method can also be carried out by transporting a liquid coolant to the electronic switching element by means of a coolant circuit.
所描述的变流器和所描述的方法具有相同的或同类的优点。The described converter and the described method have the same or similar advantages.
附图说明Description of drawings
下面,根据实施例详细阐述本实用新型。相同的附图标记在此表示相同的或起相同作用的元件。为此Hereinafter, the present utility model will be described in detail according to the embodiments. The same reference numerals denote identical or identically functioning elements here. to this end
在图1中示出变流器的一个实施例,所述变流器具有多个模块;An embodiment of a converter is shown in FIG. 1 having a plurality of modules;
在图2中示出模块的一个实施例;One embodiment of a module is shown in Figure 2;
在图3中示出模块的另一实施例;Another embodiment of the module is shown in Figure 3;
在图4中示出高压直流传输设施的一个实施例;One embodiment of a HVDC transmission facility is shown in FIG. 4;
在图5中示出无功功率补偿设施的一个实施例;以及One embodiment of a reactive power compensation facility is shown in FIG. 5; and
在图6中示出用于冷却变流器的模块的能量储存装置的方法的示例性的流程。An exemplary sequence of a method for cooling an energy storage device of a module of a converter is shown in FIG. 6 .
具体实施方式Detailed ways
在图1中示出呈模块化的多级变流器1(modular multilevel converter, MMC)形式的变流器1。所述多级变流器1具有第一交流电压端子5、第二交流电压端子7和第三交流电压端子9。第一交流电压端子5与第一相位模块支路11和第二相位模块支路13电连接。第一相位模块支路11和第二相位模块支路13形成变流器1的第一相位模块15。第一相位模块支路11的背离交流电压端子5的端部与第一直流电压端子16电连接;第二相位模块支路13的背离第一交流电压端子5的端部与第二直流电压端子 17电连接。第一直流电压端子16是正的直流电压端子;第二直流电压端子17是负的直流电压端子。A
第二交流电压端子7与第三相位模块支路18的端部并且与第四相位模块支路21的端部电连接。第三相位模块支路18和第四相位模块支路 21形成第二相位模块24。第三交流电压端子9与第五相位模块支路27的端部并且与第六相位模块支路29的端部电连接。第五相位模块支路27和第六相位模块支路29形成第三相位模块31。The second AC voltage terminal 7 is electrically connected to the end of the third
第三相位模块支路18的背离第二交流电压端子7的端部和第五相位模块支路27的背离第三交流电压端子9的端部与第一直流电压端子16电连接。第四相位模块支路21的背离第二交流电压端子7的端部和第六相位模块支路29的背离第三交流电压端子9的端部与第二直流电压端子17 电连接。第一相位模块支路11、第三相位模块支路18和第五相位模块支路27形成正极侧的变流器部分32;第二相位模块支路13、第四相位模块支路21和第六相位模块支路29形成负极侧的变流器部分33。The end of the third
每个相位模块支路具有多个模块(1_1、1_2、1_3、1_4、……、1_n; 2_1、……、2_n;等),所述模块(借助于其电的电流端子)串联地电连接。这种模块也称作为子模块。在图1的实施例中,每个相位模块支路具有n个模块。借助于其电流端子串联地电连接的模块的数量能够是非常不同的,至少两个模块串联连接,然而例如也能够3个、50个、100个或更多个模块串联地电连接。在实施例中,n=36:也就是说,第一相位模块支路11具有36个模块1_1、1_2、1_3、……、1_36。其他相位模块支路13、 18、21、27和29相同类型地构成。Each phase module branch has a plurality of modules (1_1, 1_2, 1_3, 1_4, ..., 1_n; 2_1, ..., 2_n; etc.) which are electrically connected in series (by means of their electrical current terminals) . Such modules are also called submodules. In the embodiment of Figure 1, each phase module branch has n modules. The number of modules electrically connected in series by means of their current terminals can be very different, at least two modules are connected in series, but for example also 3, 50, 100 or more modules can be electrically connected in series. In the embodiment, n=36: that is, the first
通过变流器1的(未示出的)控制装置将光学消息或光学信号经由光学通信连接(例如经由光波导)传输至各个模块1_1至6_n。例如,控制装置分别将关于输出电压的高度的期望值发送给各个模块分别,所述输出电压应当是由相应的模块提供。Optical messages or optical signals are transmitted to the individual modules 1_1 to 6_n via an optical communication connection, eg via an optical waveguide, by a control device (not shown) of the
变流器1具有冷却装置50。冷却装置50具有冷却剂容器52、泵54 (冷却剂泵54)以及换热器56(热交换器56)。冷却剂容器52、泵54和换热器56经由冷却剂管路60与变流器1的各个模块1_1、……、6_n连接。(冷却剂管路60在实施例中借助于管道形式的两条平行线示出。)因此,例如换热器56经由去向-冷却剂管路60a与模块1_1连接;模块1_1 经由冷却剂管路60b与模块1_2连接;并且模块1_2经由冷却剂管路60c 与模块1_3连接。以相同的方式和方法,模块1_3与下一个模块1_4(未示出)经由冷却剂管路连接,等等。相位模块支路11的最后的模块1_n 经由回向-冷却管路60d与冷却剂容器52连接。冷却剂容器52经由冷却剂管路60与泵54连接;泵54经由冷却剂管路60与换热器56连接。The
在冷却剂容器52中存在冷却剂70的储备。冷却剂70能够从冷却剂容器52中借助于泵54泵送穿过换热器56、穿过第一相位模块支路11的模块1_1、……、1_n并且随后再泵送回到冷却剂容器52。由此,冷却装置50具有冷却剂回路72。在冷却剂回路72上也连接有第三相位模块支路18的模块3_1、……、3_n和第五相位模块支路27的模块5_1、……、5_n。也就是说,借助于冷却剂回路72能够同时冷却多个模块的能量储存装置和/或多个模块的电子开关元件(所述多个模块在此是第一相位模块支路11的模块1_1、……、1_n,第三相位模块支路的模块3_1、……、 3_n,和第五相位模块支路27的模块5_1、……、5_n)。There is a reserve of
为了冷却第二相位模块支路13的、第四相位模块支路21的和第六相位模块支路29的模块的电子开关元件和/或能量储存装置,存在另外的冷却装置80。所述另外的冷却装置80与上文所描述的冷却装置50相同地构造。不言而喻,在另一实施例中,也能够借助于唯一的冷却装置(也就是说借助于唯一的冷却剂容器52、唯一的泵54和唯一的换热器56)冷却变流器1的所有模块。替选地,也可行的是,使用多于两个的冷却装置来冷却变流器1的模块。In order to cool the electronic switching elements and/or the energy storage devices of the modules of the second
冷却剂容器52包含冷却剂70的储备。冷却剂容器52是可选的:冷却剂也能够以足够的量在冷却剂管路60中、在泵54中和在换热器56中存在。
在图2中示例地示出模块201的构造。在此,例如能够涉及第一相位模块支路11的模块1_1(或也涉及在图1中示出的其他模块中的一个模块)。模块构成为半桥模块201。模块201具有可接通和可切断的第一电子开关元件202(第一电子开关元件202),其具有反向并联连接的第一二极管 204(第一续流二极管204)。此外,模块201具有可接通和可切断的第二电子开关元件206(第二电子开关元件206),其具有第二反向并联连接的二极管208(第二续流二极管208)和呈电容器210形式的电的能量储存装置210。第一电子开关元件202和第二电子开关元件206分别构成为 IGBT(insulated-gate bipolar transistor绝缘栅双极晶体管)。第一电子开关元件202与第二电子开关元件206串联地电连接。在这两个电子开关元件 202和206之间的连接点处,设置有(电流的)第一模块端子212。在第二开关元件206的与连接点相对置的端子处,设置有(电流的)第二模块端子215。第二模块端子215还与能量储存装置210的第一端子连接;能量储存装置210的第二端子与第一开关元件202的与连接点相对置的端子电连接。The construction of the
也就是说,能量储存装置210与由第一开关元件202和第二开关元件206构成的串联电路并联地电连接。通过相应地操控第一开关元件202和第二开关元件206能够实现,使得在第一模块端子212和第二模块端子 215之间要么输出能量储存装置210的电压要么不输出电压(也就是说输出零电压)。因此,通过各个相位模块支路的模块的共同作用,能够产生变流器的相应所期望的输出电压。在本实施例中,借助于(上文提到的) 从变流器的控制装置传输至模块的消息和信号进行第一开关元件202和第二开关元件206的操控。That is, the
第一电子开关元件202设有第一开关元件冷却体220;第二电子开关元件206设有第二开关元件冷却体222。第一续流二极管204设有第一二极管冷却体226;第二续流二极管208设有第二二极管冷却体228。能量储存装置210设有能量储存装置冷却体230。冷却体220、222、226、228 和230能够分别由固态金属构成,例如由铜或铝构成。冷却体在图2中仅示意地示出。冷却体220、222、226、228和230与相应的器件紧密地热接触并且能够吸收在器件中产生的废热并且再传导给液态的冷却剂70。因此,冷却体220、222、226、228和230分别与冷却剂70紧密地热接触 (热耦合)。因此,能量储存装置210、第一电子开关元件202、第二电子开关元件206、第一续流二极管204和第二续流二极管208与冷却剂70 热耦合。The first
在图2的下部中,借助于箭头236示出流入模块201中的冷却剂70;在图2的上部中,借助于箭头238示出从模块201中流出的冷却剂70。也就是说,借助于流过模块201的冷却剂70能够冷却第一电子开关元件 202、第二电子开关元件206、第一续流二极管204、第二续流二极管208 和能量储存装置210。替选地,当然也可行的是,借助于冷却剂70仅冷却模块的个别器件,例如仅冷却能量储存装置210。在此情况下,针对开关元件和续流二极管的冷却能够存在其他冷却可行性,例如自身的冷却剂回路。In the lower part of FIG. 2 , the
冷却剂70吸收能量储存装置210的废热。此外,冷却剂70吸收第一电子开关元件202的、第二电子开关元件206的、第一续流二极管204的和第二续流二极管208的废热。冷却剂70将所吸收的废热运输至换热器 56。换热器56将冷却剂的废热排放给周围空气(优选地,换热器56将废热排放给位于变流器建筑之外的周围空气)。也就是说,能量储存装置210是液体冷却的能量储存装置210;借助于液态的冷却剂70冷却能量储存装置210。以相同的方式,电子开关元件202、206是液体冷却的电子开关元件202、206。
在图3中示出模块化的多级变流器的模块301的另一实施例。所述模块301例如能够是模块1_2(或也能够是在图1中示出的其他模块中的一个)。除了已经从图2中已知的第一电子开关元件202、第二电子开关元件206、第一续流二极管204、第二续流二极管208和能量储存装置210 以外,在图3中示出的模块301具有第三电子开关元件302以及第四电子开关元件306,所述第三电子开关元件具有反向并联连接的第三续流二极管304,所述第四电子开关元件具有反向并联连接的第四续流二极管308。第三电子开关元件302和第四电子开关元件306分别构成为IGBT。与图 2的电路不同地,第二模块端子315不与第二电子开关元件206电连接,而是与由第三电子开关元件302和第四电子开关元件306构成的电串联电路的中点电连接。Another embodiment of a
图3的模块301是所谓的全桥模块301。所述全桥模块301的特征在于,在相应地操控在(电流的)第一模块端子212和(电流的)第二模块端子315之间的四个电子开关元件时,可选地能够输出能量储存装置210 的正电压、能量储存装置210的负电压或值为零的电压(零电压)。由此,也就是说,借助于全桥模块301能够倒转输出电压的极性。变流器1能够要么仅具有半桥模块201,仅具有全桥模块301,要么也具有半桥模块201 和全桥模块301。经由第一模块端子212和第二模块端子215、315流过变流器的大的电流。The
在模块301的所述实施例中,除了能量储存装置210、第一电子开关元件202、第二电子开关元件206、第一续流二极管204和第二续流二极管208以外,附加地也借助于冷却剂回路72的冷却剂70冷却第三电子开关元件302、第四电子开关元件306、第三续流二极管304以及第四续流二极管308。In this exemplary embodiment of the
在图4中示意地示出高压直流传输设施401的一个实施例。所述高压直流传输设施401具有两个变流器1,如其在图1中所示出的那样。这两个变流器1在直流电压侧经由高压直流连接405彼此电连接。在此,变流器1的两个正的直流电压端子16借助于第一高压直流管路405a彼此电连接;这两个变流器1的两个负的直流电压端子17借助于第二高压直流管路405b彼此电连接。借助于这种高压直流传输设施401能够远程地传输电能;高压直流连接405于是具有相应的长度。One embodiment of a
在图5中示出变流器501的一个实施例,所述变流器是无功功率补偿器501。所述变流器501仅具有三个相位模块支路11、18和27,所述相位模块支路形成变流器的三个相位模块。相位模块的数量对应于变流器 501所连接的交流电网511的相位数量。One embodiment of a
三个相位模块11、18和27三角形地彼此连接,也就是说,三个相位模块11、18和27以三角形电路连接。三角形电路的每个角点分别与三相的交流电网511的相线515、517和519电连接。(三个相位模块在另一实施例中代替三角形电路也能够以星形电路连接。)变流器501能够给交流电网511供给无功功率或从交流电网511提取无功功率。The three
在图6中再次借助于流程图示出用于冷却变流器的至少一个电的能量储存装置的方法。A method for cooling at least one electrical energy storage device of a converter is shown again in FIG. 6 with the aid of a flow chart.
方法步骤602:Method step 602:
通过变流器1的模块1_1、……、6_n泵送在冷却剂回路72中的冷却剂70The
方法步骤604:Method step 604:
通过冷却剂70吸收模块1_1的能量储存装置210的废热The waste heat of the
方法步骤606(可选地):Method step 606 (optional):
通过冷却剂70吸收模块1_1、……、6_n的开关元件202、206、302、 306的废热The waste heat of the switching
方法步骤608:Method step 608:
将废热借助于冷却剂70运走至换热器56The waste heat is carried away to the
描述一种具有多个模块的变流器以及一种用于冷却变流器的模块的能量储存装置的方法。在此,模块的能量储存装置(例如模块的电容器) 借助于液态的冷却剂冷却(液体冷却)。也就是说,借助于液态的冷却剂进行能量储存装置的主动冷却。优选地,借助于相同的液态的冷却剂进行能量储存装置的冷却,借助于所述冷却剂也冷却模块的开关元件。能量储存装置的液体冷却得出一系列优点:A converter having a plurality of modules and a method for cooling an energy storage device of the modules of the converter are described. In this case, the energy storage devices of the modules (eg capacitors of the modules) are cooled by means of a liquid coolant (liquid cooling). That is to say, the active cooling of the energy storage device takes place by means of a liquid coolant. Preferably, the cooling of the energy storage device takes place by means of the same liquid coolant, by means of which the switching elements of the modules are also cooled. Liquid cooling of energy storage devices yields a series of advantages:
-可使用具有较大的能量密度/功率密度的能量储存装置(例如电容器)。- Energy storage devices (eg capacitors) with greater energy density/power density can be used.
-在电的能量储存装置之间的对流间距是不必要的或仅是最小程度需要的。由此,提高了能量储存装置在变流器中的组装密度。- Convective spacing between electrical energy storage devices is not necessary or only minimally required. Thereby, the packing density of the energy storage device in the converter is increased.
-显著地简化对其中存在变流器的建筑(例如变流器厅)的空气调节(成本优点)。- Significantly simplifies air conditioning of buildings in which converters are present (eg converter halls) (cost advantage).
-提高能量储存装置的使用寿命。-Increase the service life of the energy storage device.
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2016/079006 WO2018095552A1 (en) | 2016-11-28 | 2016-11-28 | Power converter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211909480U true CN211909480U (en) | 2020-11-10 |
Family
ID=57442672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201690001821.XU Active CN211909480U (en) | 2016-11-28 | 2016-11-28 | Converters, HVDC transmission facilities and reactive power compensation facilities |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN211909480U (en) |
DE (1) | DE212016000296U1 (en) |
WO (1) | WO2018095552A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110999062B (en) | 2017-06-12 | 2024-02-13 | 阿尔法能源技术公司 | Multi-level multi-quadrant hysteresis current controller and method for controlling same |
WO2018232403A1 (en) | 2017-06-16 | 2018-12-20 | Tae Technologies, Inc. | Multi-level hysteresis voltage controllers for voltage modulators and methods for control thereof |
KR20200135399A (en) | 2018-03-22 | 2020-12-02 | 티에이이 테크놀로지스, 인크. | Systems and methods for power management and control |
JP7541026B2 (en) | 2019-03-29 | 2024-08-27 | ティーエーイー テクノロジーズ, インコーポレイテッド | Cascaded and interconnected configuration capable module-based energy system and related methods - Patents.com |
ES2976463T3 (en) * | 2019-04-23 | 2024-08-01 | Siemens Energy Global Gmbh & Co Kg | Layout with a converter |
EP3780366A1 (en) * | 2019-08-13 | 2021-02-17 | Vestas Wind Systems A/S | Dc chopper for mmc cell with integrated chopper resistor |
CN110474551A (en) * | 2019-08-28 | 2019-11-19 | 南京南瑞继保电气有限公司 | Control method is moved back in a kind of submodule throwing of modularization multi-level converter |
CN110808604B (en) * | 2019-11-18 | 2020-09-25 | 广东电网有限责任公司 | Three-port energy control device based on MMC structure |
WO2021211630A2 (en) | 2020-04-14 | 2021-10-21 | Tae Technologies, Inc. | Systems, devices, and methods for charging and discharging module-based cascaded energy systems |
US12065058B2 (en) * | 2020-04-14 | 2024-08-20 | Tae Technologies, Inc. | Modular cascaded energy systems with a cooling apparatus and with replaceable energy source capability |
BR112022023043A2 (en) | 2020-05-14 | 2022-12-20 | Tae Tech Inc | SYSTEMS, DEVICES AND METHODS FOR RAIL-BASED VEHICLES AND OTHER ELECTRIC VEHICLES WITH MODULAR CASCADE POWER SYSTEMS |
CA3196955A1 (en) | 2020-09-28 | 2022-03-31 | Tae Technologies, Inc. | Multi-phase module-based energy system frameworks and methods related thereto |
EP4204251A4 (en) | 2020-09-30 | 2024-05-22 | TAE Technologies, Inc. | SYSTEMS, DEVICES AND METHODS FOR INTRAPHASE AND INTERPHASE BALANCING IN MODULE-BASED CASCADE ENERGY SYSTEMS |
EP4255765A1 (en) | 2021-01-13 | 2023-10-11 | TAE Technologies, Inc. | Systems, devices, and methods for module-based cascaded energy systems |
US11888320B2 (en) | 2021-07-07 | 2024-01-30 | Tae Technologies, Inc. | Systems, devices, and methods for module-based cascaded energy systems configured to interface with renewable energy sources |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6031751A (en) * | 1998-01-20 | 2000-02-29 | Reliance Electric Industrial Company | Small volume heat sink/electronic assembly |
DE102009043181A1 (en) * | 2009-09-26 | 2011-04-07 | Semikron Elektronik Gmbh & Co. Kg | Converter arrangement |
FI124731B (en) * | 2009-12-18 | 2014-12-31 | Vacon Oyj | Arrangement in a liquid cooler |
DE102011006988B4 (en) * | 2011-04-07 | 2021-09-30 | Siemens Aktiengesellschaft | Two-part converter cell |
EP2825009B8 (en) * | 2013-07-09 | 2016-11-23 | ABB Schweiz AG | Electric converter with compact module arrangement for subsea applications |
-
2016
- 2016-11-28 WO PCT/EP2016/079006 patent/WO2018095552A1/en active Application Filing
- 2016-11-28 CN CN201690001821.XU patent/CN211909480U/en active Active
- 2016-11-28 DE DE212016000296.1U patent/DE212016000296U1/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2018095552A1 (en) | 2018-05-31 |
DE212016000296U1 (en) | 2019-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211909480U (en) | Converters, HVDC transmission facilities and reactive power compensation facilities | |
Costa et al. | Comparative analysis of multiple active bridge converters configurations in modular smart transformer | |
Tang et al. | A compact MMC submodule structure with reduced capacitor size using the stacked switched capacitor architecture | |
Soeiro et al. | The new high-efficiency hybrid neutral-point-clamped converter | |
Soltau et al. | Development and demonstration of a medium-voltage high-power DC-DC converter for DC distribution systems | |
Schweizer et al. | Heatsink-less Quasi 3-level flying capacitor inverter based on low voltage SMD MOSFETs | |
US8922997B2 (en) | Electric power conversion device | |
US11211878B2 (en) | DC chopper for MMC cell with integrated chopper resistor | |
US20140307497A1 (en) | Multilevel inverter | |
US20140369088A1 (en) | Multi-level inverter | |
Andler et al. | Switching loss analysis of 4.5-kV–5.5-kA IGCTs within a 3L-ANPC phase leg prototype | |
JP2023531343A (en) | Power electronic building blocks (PEBB) with higher power density, smaller size and isolated power ports | |
CN103095168A (en) | Voltage Source Converter (VSC) With Neutral-point-clamped (NPC) Topology And Method For Operating Such Voltage Source Converter | |
Nawawi et al. | Design of high power density converter for aircraft applications | |
CN212695909U (en) | converter device | |
US10615715B2 (en) | Power conversion device, cooling structure, power conversion system, and power supply device | |
Kranzer et al. | Applications of SiC devices | |
US11368104B2 (en) | Power converter having a power converter path | |
Ilka et al. | Impact of immersion cooling on balancing semiconductor thermal distribution in NPC multilevel converters for transportation propulsion | |
US20130322142A1 (en) | Multilevel power converter | |
CN211700258U (en) | Converter and high-voltage direct current transmission facility | |
Stackler et al. | NPC assessment in insulated DC/DC converter topologies using SiC MOSFETs for power electronic traction transformer | |
CN114303313A (en) | Dual active bridge converter unit with split energy transfer inductors for optimizing current balance in an intermediate frequency transformer MFT | |
US12003185B2 (en) | Modular switching cell | |
RU224464U1 (en) | POWER INVERTER MODULE FOR ELECTRICAL COMPLEXES AND ELECTRICAL ENERGY CONVERSION SYSTEMS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220829 Address after: Munich, Germany Patentee after: Siemens energy Global Ltd. Address before: Munich, Germany Patentee before: SIEMENS AG |
|
TR01 | Transfer of patent right | ||
CP03 | Change of name, title or address |
Address after: Munich, Germany Patentee after: Siemens Energy International Country or region after: Germany Address before: Munich, Germany Patentee before: Siemens energy Global Ltd. Country or region before: Germany |
|
CP03 | Change of name, title or address |