CN211876409U - A two-stage condensing evaporation heat exchange system applied in cascade refrigeration system/phase change heat carrier refrigeration system - Google Patents
A two-stage condensing evaporation heat exchange system applied in cascade refrigeration system/phase change heat carrier refrigeration system Download PDFInfo
- Publication number
- CN211876409U CN211876409U CN202020460017.6U CN202020460017U CN211876409U CN 211876409 U CN211876409 U CN 211876409U CN 202020460017 U CN202020460017 U CN 202020460017U CN 211876409 U CN211876409 U CN 211876409U
- Authority
- CN
- China
- Prior art keywords
- heat exchanger
- temperature
- refrigeration system
- refrigerant
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 162
- 238000001704 evaporation Methods 0.000 title claims abstract description 53
- 230000008020 evaporation Effects 0.000 title claims description 23
- 230000008859 change Effects 0.000 title abstract description 18
- 239000003507 refrigerant Substances 0.000 claims abstract description 120
- 239000007788 liquid Substances 0.000 claims description 82
- 230000005494 condensation Effects 0.000 claims description 15
- 238000009833 condensation Methods 0.000 claims description 15
- 230000005514 two-phase flow Effects 0.000 claims description 13
- 238000004781 supercooling Methods 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 84
- 229910002092 carbon dioxide Inorganic materials 0.000 description 42
- 239000001569 carbon dioxide Substances 0.000 description 42
- 238000010586 diagram Methods 0.000 description 14
- 239000003921 oil Substances 0.000 description 8
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本实用新型提供一种应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统,具体涉及制冷技术领域,所述冷凝蒸发换热系统设置第一换热器、第二换热器、节流膨胀部件,应用在复叠制冷系统或相变换热载冷系统时,所述高温级制冷系统中冷凝状态的制冷剂在第二换热器内部过冷,经节流膨胀部件节流膨胀后进入第一换热器蒸发制冷,与对侧低温级制冷系统或相变换热载冷系统换热,包含未蒸发制冷剂的回气进入第二换热器,在第二换热器获得一定过热度后再进入高温级的制冷循环。该系统降低了冷凝端的换热温差并简化了高温级制冷系统,同时解决了换热器末端必须的过热度导致的换热温差较大且不稳定的技术问题。
The utility model provides a two-stage condensation-evaporation heat-exchange system applied in a cascade refrigeration system/phase-change heat-carrying cooling system, in particular to the technical field of refrigeration, wherein the condensation-evaporation heat exchange system is provided with a first heat exchanger , the second heat exchanger, the throttling expansion component, when applied in the cascade refrigeration system or the phase change heat carrier cooling system, the refrigerant in the condensed state in the high temperature stage refrigeration system is subcooled inside the second heat exchanger, After being throttled and expanded by the throttling expansion component, it enters the first heat exchanger for evaporative cooling, and exchanges heat with the opposite low-temperature stage refrigeration system or the phase-change heat-carrying cooling system, and the return gas containing the unevaporated refrigerant enters the second heat exchanger , after the second heat exchanger obtains a certain degree of superheat and then enters the high-temperature refrigeration cycle. The system reduces the heat exchange temperature difference at the condensing end and simplifies the high-temperature stage refrigeration system, and at the same time solves the technical problem of large and unstable heat exchange temperature difference caused by the necessary superheat at the end of the heat exchanger.
Description
技术领域technical field
本实用新型涉及一种应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统,具体涉及高温级制冷系统中的冷凝蒸发换热系统,属于制冷技术领域。The utility model relates to a two-stage condensation-evaporation heat exchange system applied in a cascade refrigeration system/phase-change heat-carrying refrigeration system, in particular to a condensation-evaporation heat exchange system in a high-temperature stage refrigeration system, belonging to the technical field of refrigeration.
背景技术Background technique
近些年来,环境友好型自然制冷剂二氧化碳在商业制冷领域得到越来越广泛的关注,鉴于二氧化碳制冷系统相对较高的压力,处于系统安全和节能的考虑,冷冻冷藏系统中一般采用二氧化碳亚临界制冷系统,该系统通常采用复叠形式或载冷形式实现。In recent years, the environment-friendly natural refrigerant carbon dioxide has received more and more attention in the field of commercial refrigeration. In view of the relatively high pressure of the carbon dioxide refrigeration system and the consideration of system safety and energy saving, the subcritical carbon dioxide is generally used in the refrigeration system. Refrigeration system, which is usually realized in cascade form or cooling form.
在二氧化碳亚临界制冷系统中,低温级使用二氧化碳制冷剂或载冷剂,高温级采用氨或氟利昂等其它制冷剂制冷较为常见,供液方式多采用重力和泵供液,此供液方式使高温级制冷系统复杂、制冷剂灌注量多,优点是冷凝蒸发器的换热温差可控制到很小;当高温级制冷系统采用直接膨胀供液系统时,可使高温级制冷系统简单、制冷剂灌注量少,但缺点是过热度导致冷凝蒸发器的换热温差大,往往很难保证高温级制冷系统的制冷剂为两相流状态,影响换热温差。In the carbon dioxide subcritical refrigeration system, it is more common to use carbon dioxide refrigerant or carrier refrigerant for the low temperature stage, and other refrigerants such as ammonia or freon for the high temperature stage. The secondary refrigeration system is complex and the amount of refrigerant injected is large. However, the disadvantage is that the heat exchange temperature difference of the condensing evaporator is large due to the degree of superheat, and it is often difficult to ensure that the refrigerant of the high temperature stage refrigeration system is in a two-phase flow state, which affects the heat exchange temperature difference.
为了降低冷凝端的换热温差,避免直接膨胀供液系统在冷凝蒸发器内完全蒸发,换热器末端出现过热度导致的换热温差不稳定,减少高温级制冷系统中制冷剂的充注量,简化高温级制冷系统,制冷研发人员急需开发一种应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统。In order to reduce the heat exchange temperature difference at the condensing end, avoid the direct expansion liquid supply system being completely evaporated in the condensing evaporator, the heat exchange temperature difference caused by the superheat at the end of the heat exchanger is unstable, and reducing the refrigerant charge in the high temperature stage refrigeration system, To simplify the high-temperature refrigeration system, refrigeration R&D personnel urgently need to develop a two-stage condensing-evaporation heat exchange system applied in the cascade refrigeration system/phase change heat carrier refrigeration system.
发明内容SUMMARY OF THE INVENTION
(一)解决的技术问题(1) Technical problems solved
本实用新型的目的是提供一种应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统,一方面降低了冷凝端的换热温差,避免直接膨胀供液系统在冷凝蒸发器内完全蒸发,换热器末端出现过热度导致的换热温差不稳定的技术问题;另一方面解决了高温级制冷系统结构复杂的技术问题。当然,同时解决了高温级制冷系统制冷剂充注量大,不可控因素较多的技术问题。The purpose of this utility model is to provide a two-stage condensation-evaporation heat-exchange system applied in a cascade refrigeration system/phase-change heat-carrying cooling system. On the one hand, the heat exchange temperature difference at the condensing end is reduced, and the direct expansion liquid supply system is avoided. Complete evaporation in the condensing evaporator, and the technical problem of unstable heat exchange temperature difference caused by superheat at the end of the heat exchanger; on the other hand, it solves the technical problem of the complex structure of the high-temperature stage refrigeration system. Of course, at the same time, the technical problems of large refrigerant charge and many uncontrollable factors in the high-temperature refrigeration system are solved.
(二)技术方案(2) Technical solutions
为了解决上述技术问题,本实用新型提供一种应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统,包括:第二换热器、节流膨胀部件、第一换热器,所述第二换热器位于高温级制冷系统一侧,用于高温高压侧蒸发器供液的过冷和低温低压侧包含未蒸发制冷剂的蒸发器回气的过热;所述节流膨胀部件位于高温级制冷系统一侧,将第二换热器过冷后的高温高压侧制冷剂节流膨胀;所述第一换热器位于高温级制冷系统和低温级制冷系统之间,用于高温级制冷系统的蒸发与低温级制冷系统的冷凝之间的换热,高温级制冷系统的高温高压侧制冷剂经节流膨胀部件节流膨胀,进入第一换热器蒸发后与对侧低温级制冷系统的冷凝端换热,通过调节流入第一换热器的制冷剂流量,使制冷剂在第一换热器内蒸发后的回气包含未蒸发制冷剂,不发生过热,从而减少第一换热器内冷凝与蒸发两侧的换热温差。In order to solve the above technical problems, the utility model provides a two-stage condensation-evaporation heat exchange system applied in a cascade refrigeration system/phase-change heat-carrying cooling system, comprising: a second heat exchanger, a throttling expansion part, a first heat exchanger, the second heat exchanger is located on one side of the high temperature stage refrigeration system, and is used for subcooling of the liquid supply to the evaporator on the high temperature and high pressure side and superheating of the return gas of the evaporator containing the unevaporated refrigerant on the low temperature and low pressure side; The throttling and expansion component is located on one side of the high-temperature stage refrigeration system, and throttles and expands the refrigerant on the high-temperature and high-pressure side after subcooling of the second heat exchanger; the first heat exchanger is located in the high-temperature stage refrigeration system and the low-temperature stage refrigeration system. It is used for heat exchange between the evaporation of the high temperature stage refrigeration system and the condensation of the low temperature stage refrigeration system. The high temperature and high pressure side refrigerant of the high temperature stage refrigeration system is throttled and expanded by the throttling expansion component, and enters the first heat exchanger for evaporation. Then, it exchanges heat with the condensing end of the opposite low-temperature stage refrigeration system. By adjusting the flow of refrigerant flowing into the first heat exchanger, the return air after the refrigerant is evaporated in the first heat exchanger contains unevaporated refrigerant and does not occur. Overheating, thereby reducing the heat exchange temperature difference between the condensing and evaporating sides in the first heat exchanger.
所述节流膨胀部件是制冷系统中重要的自动控制部件,通过接收第一换热器出口制冷剂过热度的变化,改变阀门的开启度,调节流入第一换热器的制冷剂流量,使得制冷剂流量始终与第一换热器的负荷相匹配,减少压缩机液击的可能。所述第一换热器是复叠制冷系统或者相变换热载冷系统中关键的换热器,具体为冷凝蒸发器,用于高温级制冷系统的蒸发与低温级制冷系统(或相变换热载冷系统)的冷凝之间的换热,利用高温级制冷系统的冷量来冷凝低温级制冷系统压缩机排出的气体,既是高温级制冷系统的蒸发器,又是低温级制冷系统的冷凝器。所述第二换热器具体是回热器,利用第一换热器高温侧排出的制冷剂蒸汽来过冷要通过节流膨胀部件进入第一换热器的高压制冷剂液体,这样使进入压缩机蒸汽进行了有效过热,防止压缩机吸气带液,同样使得高压侧制冷剂液体过冷,减少节流损失。The throttling expansion component is an important automatic control component in the refrigeration system. By receiving the change of the superheat degree of the refrigerant at the outlet of the first heat exchanger, the opening degree of the valve is changed, and the flow of the refrigerant flowing into the first heat exchanger is adjusted, so that the flow rate of the refrigerant flowing into the first heat exchanger is adjusted. The refrigerant flow always matches the load of the first heat exchanger, reducing the possibility of compressor liquid slamming. The first heat exchanger is a key heat exchanger in a cascade refrigeration system or a phase change heat carrier cooling system, specifically a condensing evaporator, which is used for the evaporation of a high temperature stage refrigeration system and a low temperature stage refrigeration system (or phase change). The heat exchange between the condensation of the heat exchange and cooling system) uses the cooling capacity of the high temperature stage refrigeration system to condense the gas discharged from the compressor of the low temperature stage refrigeration system, which is not only the evaporator of the high temperature stage refrigeration system, but also the low temperature stage refrigeration system. condenser. The second heat exchanger is specifically a regenerator, which uses the refrigerant vapor discharged from the high temperature side of the first heat exchanger to supercool the high-pressure refrigerant liquid that will enter the first heat exchanger through the throttling expansion part, so that the The compressor vapor is effectively superheated to prevent the compressor suction from carrying liquid, which also makes the high-pressure side refrigerant liquid supercool, reducing throttling loss.
所述复叠制冷系统或相变换热载冷系统中低温级制冷系统采用二氧化碳亚临界条件下运行。所述第二换热器可用于低温低压侧包含未蒸发制冷剂的蒸发器回气的过热,所述未蒸发制冷剂存在的一定比例根据实际使用的冷负荷确定具体数据。The low-temperature stage refrigeration system in the cascade refrigeration system or the phase-change heat carrier refrigeration system operates under carbon dioxide subcritical conditions. The second heat exchanger can be used for superheating the return air of the evaporator containing the unevaporated refrigerant on the low temperature and low pressure side, and the specific data of a certain proportion of the unevaporated refrigerant is determined according to the actual cooling load used.
优选地,所述第一换热器采用板式换热器、壳管式换热器、壳板式换热器中的一种。在二氧化碳亚临界制冷系统中,现有技术多使用壳管式换热器,使制冷系统以重力供液为主,存在换热温差大,制冷剂充注量大,制冷效率低,能耗高等技术问题。当第一换热器采用板式换热器时,制冷系统以采用泵供液为主,解决了系统复杂,制冷剂充注量大,不可控因素较多的技术问题。Preferably, the first heat exchanger adopts one of a plate heat exchanger, a shell and tube heat exchanger, and a shell and plate heat exchanger. In the carbon dioxide subcritical refrigeration system, shell-and-tube heat exchangers are often used in the prior art, so that the refrigeration system is mainly supplied by gravity, which has large heat exchange temperature difference, large refrigerant charge, low refrigeration efficiency, and high energy consumption. technical problem. When the first heat exchanger adopts the plate heat exchanger, the refrigeration system mainly adopts the pump liquid supply, which solves the technical problems of complex system, large refrigerant charge and many uncontrollable factors.
优选地,所述高温级制冷系统的制冷剂通过第一进液管进入第二换热器内部进行过冷,经节流膨胀部件节流膨胀后由第二进液管进入第一换热器蒸发制冷。Preferably, the refrigerant of the high-temperature stage refrigeration system enters the second heat exchanger through the first liquid inlet pipe for subcooling, and then enters the first heat exchanger through the second liquid inlet pipe after being throttled and expanded by the throttle expansion component. Evaporative cooling.
优选地,所述高温级制冷系统的制冷剂在第一换热器蒸发制冷后的回气包含未蒸发制冷剂液体,不发生过热,并且经第一回气管进入第二换热器,与另一侧高温级制冷系统的制冷剂液体换热后完全蒸发成过热状态的制冷剂蒸气,再经第二回气管回到压缩机吸气端完成制冷循环。Preferably, the return gas of the refrigerant of the high-temperature stage refrigeration system after evaporating and refrigerating in the first heat exchanger contains unevaporated refrigerant liquid without overheating, and enters the second heat exchanger through the first return gas pipe, and is connected with another The refrigerant liquid in the high-temperature stage refrigeration system on one side is completely evaporated into superheated refrigerant vapor after heat exchange, and then returns to the suction end of the compressor through the second air return pipe to complete the refrigeration cycle.
优选地,所述节流膨胀部件为外平衡式热力膨胀阀,所述外平衡式热力膨胀阀连接有平衡管和感温包,所述平衡管连接在第一回气管管段或者第二回气管管段,所述感温包采集第一回气管或者第二回气管内部的温度,根据感温包信号控制外平衡式热力膨胀阀流量,使第一换热器中的高温级制冷剂始终保持两相流换热状态。所述外平衡式热力膨胀阀设有一个外平衡管,将第一换热器出口的压力直接引入阀内,充分考虑了第一换热器的阻力损失,适用于制冷剂流量变化大、第一换热器侧阻力大的系统。Preferably, the throttling expansion component is an external balance type thermal expansion valve, the external balance type thermal expansion valve is connected with a balance pipe and a temperature sensing package, and the balance pipe is connected to the first air return pipe section or the second air return pipe In the pipe section, the temperature sensor collects the temperature inside the first air return pipe or the second air return pipe, and controls the flow rate of the external balance thermal expansion valve according to the signal of the temperature sensor, so that the high temperature refrigerant in the first heat exchanger is always maintained at two levels. Phase flow heat transfer state. The external balance type thermal expansion valve is provided with an external balance pipe, which directly introduces the pressure at the outlet of the first heat exchanger into the valve, fully considering the resistance loss of the first heat exchanger, and is suitable for large changes in the refrigerant flow and the first heat exchanger. A system with high resistance on the heat exchanger side.
优选地,所述节流膨胀部件为内平衡式热力膨胀阀,所述内平衡式热力膨胀阀连接有感温包,所述感温包采集第一回气管或者第二回气管内部的温度,根据感温包信号控制内平衡式热力膨胀阀流量,使第一换热器中的高温级制冷剂始终保持两相流换热状态。所述内平衡式热力膨胀阀直接将节流后制冷剂的压力作为蒸发压力,结构简单适用于第一换热器阻力比较小的系统。Preferably, the throttling expansion component is an internal balance type thermal expansion valve, the internal balance type thermal expansion valve is connected with a temperature sensing package, and the temperature sensing package collects the temperature inside the first air return pipe or the second air return pipe, The flow rate of the internal balanced thermal expansion valve is controlled according to the temperature sensing bulb signal, so that the high temperature refrigerant in the first heat exchanger always maintains a two-phase flow heat exchange state. The internal balance type thermal expansion valve directly uses the pressure of the throttling refrigerant as the evaporation pressure, and has a simple structure and is suitable for a system with relatively small resistance of the first heat exchanger.
优选地,所述节流膨胀部件为电子膨胀阀,所述电子膨胀阀连接有传感器,所述传感器采集第一回气管或者第二回气管内部的温度和/或压力,根据信号控制电子膨胀阀流量,使第一换热器中的高温级制冷剂始终保持两相流换热状态。所述电子膨胀阀利用温度传感器或压力传感器的感受到第一换热器出口制冷剂过热度的变化,产生电信号来控制阀门的开启度,调节流入第一换热器的制冷剂流量,使得制冷剂流量始终与第一换热器的负荷相匹配,减少压缩机液击的可能性。Preferably, the throttling expansion component is an electronic expansion valve, the electronic expansion valve is connected with a sensor, the sensor collects the temperature and/or pressure inside the first air return pipe or the second air return pipe, and controls the electronic expansion valve according to the signal flow, so that the high-temperature refrigerant in the first heat exchanger always maintains a two-phase flow heat exchange state. The electronic expansion valve uses the temperature sensor or the pressure sensor to sense the change of the superheat degree of the refrigerant at the outlet of the first heat exchanger, and generates an electrical signal to control the opening degree of the valve, and adjust the flow of the refrigerant flowing into the first heat exchanger, so that the Refrigerant flow is always matched to the load of the first heat exchanger, reducing the possibility of compressor liquid hammer.
(三)有益效果(3) Beneficial effects
根据本实用新型提供一种应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统,该系统采用直接膨胀供液系统,使高温级制冷系统简单、制冷剂灌注量少;系统降低了冷凝端的换热温差,避免直接膨胀供液系统在冷凝蒸发器内完全蒸发,换热器末端出现过热度导致的换热温差不稳定的技术问题。According to the utility model, there is provided a two-stage condensation-evaporation heat-exchange system applied in a cascade refrigeration system/phase-change heat-carrying refrigeration system. Less perfusion; the system reduces the heat exchange temperature difference at the condensing end, avoiding the complete evaporation of the direct expansion liquid supply system in the condensing evaporator, and the technical problem of unstable heat exchange temperature difference caused by superheat at the end of the heat exchanger.
在优选的实施例中,所述节流膨胀部件采用多种形式,如:外平衡式热力膨胀阀、内平衡式热力膨胀阀、电子膨胀阀等,根据第一换热器出口制冷剂过热度的变化,产生信号控制阀门的流量,调节流入第一换热器的制冷剂流量,使得制冷剂流量始终与第一换热器的负荷相匹配,减少压缩机液击的可能性。In a preferred embodiment, the throttling expansion component adopts various forms, such as: external balance type thermal expansion valve, internal balance type thermal expansion valve, electronic expansion valve, etc., according to the degree of superheat of the refrigerant at the outlet of the first heat exchanger The change of , generates a signal to control the flow of the valve, and adjusts the flow of refrigerant flowing into the first heat exchanger, so that the flow of refrigerant always matches the load of the first heat exchanger, reducing the possibility of compressor liquid hammer.
附图说明Description of drawings
图1示出本实用新型第一实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图;1 shows a schematic diagram of the working principle of a two-stage condensation-evaporation heat-exchange system applied in a cascade refrigeration system/phase-change heat-carrying cooling system according to the first embodiment of the present invention;
图2示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图1;2 shows a schematic diagram 1 of the working principle of a two-stage condensation-evaporation heat exchange system applied in a cascade refrigeration system/phase-change heat-carrying cooling system according to the second embodiment of the present invention;
图3示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图2;3 shows a schematic diagram 2 of the working principle of a two-stage condensation-evaporation heat exchange system applied in a cascade refrigeration system/phase-change heat-carrying cooling system according to the second embodiment of the present invention;
图4示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图3;Fig. 4 shows the schematic diagram 3 of the working principle of the two-stage condensation-evaporation heat exchange system applied in the cascade refrigeration system/phase-change heat carrier cooling system according to the second embodiment of the present invention;
图5示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图4;5 shows a schematic diagram 4 of the working principle of the two-stage condensation-evaporation heat exchange system applied in the cascade refrigeration system/phase-change heat-transfer cooling system according to the second embodiment of the present invention;
图6示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图5;6 shows the schematic diagram 5 of the working principle of the two-stage condensation-evaporation heat-exchange system applied in the cascade refrigeration system/phase-change heat-transfer cooling system according to the second embodiment of the present invention;
图7示出本实用新型第三实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图;7 shows a schematic diagram of the working principle of the two-stage condensation-evaporation heat-exchange system applied in the cascade refrigeration system/phase-change heat-transfer cooling system according to the third embodiment of the present invention;
标号说明:Label description:
1.第一换热器;11.板式换热器;21.第二换热器;22.低温级换热器;3.节流膨胀部件;30.感温包;31.外平衡式热力膨胀阀;311.平衡管;32.内平衡式热力膨胀阀;33.电子膨胀阀;330.传感器;34.低温级电子膨胀阀;41.第一回气管;42.第二进液管;51.第二回气管;52.第一进液管;6.冷凝器;71.高温级压缩机;72.低温级压缩机;73.泵;81.高温级油分离器;82.低温级油分离器;91.高温级贮液器;92.低温级贮液器;93.低压循环桶;10.低温级蒸发器。1. The first heat exchanger; 11. The plate heat exchanger; 21. The second heat exchanger; 22. The low temperature heat exchanger; 3. The throttle expansion part; Expansion valve; 311. Balance pipe; 32. Internal balance type thermal expansion valve; 33. Electronic expansion valve; 330. Sensor; 34. Low temperature electronic expansion valve; 41. First return pipe; 42. Second liquid inlet pipe; 51. Second air return pipe; 52. First liquid inlet pipe; 6. Condenser; 71. High temperature stage compressor; 72. Low temperature stage compressor; 73. Pump; 81. High temperature stage oil separator; 82. Low temperature stage Oil separator; 91. High temperature grade accumulator; 92. Low temperature grade accumulator; 93. Low pressure circulating barrel; 10. Low temperature grade evaporator.
具体实施方式Detailed ways
下面结合附图和实施例,对本实用新型的具体实施方式作进一步详细描述。以下实施例用于说明本实用新型,但不用来限制本实用新型的范围。The specific embodiments of the present utility model will be described in further detail below with reference to the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
本实用新型最关键的构思在于:高温级制冷系统采用直接膨胀供液,供液在第一换热器内不完全蒸发,从而没有过热度对换热温差的影响,直接膨胀供液系统所需的过热度在第二换热器内获得。The most crucial concept of the present invention is: the high temperature stage refrigeration system adopts the direct expansion liquid supply, and the liquid supply is not completely evaporated in the first heat exchanger, so that there is no influence of the superheat degree on the heat exchange temperature difference, which is required by the direct expansion liquid supply system. The degree of superheat is obtained in the second heat exchanger.
实施例1:Example 1:
图1示出本实用新型第一实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图。FIG. 1 shows a schematic diagram of the working principle of the two-stage condensation-evaporation heat exchange system applied in the cascade refrigeration system/phase-change heat carrier refrigeration system according to the first embodiment of the present invention.
本实用新型提供一种应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统,应用在二氧化碳亚临界复叠制冷系统时,具体包括:高温级制冷系统和低温级制冷系统,所述高温级制冷系统采用氟利昂制冷剂,所述低温级制冷系统采用二氧化碳制冷剂,在高温级制冷系统上还设有两段式冷凝蒸发换热系统,该系统包括:第二换热器21、节流膨胀部件3、第一换热器1,其中第二换热器21和节流膨胀部件3位于高温级制冷系统一侧,所述第一换热器1位于高温级制冷系统和低温级制冷系统之间,负责连接高温级制冷系统和低温级制冷系统,具体为冷凝蒸发器,利用高温级制冷系统的冷量来冷凝低温级制冷系统压缩机排出的气体。所以,第一换热器1既是高温级制冷系统的蒸发器,又是低温级制冷系统的冷凝器。所述节流膨胀部件3是制冷系统中重要的自动控制部件,通过接收第一换热器1出口制冷剂过热度的变化,改变阀门的开启度,调节流入第一换热器1的制冷剂流量,使得制冷剂流量始终与第一换热器1的负荷相匹配,减少压缩机液击的可能性。所述第二换热器21用于高温级制冷系统中高温高压制冷剂的过冷,具体为回热器,利用从第一换热器1氟利昂侧出来的制冷剂蒸汽来过冷要通过节流膨胀部件3进入第一换热器1的高压制冷剂液体,这样使进入压缩机蒸汽进行了有效过热,防止压缩机吸气带液,同样使得高压侧制冷剂液体过冷,减少节流损失。The utility model provides a two-stage condensation-evaporation heat exchange system applied in a cascade refrigeration system/phase-change heat-carrying refrigeration system. When applied in a carbon dioxide subcritical cascade refrigeration system, it specifically includes: a high-temperature stage refrigeration system and a A low temperature stage refrigeration system, the high temperature stage refrigeration system adopts Freon refrigerant, the low temperature stage refrigeration system adopts carbon dioxide refrigerant, and a two-stage condensation-evaporation heat exchange system is also provided on the high temperature stage refrigeration system, and the system includes: The
所述高温级制冷系统中的高温高压制冷剂节流膨胀后进入第一换热器1蒸发制冷,与对侧低温级制冷系统换热,保证换热温差恒定。所述高温级制冷系统的制冷剂通过第一进液管52进入第二换热器21内部进行过冷,经节流膨胀部件3节流膨胀后由第二进液管42进入第一换热器1蒸发制冷。所述高温级制冷系统的制冷剂在第一换热器1蒸发制冷后,经第一回气管41进入第二换热器21,与高温级制冷系统的制冷剂液体换热后完全相变成过热制冷剂蒸汽,再经第二回气管51回到压缩机吸气端完成制冷循环。所述第一换热器1采用壳管式换热器,第一换热器1采用壳管式换热器其换热温差一般5℃以上。The high temperature and high pressure refrigerant in the high temperature stage refrigeration system is throttled and expanded and then enters the
实施例2:Example 2:
图2示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图1;图3示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图2。Fig. 2 shows the schematic diagram 1 of the working principle of the two-stage condensation-evaporation heat exchange system applied in the cascade refrigeration system/phase change heat carrier cooling system according to the second embodiment of the present utility model; Fig. 3 shows the second embodiment of the present utility model. Embodiment Schematic diagram 2 of the working principle of a two-stage condensation-evaporation heat exchange system applied in a cascade refrigeration system/phase-change heat carrier refrigeration system.
结合图2和图3所示,本实用新型提供另一种应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统,应用在二氧化碳亚临界复叠制冷系统时,具体包括:高温级制冷系统和低温级制冷系统,所述高温级制冷系统采用氟利昂制冷剂,所述低温级制冷系统采用二氧化碳制冷剂,所述高温级制冷系统上设有两段式冷凝蒸发换热系统,该系统包括:第二换热器21、节流膨胀部件3、第一换热器1,其中第二换热器21和节流膨胀部件3位于高温级制冷系统一侧,所述第一换热器1位于高温级制冷系统和低温级制冷系统之间,负责连接高温级制冷系统和低温级制冷系统,具体为冷凝蒸发器,利用高温级制冷系统的冷量来冷凝低温级制冷系统压缩机排出的气体,既是高温级制冷系统的蒸发器,又是低温级制冷系统的冷凝器。所述节流膨胀部件3具体是外平衡式热力膨胀阀,通过接收第一换热器1出口制冷剂过热度的变化,改变阀门的开启度,调节流入第一换热器1的制冷剂流量,使得制冷剂流量始终与第一换热器1的负荷相匹配,减少压缩机液击的可能。所述第二换热器21具体为回热器,利用从第一换热器1氟利昂侧出来的制冷剂蒸汽来过冷要通过节流膨胀部件3进入第一换热器1的高压制冷剂液体,这样使进入压缩机蒸汽进行了有效过热。2 and 3, the present utility model provides another two-stage condensation-evaporation heat exchange system applied in a cascade refrigeration system/phase change heat carrier refrigeration system, which is applied in a carbon dioxide subcritical cascade refrigeration system. In particular, it includes: a high temperature stage refrigeration system and a low temperature stage refrigeration system, the high temperature stage refrigeration system adopts Freon refrigerant, the low temperature stage refrigeration system adopts carbon dioxide refrigerant, and the high temperature stage refrigeration system is provided with a two-stage condensing system An evaporative heat exchange system, the system includes: a
所述高温级制冷系统中的高温高压制冷剂节流膨胀后进入第一换热器1蒸发制冷,与对侧低温级制冷系统换热,保证换热温差恒定。所述高温级制冷系统的氟利昂制冷剂通过第一进液管52进入第二换热器21内部进行过冷,经节流膨胀部件3节流膨胀后由第二进液管42进入第一换热器1蒸发制冷。所述高温级制冷系统的制冷剂在第一换热器1蒸发制冷后,经第一回气管41进入第二换热器21,与高温级制冷系统的制冷剂液体换热后完全相变成过热制冷剂蒸汽,再经第二回气管51回到压缩机吸气端完成制冷循环。所述第一换热器1采用板式换热器11。所述高温高压制冷剂液体进入第二换热器21,低温低压两相流回气从另一侧进入第二换热器21,高温高压制冷剂液体热量被低温低压制冷剂液体吸收,高温高压供液液体过冷,低温低压制冷剂液体蒸发,保证压缩机回气端是过热制冷剂蒸汽。The high temperature and high pressure refrigerant in the high temperature stage refrigeration system is throttled and expanded and then enters the
第一换热器1采用板式换热器11或板壳式换热器换热温差可以达到3℃,为了保证二氧化碳侧冷凝温度稳定,氟利昂侧的制冷剂要求保持两相流的状态走完换热器的全程,常规的氟利昂直接膨胀制冷系统很难保证第一换热器1内的制冷剂是两相流的状态,本系统通过设置氟利昂的第二换热器21及调整节流膨胀部件3的感温包或温度传感器、压力传感器的位置,使流出第一换热器1的氟利昂仍为两相流状态,同时经过第二换热器21的换热将两相流完全蒸发成为氟利昂气体,使回到氟利昂压缩机的制冷剂为过热氟利昂气体。由于板式换热器11或板壳式换热器其结构的独特性,使得氟利昂的充注量远远小于壳管式换热器。The
如图2所示,所述节流膨胀部件3可以为外平衡式热力膨胀阀31,所述外平衡式热力膨胀阀31连接有平衡管311和感温包30,所述平衡管311连接在第二回气管51管段,所述感温包30采集第二回气管51内部的温度,所述外平衡式热力膨胀阀31根据感温包30采集的温度决定阀门开启度。As shown in FIG. 2 , the throttling
如图3所示,所述节流膨胀部件3为外平衡式热力膨胀阀31,所述外平衡式热力膨胀阀31连接有平衡管311和感温包30,所述平衡管311连接在第一回气管41管段,所述感温包30采集第一回气管41内部的温度,所述外平衡式热力膨胀阀31根据感温包30采集的温度决定阀门开启度。所述外平衡式热力膨胀阀31的平衡管311将第一换热器1出口的压力直接引入阀内,充分考虑了第一换热器1的阻力损失,适用于制冷剂流量变化大、第一换热器1侧阻力大的系统。As shown in FIG. 3 , the throttling
图4示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图3。所述节流膨胀部件3也可以为内平衡式热力膨胀阀32,所述内平衡式热力膨胀阀32连接有感温包30,所述感温包30采集第一回气管41或者第二回气管51内部的温度,所述内平衡式热力膨胀阀32根据感温包30采集的温度决定阀门开启度。所述内平衡式热力膨胀阀32直接将节流后制冷剂的压力作为蒸发压力,结构简单适用于第一换热器1阻力比较小的系统。FIG. 4 shows a schematic diagram 3 of the working principle of the two-stage condensation-evaporation heat exchange system applied in the cascade refrigeration system/phase-change heat carrier refrigeration system according to the second embodiment of the present invention. The throttling
图5示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图4。所述节流膨胀部件3还可以为电子膨胀阀33,所述电子膨胀阀33连接有传感器330,所述传感器330采集第二回气管51内部的温度和/或压力,根据温度信号和/或压力信号控制电子膨胀阀33开启度,使第一换热器1中的制冷剂始终保持两相流。当然,所述传感器330也可以位于第一回气管41,采集第一回气管41内部的温度和/或压力,根据温度信号和/或压力信号控制电子膨胀阀33开度,使第一换热器1中的制冷剂始终保持两相流。所述电子膨胀阀33利用传感器330感受到第一换热器1出口制冷剂过热度的变化,产生电信号来控制阀门的开启度,调节流入第一换热器1的制冷剂流量,使得制冷剂流量始终与第一换热器1的负荷相匹配,减少压缩机液击的可能性。FIG. 5 shows a schematic diagram 4 of the working principle of the two-stage condensation-evaporation heat exchange system applied in the cascade refrigeration system/phase-change heat carrier refrigeration system according to the second embodiment of the present invention. The throttling
图6示出本实用新型第二实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图5。所述复叠制冷系统可以理解为两个独立的制冷系统共同组成,第一换热器1把两个独立的制冷系统结合在一起,形成复叠系统。所述第一换热器1既是氟利昂侧高温级制冷系统的蒸发器,也是二氧化碳侧低温级制冷系统的冷凝器。对于氟利昂侧高温级制冷系统,高温级压缩机71吸入低温低压的氟利昂制冷剂气体,通过电机运转带动压缩部件对其进行压缩,然后排出高温高压的制冷剂过热气体,制冷剂过热气体经过高温级油分离器81,把过热气体中的润滑油进行分离,然后进入冷凝器6,高温高压的过热气体通过冷凝器6向室外放热,从而凝结成饱和态高压液体,高压液体流向高温级贮液器91,在高温级贮液器91内暂存,然后经过第二换热器21过冷,变成过冷态的高压液体,经过外平衡式热力膨胀阀31节流后,进入第一换热器1低温侧,吸收板侧的高温高压过热态二氧化碳的热量,变成低温低压的氟利昂蒸汽,氟利昂蒸汽经过第二换热器21过热后,进入高温级压缩机71的吸气腔完成一次循环。FIG. 6 shows a schematic diagram 5 of the working principle of the two-stage condensation-evaporation heat exchange system applied in the cascade refrigeration system/phase-change heat carrier refrigeration system according to the second embodiment of the present invention. The cascade refrigeration system can be understood as a combination of two independent refrigeration systems, and the
对于二氧化碳侧低温级制冷系统,低温级压缩机72吸入低温低压的二氧化碳制冷剂气体,通过电机运转带动压缩部件对其进行压缩,然后排出高温高压的制冷剂过热气体,制冷剂过热气体经过低温级油分离器82,把过热气体中的润滑油进行分离,然后进入第一换热器1高温侧,高温高压的过热气体通过第一换热器1向低温侧放热,从而凝结成饱和态高压液体,高压液体流向低温级贮液器92,在低温级贮液器92内暂存,然后经过低温级换热器22过冷,变成过冷态的高压液体,经过低温级电子膨胀阀34节流后,进入低温级蒸发器10,吸收空气或其他介质的热量,变成低温低压的二氧化碳蒸汽,二氧化碳蒸汽经过低温级换热器22过热后,进入低温级压缩机72的吸气腔完成一次循环。For the low temperature stage refrigeration system on the carbon dioxide side, the low temperature stage compressor 72 inhales the low temperature and low pressure carbon dioxide refrigerant gas, drives the compression components to compress it through the motor operation, and then discharges the high temperature and high pressure refrigerant superheated gas, and the refrigerant superheated gas passes through the low temperature stage. The
对于整个复叠制冷系统,二氧化碳侧低温级电子膨胀阀34根据二氧化碳低温级蒸发器10负荷的变化,通过温度传感器、压力传感器产生电信号,经过过热度控制器对电信号分析后,发出指令控制二氧化碳侧低温级电子膨胀阀34的开启度,二氧化碳液体经过节流后变成气液两相混合物进入二氧化碳低温级蒸发器10,然后吸热气化进而制冷,气化后的二氧化碳蒸汽通过低温级蒸发器10过热,进入低温级压缩机72吸气腔,然后进行压缩,变成高温高压过热气体,过热气体经过低温级油分离器82后,进入第一换热器1高温侧放热冷凝,冷凝成液体后进入二氧化碳低温级贮液器92暂存后,经过低温级换热器22过冷,然后给低温级电子膨胀阀34供液。第一换热器1经过二氧化碳放热后,通过高温侧传热给低温侧的氟利昂制冷剂,高温侧的氟利昂制冷剂吸热蒸发制冷,变成气体,由于过热度的变化,氟利昂侧外平衡式热力膨胀阀31控制阀门开启度给第一换热器1低温供液,氟利昂气体经过第二换热器21过热后,进入高温级压缩机71吸气腔,然后进行压缩变成高温高压过热气体,过热气体经过高温级油分离器81后,进入冷凝器6放热,冷凝成液体,液体进入高温级贮液器91暂存,经过第二换热器21过冷,给节流膨胀部件3供液。For the entire cascade refrigeration system, the low temperature stage
第一换热器1通过过热度控制、压力控制、开停机协调控制来保证换热温差。第一换热器1低温侧通过过热度控制保证第一换热器1低温侧有适量的制冷剂可以进行吸热蒸发,通过氟利昂压缩机的启停或能级调节来维持低温侧的蒸发压力,从而保证了氟利昂侧蒸发温度。第一换热器1高温侧通过压力控制,协调二氧化碳侧低温级压缩机72的能级调节或开停机,保证板侧的冷凝压力,从而保证了二氧化碳侧的冷凝温度。由于二氧化碳对于压力的敏感性较高,为了维持系统的稳定性,所以当二氧化碳侧低温级压缩机72到达开机条件时,需要进行延长开启,保证氟利昂侧高温级压缩机71的优先开启后才可以开启。通过对氟利昂侧蒸发温度以及二氧化碳侧冷凝温度的保证,进而保证了第一换热器1的换热温差。The
实施例3:Example 3:
图7示出本实用新型第三实施例应用在复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统的工作原理示意图。本实用新型提供另一种应用复叠制冷系统/相变换热载冷系统中的两段式冷凝蒸发换热系统,应用在相变换热载冷系统时,具体为二氧化碳载冷系统,由一个完整的氟利昂制冷系统和一个没有压缩机由泵提供动力的二氧化碳制冷系统结合而成,由第一换热器1把两个系统结合在一起,形成二氧化碳载冷系统。所述第一换热器1具体为冷凝蒸发器,冷凝蒸发器既是氟利昂侧系统的蒸发器,又是二氧化碳侧的冷凝器。所述两段式冷凝蒸发换热系统还包括:第二换热器21和节流膨胀部件3,其中第二换热器21和节流膨胀部件3位于氟利昂侧系统一侧,所述节流膨胀部件3具体是外平衡式热力膨胀阀31,通过感温包30接收第一换热器1出口制冷剂过热度的变化,改变阀门的开启度,调节流入第一换热器1的制冷剂流量,使得制冷剂流量始终与第一换热器1的负荷相匹配,减少压缩机液击的可能。所述第二换热器21具体为回热器,利用从第一换热器1氟利昂侧出来的制冷剂蒸汽来过冷要通过节流膨胀部件3进入第一换热器1的高压制冷剂液体,这样使进入压缩机蒸汽进行了有效过热。所述氟利昂侧制冷系统中的高温高压制冷剂节流膨胀后进入第一换热器1蒸发制冷,与对侧低温级制冷系统换热,保证换热温差恒定。FIG. 7 shows a schematic diagram of the working principle of the two-stage condensation-evaporation heat exchange system applied in the cascade refrigeration system/phase-change heat carrier refrigeration system according to the third embodiment of the present invention. The utility model provides another two-stage condensation-evaporation heat exchange system applied in a cascade refrigeration system/phase-change heat-carrying and cooling system. A complete Freon refrigeration system is combined with a carbon dioxide refrigeration system powered by a pump without a compressor. The
对于氟利昂侧制冷系统,高温级压缩机71吸入低温低压的制冷剂气体,通过电机运转带动压缩部件对其进行压缩,然后排出高温高压的制冷剂过热气体,制冷剂过热气体进入高温级油分离器81,把过热气体中的润滑油进行分离,然后进入冷凝器6,高温高压的过热气体通过冷凝器6向室外放热,从而凝结成饱和态高压液体,高压液体流向高温级贮液器91,在高温级贮液器91内暂存,然后通过第一进液管52进入第二换热器21过冷,变成过冷态的高压液体,经过节流膨胀部件3外平衡式热力膨胀阀31节流后,由第二进液管42进入第一换热器1的板式换热器11板侧,吸收板侧二氧化碳的热量,变成低温低压的氟利昂蒸汽,氟利昂蒸汽经第一回气管41进入第二换热器21过热后,再经第二回气管51回到高温级压缩机71的吸气腔完成一次循环。For the Freon side refrigeration system, the high
对于二氧化碳侧制冷系统,泵73从低压循环桶93中吸入低温低压的液体制冷剂,通过电机带动叶轮做功,把制冷剂输送到低温蒸发器10,低温低压的液体制冷剂在低温蒸发器10中吸热变成二氧化碳湿蒸汽,二氧化碳湿蒸汽通过回气管回到低压循环桶93中,二氧化碳湿蒸汽中未蒸发的液体留在低压循环桶93,气体则进入第一换热器1的换热器11低温级一侧,放热被冷凝成液体,通过重力回流到低压循环桶93完成一次循环。For the carbon dioxide side refrigeration system, the
对于整个二氧化碳载冷系统,根据第一换热器1负荷的变化,自控系统发出指令开启二氧化碳的泵73,泵73把低温低压的二氧化碳液体输送到第一换热器1,第一换热器1液体吸热制冷变成湿蒸汽,湿蒸汽通过回气管回到低压循环桶93,湿蒸汽中未蒸发的液体留在低压循环桶93,气体则进入第一换热器1低温级一侧放热,被冷凝成液体后,通过重力流入低压循环桶93。第一换热器1经过二氧化碳放热后,通过第一换热器1传热给氟利昂制冷剂,氟利昂制冷剂吸热蒸发制冷,变成气体,由于过热度的变化,氟利昂侧外平衡式热力膨胀阀31控制阀门开启度给第一换热器1高温级一侧供液,氟利昂气体经过第二换热器21过热后,进入高温级压缩机71吸气腔,然后进行压缩变成高温高压过热气体,过热气体经过高温级油分离器81后,进入冷凝器6放热,冷凝成液体,液体进入高温级贮液器91暂存,经过第二换热器21过冷,给外平衡式热力膨胀阀31供液。第一换热器1通过过热度控制,压力控制,开停机协调控制来保证换热温差。For the entire carbon dioxide cooling system, according to the change of the load of the
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020460017.6U CN211876409U (en) | 2020-04-01 | 2020-04-01 | A two-stage condensing evaporation heat exchange system applied in cascade refrigeration system/phase change heat carrier refrigeration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020460017.6U CN211876409U (en) | 2020-04-01 | 2020-04-01 | A two-stage condensing evaporation heat exchange system applied in cascade refrigeration system/phase change heat carrier refrigeration system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211876409U true CN211876409U (en) | 2020-11-06 |
Family
ID=73249994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020460017.6U Withdrawn - After Issue CN211876409U (en) | 2020-04-01 | 2020-04-01 | A two-stage condensing evaporation heat exchange system applied in cascade refrigeration system/phase change heat carrier refrigeration system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211876409U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111219903A (en) * | 2020-04-01 | 2020-06-02 | 马进 | Two-section type condensation evaporation heat exchange system applied to cascade refrigeration system/phase-change heat exchange hot carrier cold system |
-
2020
- 2020-04-01 CN CN202020460017.6U patent/CN211876409U/en not_active Withdrawn - After Issue
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111219903A (en) * | 2020-04-01 | 2020-06-02 | 马进 | Two-section type condensation evaporation heat exchange system applied to cascade refrigeration system/phase-change heat exchange hot carrier cold system |
CN111219903B (en) * | 2020-04-01 | 2024-12-13 | 马进 | A two-stage condensation evaporation heat exchange system used in a cascade refrigeration system/phase change heat transfer cooling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111219903B (en) | A two-stage condensation evaporation heat exchange system used in a cascade refrigeration system/phase change heat transfer cooling system | |
CN107014015B (en) | Recovery type heat evaporating condensation type handpiece Water Chilling Units | |
US20020033024A1 (en) | Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor | |
WO2020164255A1 (en) | Transducing method and system | |
WO2021248289A1 (en) | Transducing method and system | |
CN113654132A (en) | heat pump unit | |
JP4115242B2 (en) | Refrigeration system | |
CN211876409U (en) | A two-stage condensing evaporation heat exchange system applied in cascade refrigeration system/phase change heat carrier refrigeration system | |
CN102721225B (en) | High-temperature heat pump and using method thereof | |
US6539732B2 (en) | Refrigeration system and method of operation therefor | |
CN212720353U (en) | Refrigerator car and refrigerating system thereof | |
JP4187562B2 (en) | Ammonia absorption heat pump | |
CN107621098A (en) | Air source heat pump system that can recover supercooling energy | |
CN111322781A (en) | Refrigerator centralized cold source carbon dioxide cascade refrigeration system and refrigeration method | |
CN210569393U (en) | Water chilling unit | |
KR101610252B1 (en) | Energy saving freezer and refrigerator with reduced dryness | |
CN210089176U (en) | Injection type supercooling refrigerating system | |
CN210089182U (en) | Absorption subcooling refrigeration system | |
KR100634843B1 (en) | Freezer | |
CN112815575A (en) | Compressor condensing unit of integrative many materials phase transition heat transfer of dual system | |
JP2646877B2 (en) | Thermal storage refrigeration cycle device | |
CN221819840U (en) | Thermal management systems and vehicles | |
CN219572347U (en) | Novel-structure efficient energy-saving evaporation integrated water chilling unit | |
KR102703140B1 (en) | Energy efficient refrigeration and defrosting system with heat exchange in condensing heat brine tank, micro fintube condenser and defrost brine tank | |
CN212057818U (en) | Carbon dioxide cascade refrigeration system with total heat recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: Unit 6, building 31, lincui Road, Chaoyang District, Beijing 100196 Patentee after: Ma Jin Patentee after: CIMC Cold Chain Development Co.,Ltd. Address before: Unit 6, building 31, lincui Road, Chaoyang District, Beijing 100196 Patentee before: Ma Jin Patentee before: Zhongji Cold Chain Development Co.,Ltd. |
|
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20201106 Effective date of abandoning: 20241213 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20201106 Effective date of abandoning: 20241213 |