CN211734093U - Efficient removal system of ammonia nitrogen based on side-stream short-path nitrification-anammox process - Google Patents
Efficient removal system of ammonia nitrogen based on side-stream short-path nitrification-anammox process Download PDFInfo
- Publication number
- CN211734093U CN211734093U CN201921823972.5U CN201921823972U CN211734093U CN 211734093 U CN211734093 U CN 211734093U CN 201921823972 U CN201921823972 U CN 201921823972U CN 211734093 U CN211734093 U CN 211734093U
- Authority
- CN
- China
- Prior art keywords
- nitrification
- anammox
- ammonia nitrogen
- regeneration
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 title claims abstract description 145
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000008569 process Effects 0.000 title claims abstract description 65
- 238000011069 regeneration method Methods 0.000 claims abstract description 232
- 230000008929 regeneration Effects 0.000 claims abstract description 230
- 239000007788 liquid Substances 0.000 claims abstract description 210
- 238000001179 sorption measurement Methods 0.000 claims abstract description 90
- 239000010865 sewage Substances 0.000 claims abstract description 64
- 238000003860 storage Methods 0.000 claims abstract description 63
- 239000000463 material Substances 0.000 claims abstract description 24
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 23
- 230000003647 oxidation Effects 0.000 claims abstract description 13
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 79
- 238000007034 nitrosation reaction Methods 0.000 claims description 55
- 230000009935 nitrosation Effects 0.000 claims description 54
- 230000036961 partial effect Effects 0.000 claims description 54
- 238000005273 aeration Methods 0.000 claims description 14
- 230000001172 regenerating effect Effects 0.000 claims description 13
- 238000013022 venting Methods 0.000 claims description 12
- 230000001651 autotrophic effect Effects 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- 230000008901 benefit Effects 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 8
- 239000010802 sludge Substances 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 16
- 241000894006 Bacteria Species 0.000 description 14
- 239000006174 pH buffer Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 241001453382 Nitrosomonadales Species 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000002351 wastewater Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 238000011020 pilot scale process Methods 0.000 description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 6
- 235000017557 sodium bicarbonate Nutrition 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 231100000614 poison Toxicity 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000003440 toxic substance Substances 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000009388 chemical precipitation Methods 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012851 eutrophication Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 1
- PDNNQADNLPRFPG-UHFFFAOYSA-N N.[O] Chemical compound N.[O] PDNNQADNLPRFPG-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 238000005276 aerator Methods 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000000149 chemical water pollutant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous oxide Inorganic materials [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Water Treatment By Sorption (AREA)
Abstract
本实用新型涉及一种基于侧流短程硝化‑厌氧氨氧化工艺的氨氮高效去除系统,包括氨氮吸附单元、升温再生单元和再生液脱氮模块;所述的氨氮吸附单元包括装填有吸附材料的氨氮吸附柱(1);所述的升温再生单元包括依次连接的再生液储备箱(2)和再生液进水泵(9),所述的再生液储备箱(2)通过再生液进水泵(9)连接氨氮吸附柱(1)的再生液入口,再生液在再生液储备箱(2)中通过污水源热泵(20)进行加热,所述的再生液储备箱(2)还连接氨氮吸附单元并回收从氨氮吸附柱(1)流出的再生液;所述的再生液脱氮模块连接升温再生单元的再生液储备箱(2)。与现有技术相比,本实用新型具有成本低、效果好等优点。
The utility model relates to a high-efficiency ammonia nitrogen removal system based on a side-stream short-range nitrification-anaerobic ammonia oxidation process, comprising an ammonia nitrogen adsorption unit, a heating regeneration unit and a regenerated liquid denitrification module; the ammonia nitrogen adsorption unit comprises an ammonia nitrogen adsorption unit filled with adsorption materials. Ammonia nitrogen adsorption column (1); the temperature-raising regeneration unit comprises a regeneration liquid storage tank (2) and a regeneration liquid inlet pump (9) connected in sequence, and the regeneration liquid storage tank (2) passes through the regeneration liquid inlet pump (9). ) is connected to the regeneration liquid inlet of the ammonia nitrogen adsorption column (1), the regeneration liquid is heated by the sewage source heat pump (20) in the regeneration liquid storage tank (2), and the regeneration liquid storage tank (2) is also connected to the ammonia nitrogen adsorption unit and The regeneration liquid flowing out from the ammonia nitrogen adsorption column (1) is recovered; the regeneration liquid denitrification module is connected to the regeneration liquid storage tank (2) of the heating regeneration unit. Compared with the prior art, the utility model has the advantages of low cost, good effect and the like.
Description
技术领域technical field
本实用新型属于环境保护与污水处理技术领域,具体来说是一种基于侧流短程硝化-厌氧氨氧化工艺的氨氮高效去除系统。The utility model belongs to the technical field of environmental protection and sewage treatment, in particular to an ammonia nitrogen high-efficiency removal system based on a side-flow short-range nitrification-anaerobic ammonia oxidation process.
背景技术Background technique
近年来,随着工业化的发展,氨氮废水导致的污染问题日益严重。氨氮是破坏水体平衡,造成水体富营养化的重要因素之一,其过量排放会给生态环境和人体造成巨大危害,它不仅会促进水体富营养化,而且还会产生恶臭,给供水造成障碍。污水中的氨氮主要来源于化肥、制革、养殖、石油化工、肉类加工等行业的废水与垃圾渗滤液排放,以及城市污水和农业灌溉排水。十三五期间,我国对氨氮的排放提出了更高的要求,如何经济高效的去除污水中的氨氮已成为研究重点。目前去除氨氮运用较多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法以及离子交换法。生物脱氮法在国内运用最多,但常规工艺过程需要曝气设施并且投加碳源,造成运行费用高并且占地面积大;氨吹脱汽提法工艺流程简单,但需要解决吹脱形成的氨气收集与出路问题,且运行过程中易于生成水垢,影响运行操作;折点氯化法脱氮效率高,适用于废水的深度处理,但副产物氯胺会造成二次污染;化学沉淀法适用于各种浓度氨氮废水,但暂未寻找到廉价高效的沉淀剂用于应用;离子交换法具有投资省、工艺简单等优点,但再生成本较高,并且再生液仍为高浓度氨氮废水,需要进一步处理。In recent years, with the development of industrialization, the pollution problem caused by ammonia nitrogen wastewater has become increasingly serious. Ammonia nitrogen is one of the important factors that destroy the balance of water body and cause eutrophication of water body. Its excessive discharge will cause great harm to the ecological environment and human body. It will not only promote eutrophication of water body, but also produce foul odor and cause obstacles to water supply. Ammonia nitrogen in sewage mainly comes from wastewater and landfill leachate discharge from chemical fertilizer, tanning, aquaculture, petrochemical, meat processing and other industries, as well as urban sewage and agricultural irrigation drainage. During the 13th Five-Year Plan period, my country has put forward higher requirements for ammonia nitrogen discharge, and how to economically and efficiently remove ammonia nitrogen from sewage has become a research focus. At present, there are many technologies used to remove ammonia nitrogen: biological denitrification, ammonia stripping and stripping, breakpoint chlorination, chemical precipitation and ion exchange. The biological denitrification method is most used in China, but the conventional process requires aeration facilities and the addition of a carbon source, resulting in high operating costs and a large area; the ammonia stripping stripping method has a simple process flow, but needs to solve the Ammonia gas collection and outlet problems, and scale is easily generated during operation, which affects operation; breakpoint chlorination method has high denitrification efficiency and is suitable for advanced treatment of wastewater, but by-product chloramine will cause secondary pollution; chemical precipitation method It is suitable for various concentrations of ammonia nitrogen wastewater, but no cheap and efficient precipitating agent has been found for application. The ion exchange method has the advantages of low investment and simple process, but the regeneration cost is high, and the regeneration liquid is still high concentration ammonia nitrogen wastewater. Further processing is required.
近几年研究广泛的厌氧氨氧化(ANAMMOX)工艺为污水脱氮提供了一种新的方式,与传统的硝化/反硝化脱氮工艺相比,ANAMMOX工艺可以减少100%的有机碳源投加量,降低60%的曝气量,产泥量也会减少90%,具有广泛的应用前景。但是鉴于目前的研究进展,ANAMMOX工艺难以应用到主流污水处理,其难点主要为以下几点:(1)ANAMMOX菌生长的最适温度为30-35℃,然而大水量的市政污水难以满足ANAMMOX菌对温度的要求。(2)市政污水中的氨氮浓度大约为30mg/L,此氨氮浓度较低,会严重影响ANAMMOX菌的活性。(3)主流污水中存在多种杂质离子和毒性物质,直接引入会抑制ANAMMOX菌的活性。(4)ANAMMOX在主流污水处理中容易残留NO3 --N和NO2 --N,造成出水水质超标。因此,如果能寻找一条既能满足ANAMMOX菌的生存条件,又能实现氨氮高效稳定去除的工艺路线,无疑是一条经济和高效的技术路线。目前,国内外尚无该方面的技术报道。The anaerobic ammonium oxidation (ANAMMOX) process, which has been extensively studied in recent years, provides a new way for wastewater denitrification. Compared with the traditional nitrification/denitrification denitrification process, the ANAMMOX process can reduce the input of organic carbon sources by 100%. Increase the amount, reduce the aeration amount by 60%, and reduce the mud production by 90%, which has a wide range of application prospects. However, in view of the current research progress, the ANAMMOX process is difficult to apply to mainstream sewage treatment, and the difficulties are mainly as follows: (1) The optimum temperature for the growth of ANAMMOX bacteria is 30-35 °C, however, municipal sewage with large amounts of water is difficult to meet the requirements of ANAMMOX bacteria. temperature requirements. (2) The ammonia nitrogen concentration in municipal sewage is about 30 mg/L, which is low and will seriously affect the activity of ANAMMOX bacteria. (3) There are various impurity ions and toxic substances in mainstream sewage, and direct introduction will inhibit the activity of ANAMMOX bacteria. (4) ANAMMOX is prone to residual NO 3 - -N and NO 2 - -N in the mainstream sewage treatment, causing the effluent quality to exceed the standard. Therefore, if we can find a process route that can not only meet the living conditions of ANAMMOX bacteria, but also realize the efficient and stable removal of ammonia nitrogen, it is undoubtedly an economical and efficient technical route. At present, there is no technical report on this aspect at home and abroad.
中国专利CN107804890A公开了一种提高氨氮吸附材料长期吸附性能的处理系统及方法,所述的处理系统包括氨氮吸附单元和再生单元,氨氮吸附单元包括依次连接的污水进水泵、进水阀门、装填有吸附材料的氨氮吸附柱和放空阀门组,所述的再生单元包括依次连接的再生液储备箱和再生液进水泵,所述的再生液储备箱内装有再生液,所述的再生液进水泵的出口管路上连接氧化剂进药器,所述的氧化剂进药器内装有氧化剂。该发明在运行时采用含氧化剂再生液,再生处理成本高,同时该发明采用的氧化剂会与氨氮反应生成其他产物,导致再生液中氧化剂的浓度不断下降,再生效率逐渐降低,并且再生液使用后变为高浓度氨氮废水,难以再次使用并无法满足排放标准,仍需进一步处理。Chinese patent CN107804890A discloses a treatment system and method for improving the long-term adsorption performance of ammonia nitrogen adsorption materials. The treatment system includes an ammonia nitrogen adsorption unit and a regeneration unit. The ammonia nitrogen adsorption unit includes a sewage inlet pump, a water inlet valve, a The ammonia nitrogen adsorption column and the venting valve group of the adsorption material, the regeneration unit includes a regeneration liquid storage tank and a regeneration liquid inlet pump connected in sequence, the regeneration liquid storage tank is equipped with regeneration liquid, and the regeneration liquid inlet pump is An oxidant feeder is connected to the outlet pipeline, and the oxidant feeder is equipped with an oxidant. The invention uses oxidant-containing regeneration liquid during operation, and the regeneration treatment cost is high. At the same time, the oxidant used in the invention will react with ammonia nitrogen to generate other products, resulting in the continuous decrease of the concentration of the oxidant in the regeneration liquid and the gradual reduction of the regeneration efficiency. It becomes high-concentration ammonia nitrogen wastewater, which is difficult to reuse and cannot meet the discharge standard, and still needs further treatment.
实用新型内容Utility model content
本实用新型的目的就是为了克服上述现有技术存在的缺陷而提供一种基于侧流短程硝化-厌氧氨氧化工艺的氨氮高效去除方法。这种氨氮高效去除技术可以解决由于主流污水处理难以提供适宜温度、进水氨氮浓度低、存在杂质离子和毒性物质以及去除效率不稳定等制约ANAMMOX工艺应用的问题。同时也可以解决现有技术中氨氮吸附材料再生成本较高及再生液无法重复利用的问题。The purpose of this utility model is to provide an efficient ammonia nitrogen removal method based on the side-stream short-path nitrification-anammox process in order to overcome the above-mentioned defects of the prior art. This high-efficiency ammonia nitrogen removal technology can solve the problems that restrict the application of the ANAMMOX process due to the difficulty of providing suitable temperature for mainstream sewage treatment, the low concentration of ammonia nitrogen in the influent, the existence of impurity ions and toxic substances, and the unstable removal efficiency. At the same time, it can also solve the problems that the regeneration cost of the ammonia nitrogen adsorption material is relatively high and the regeneration liquid cannot be reused in the prior art.
基于目前ANAMMOX工艺由于工艺条件限制难以在主流污水中实现应用,氨氮吸附材料再生成本较高以及再生液中的高浓度氨氮需进一步处理的问题,本实用新型提出了一种基于侧流短程硝化-厌氧氨氧化工艺的氨氮高效去除技术路线。本实用新型将分段式短程硝化-厌氧氨氧化(SHARON-ANAMMOX)、部分亚硝化-厌氧氨氧化(PN-ANAMMOX)、以及全程自养脱氮(CANON)工艺应用到侧流污水处理,前端连接氨氮吸附再生工艺。同时在氨氮吸附再生过程中加入污水源热泵,利用城市原生污水中的热能对再生液进行温度控制,提高再生效率与再生速度。与现行的氨氮吸附再生工艺和主流ANAMMOX工艺相比,本实用新型具有吸附材料再生成本低、ANAMMOX系统运行稳定、出水水质稳定达标等优点。将污水源热泵作为低位热源,使整体处理工艺更加节能、环保。同时本实用新型还可以实现再生液处理回用,低占地面积,具有显著的经济效益和实际工程意义。Based on the problems that the current ANAMMOX process is difficult to be applied in mainstream sewage due to the limitation of process conditions, the regeneration cost of ammonia nitrogen adsorption material is relatively high, and the high concentration of ammonia nitrogen in the regeneration liquid needs to be further processed, the present utility model proposes a side-stream short-path nitrification- The technical route of efficient removal of ammonia nitrogen by anammox process. The utility model applies the segmental short-range nitrification-anammox (SHARON-ANAMMOX), partial nitrification-anammox (PN-ANAMMOX), and the whole process of autotrophic denitrification (CANON) to the side stream sewage treatment , the front end is connected to the ammonia nitrogen adsorption regeneration process. At the same time, a sewage source heat pump is added in the process of ammonia nitrogen adsorption and regeneration, and the heat energy in the urban raw sewage is used to control the temperature of the regeneration liquid, so as to improve the regeneration efficiency and regeneration speed. Compared with the current ammonia nitrogen adsorption regeneration process and the mainstream ANAMMOX process, the utility model has the advantages of low regeneration cost of the adsorption material, stable operation of the ANAMMOX system, stable effluent quality and the like. The sewage source heat pump is used as a low-level heat source to make the overall treatment process more energy-saving and environmentally friendly. At the same time, the utility model can also realize the treatment and reuse of the regenerated liquid, with low floor space and significant economic benefit and practical engineering significance.
本实用新型的目的可以通过以下技术方案来实现:The purpose of the present utility model can be achieved through the following technical solutions:
一种基于侧流短程硝化-厌氧氨氧化工艺的氨氮高效去除系统,其特征在于,包括氨氮吸附单元、升温再生单元和再生液脱氮模块;An efficient ammonia nitrogen removal system based on a side-stream short-range nitrification-anaerobic ammonia oxidation process, characterized in that it comprises an ammonia nitrogen adsorption unit, a heating regeneration unit and a regeneration liquid denitrification module;
所述的氨氮吸附单元包括依次连接的污水进水泵、进水阀门、装填有吸附材料的氨氮吸附柱和放空阀门组;所述的吸附材料选自天然沸石、改性沸石、分子筛、粉煤灰中的一种或几种;污水在氨氮吸附单元中的水力停留时间(HRT)为1-120min;The ammonia nitrogen adsorption unit includes a sewage water inlet pump, a water inlet valve, an ammonia nitrogen adsorption column filled with adsorption materials and a vent valve group connected in sequence; the adsorption material is selected from natural zeolite, modified zeolite, molecular sieve, fly ash One or more of; the hydraulic retention time (HRT) of sewage in the ammonia nitrogen adsorption unit is 1-120min;
所述的升温再生单元包括依次连接的再生液储备箱和再生液进水泵,所述的再生液储备箱通过再生液进水泵连接氨氮吸附柱的再生液入口,所述的再生液储备箱内装有再生液,再生液在再生液储备箱中通过污水源热泵进行加热,所述的再生液储备箱连接沉淀剂加药器,所述的沉淀剂加药器内装有除钙沉淀剂,所述的再生液储备箱还连接氨氮吸附单元并回收从氨氮吸附柱流出的再生液;The temperature-raising regeneration unit includes a regeneration liquid storage tank and a regeneration liquid inlet pump connected in sequence, the regeneration liquid storage tank is connected to the regeneration liquid inlet of the ammonia nitrogen adsorption column through the regeneration liquid inlet pump, and the regeneration liquid storage tank is equipped with The regeneration liquid is heated by the sewage source heat pump in the regeneration liquid storage tank. The regeneration liquid storage tank is connected to the precipitant dosing device. The regeneration liquid storage tank is also connected to the ammonia nitrogen adsorption unit and recovers the regeneration liquid flowing out from the ammonia nitrogen adsorption column;
所述的再生液为钠盐、钾盐、钙盐溶液或混合液,浓度为0.01-100g/L。所述的污水源热泵的进水为污水处理厂处理的中水或二级出水。所述的再生液加热温度为25-50℃;Described regeneration solution is sodium salt, potassium salt, calcium salt solution or mixed solution, and the concentration is 0.01-100g/L. The influent of the sewage source heat pump is reclaimed water or secondary effluent treated by the sewage treatment plant. The heating temperature of the regenerated liquid is 25-50°C;
再生液对氨氮吸附材料的再生时间为0.5-72h。The regeneration time of the regeneration liquid for the ammonia nitrogen adsorption material is 0.5-72h.
本实用新型的反应原理如下:The reaction principle of the present utility model is as follows:
氨氮吸附单元:固态氨氮吸附材料通过离子交换机理去除污水中的氨氮,使出水达到相关国家标准的要求,其反应见式(1)。Ammonia nitrogen adsorption unit: solid ammonia nitrogen adsorption material removes ammonia nitrogen in sewage through ion exchange mechanism, so that the effluent meets the requirements of relevant national standards, and its reaction is shown in formula (1).
其中,A+为氨氮吸附材料表面可交换离子,Z-为吸附材料结构。Among them, A + is the exchangeable ion on the surface of the ammonia nitrogen adsorption material, and Z - is the structure of the adsorption material.
升温再生单元:升温再生单元利用再生液中的金属阳离子将氨氮吸附材料表面的NH4 +交换到溶液中,实现氨氮吸附材料的再生,并利用污水源热泵加热再生液提高再生速率。再生反应见式(2)。Temperature-raising regeneration unit: The heating-up regeneration unit uses metal cations in the regeneration liquid to exchange NH 4 + on the surface of the ammonia nitrogen adsorption material into the solution to realize the regeneration of the ammonia nitrogen adsorption material, and uses the sewage source heat pump to heat the regeneration liquid to increase the regeneration rate. The regeneration reaction is shown in formula (2).
其中,B+为再生液中的金属阳离子。此反应为吸热反应,加热再生液有利于氨氮吸附材料解吸,实现快速高效再生。Among them, B + is the metal cation in the regeneration liquid. This reaction is an endothermic reaction, and heating the regeneration solution is beneficial to the desorption of the ammonia nitrogen adsorption material and realizes rapid and efficient regeneration.
随着氨氮吸附单元再生次数的增加,解吸下来的氨氮将会在再生液中大量富集,当达到一定的再生次数后,由于再生液中氨氮浓度过高将导致再生效率下降,难以继续使用。常规生物处理是将氨氮转化为硝氮,再采用投加碳源的方式进行反硝化,但这种方法将会增加处理成本及占地面积。With the increase of the regeneration times of the ammonia nitrogen adsorption unit, the desorbed ammonia nitrogen will be enriched in the regeneration liquid. Conventional biological treatment is to convert ammonia nitrogen into nitrate nitrogen, and then use the method of adding carbon source to denitrify, but this method will increase the treatment cost and floor space.
针对再生液中高浓度氨氮的去除需求,本实用新型拟采用再生液脱氮模块即短程硝化-厌氧氨氧化脱氮单元进行处理。短程硝化-厌氧氨氧化脱氮单元连接升温再生单元的再生液储备箱。Aiming at the removal requirement of high-concentration ammonia nitrogen in the regenerated liquid, the utility model intends to use the regenerated liquid denitrification module, that is, the short-range nitrification-anammox denitrification unit for processing. The short-path nitrification-anammox denitrification unit is connected to the regeneration liquid storage tank of the temperature-raising regeneration unit.
该再生液脱氮模块可采用两段式或一段式。两段式工艺可采用部分亚硝化-厌氧氨氧化(PN-ANAMMOX)和短程硝化-厌氧氨氧化(SHARON-ANAMMOX)工艺。一段式则可采用全程自养脱氮(CANON)工艺。前段污水源热泵加热再生液的目标是控制水温为35℃左右,以便在高效解吸再生的同时,为短程硝化-厌氧氨氧化脱氮工艺的功能性微生物提供最适生长温度。具体各单元反应原理如下所述。The regeneration liquid denitrification module can adopt a two-stage or one-stage type. The two-stage process can use partial nitrification-anammox (PN-ANAMMOX) and short-path nitrification-anammox (SHARON-ANAMMOX) processes. The one-stage type can adopt the whole process of autotrophic nitrogen removal (CANON). The goal of the front-stage sewage source heat pump heating regeneration liquid is to control the water temperature to be about 35 °C, so as to provide the optimal growth temperature for the functional microorganisms in the short-path nitrification-anammox denitrification process while efficiently desorbing and regenerating. The specific reaction principle of each unit is as follows.
部分亚硝化(PN)单元:部分亚硝化是利用亚硝化菌将55-60%的NH4 +转化成NO2 -,使其出水满足ANAMMOX反应器进水基质比例要求,即NO2 -:NH4 +=1.32。具体反应见式(3)。Partial nitrosation (PN) unit: Partial nitrosation is to use nitrosating bacteria to convert 55-60% of NH 4 + into NO 2 - , so that the effluent meets the requirements of the ratio of influent substrate in the ANAMMOX reactor, that is, NO 2 - :NH 4 + = 1.32. The specific reaction is shown in formula (3).
短程硝化(SHARON)单元:通过将待处理再生液分流,实现部分再生液短程硝化反应,使ANAMMOX脱氮单元进水满足基质比例(NH4 +:NO2 -=1:1.32)。短程硝化反应见式(4)。Short-path nitrification (SHARON) unit: by splitting the regeneration liquid to be treated, a short-path nitrification reaction of part of the regeneration liquid is realized, so that the influent of the ANAMMOX denitrification unit meets the substrate ratio (NH 4 + :NO 2 − =1:1.32). The short-range nitration reaction is shown in formula (4).
ANAMMOX脱氮单元:再生液中氨氮的去除是吸附-再生循环持续进行的关键。ANAMMOX脱氮单元利用ANAMMOX菌在缺氧条件下以NO2 -为电子受体将NH4 +转化为N2。ANAMMOX过程见式(5)。ANAMMOX denitrification unit: The removal of ammonia nitrogen in the regeneration liquid is the key to the continuous adsorption-regeneration cycle. The ANAMMOX denitrification unit utilizes ANAMMOX bacteria to convert NH 4 + to N 2 using NO 2 - as an electron acceptor under anoxic conditions. The ANAMMOX process is shown in formula (5).
CANON脱氮单元:CANON工艺为短程硝化与厌氧氨氧化反应在同一反应器中进行,通过氨氧化菌(AOB)与ANAMMOX菌在低DO含量条件下,AOB以O2为电子受体将NH4 +-N氧化为NO2 --N,ANAMMOX菌以AOB产生的NO2 --N为电子受体,与剩余NH4 +-N反应,生成N2,达到脱氮目的。CANON过程见式(6)。CANON denitrification unit: The CANON process is a short-range nitrification and anammox reaction in the same reactor. Through ammonia oxidizing bacteria (AOB) and ANAMMOX bacteria under the condition of low DO content, AOB uses O 2 as an electron acceptor to convert NH 4 + -N is oxidized to NO 2 - -N, ANAMMOX uses NO 2 - -N produced by AOB as an electron acceptor, reacts with the remaining NH 4 + -N to generate N 2 to achieve the purpose of denitrification. The CANON process is shown in formula (6).
部分亚硝化和短程硝化过程会消耗部分碱度,同时待处理再生液中NH4 +的存在会降低溶液的pH,反应见式(7)。Partial nitrification and short-range nitrification will consume part of the alkalinity, and the presence of NH 4 + in the regeneration solution to be treated will reduce the pH of the solution, the reaction is shown in formula (7).
针对待处理再生液pH降低的问题,采用外加碱度的方式来维持进入ANAMMOX脱氮单元pH的最适范围,外加碱度通过投加pH缓冲剂来实现,其反应式(8)、(9)、(10)为:Aiming at the problem of lowering the pH of the regenerated solution to be treated, the method of adding alkalinity is used to maintain the optimum range of pH entering the ANAMMOX denitrification unit. The addition of alkalinity is achieved by adding a pH buffer. The reaction formulas (8) and (9) ), (10) are:
OH-+H+→H2O (10)OH - +H + →H 2 O (10)
所述的短程硝化-厌氧氨氧化脱氮单元为两段式脱氮单元或一段式脱氮单元,其中,两段式脱氮单元包括部分亚硝化-厌氧氨氧化单元和短程硝化-厌氧氨氧化单元;一段式脱氮单元为全程自养脱氮单元。The short-path nitrification-anammox denitrification unit is a two-stage denitrification unit or a one-stage denitrification unit, wherein the two-stage denitrification unit includes a partial nitrification-anammox unit and a short-path nitrification-anammox unit Oxygen ammonia oxidation unit; one-stage denitrification unit is a full autotrophic denitrification unit.
所述的两段式脱氮单元为:部分亚硝化单元与厌氧氨氧化单元组合而成的部分亚硝化-厌氧氨氧化单元,或者由短程硝化单元与厌氧氨氧化单元组合而成的短程硝化-厌氧氨氧化单元;The two-stage denitrification unit is: a partial nitrification-anammox unit formed by a combination of a partial nitrification unit and an anammox unit, or a combination of a short-range nitrification unit and an anammox unit. Short-path nitrification-anammox unit;
其中,in,
部分亚硝化单元包括部分亚硝化反应器,该部分亚硝化反应器通过管道连接再生液储备箱,并在该连接管道上设有进水泵以及第一pH调节器,所述的部分亚硝化反应器连接曝气泵;The partial nitrosation unit includes a partial nitrosation reactor, which is connected to the regeneration liquid storage tank through a pipeline, and is provided with an inlet pump and a first pH regulator on the connecting pipeline. The partial nitrosation reactor Connect the aeration pump;
短程硝化单元包括短程硝化反应器,该短程硝化反应器通过管道连接再生液储备箱,并在两者的连接管道上设有进水泵以及第一pH调节器,所述的短程硝化反应器连接曝气泵,所述的短程硝化反应器的出水口通过回流管连接再生液储备箱,并在回流管上设有引流泵;The short-path nitrification unit includes a short-path nitrification reactor, the short-path nitrification reactor is connected to the regeneration liquid storage tank through a pipeline, and an inlet water pump and a first pH regulator are arranged on the connecting pipeline of the two, and the short-path nitrification reactor is connected to the aerator. an air pump, the water outlet of the short-range nitrification reactor is connected to the regeneration liquid storage tank through a return pipe, and a drainage pump is arranged on the return pipe;
厌氧氨氧化单元包括ANAMMOX反应器,该ANAMMOX反应器入口设有ANAMMOX进水管路,出口设有再生液循环管路,所述的ANAMMOX进水管路上设有第二pH调节器;在与部分亚硝化单元进行组合时,ANAMMOX进水管路连接部分亚硝化反应器;在与短程硝化单元进行组合时,ANAMMOX进水管路连接短程硝化反应器;所述的再生液循环管路连接再生液储备箱。The anammox unit includes an ANAMMOX reactor, the inlet of the ANAMMOX reactor is provided with an ANAMMOX water inlet pipeline, the outlet is provided with a regenerating liquid circulation pipeline, and the ANAMMOX water inlet pipeline is provided with a second pH regulator; When the nitrification unit is combined, the ANAMMOX water inlet pipeline is connected to part of the nitrosation reactor; when combined with the short-path nitrification unit, the ANAMMOX water inlet pipeline is connected to the short-path nitrification reactor; the regenerated liquid circulation pipeline is connected to the regenerated liquid storage tank.
所述的全程自养脱氮单元包括CANON反应器,该CANON反应器入口通过管道连接再生液储备箱,并在两者的连接管道上设有进水泵以及第一pH调节器,CANON反应器出口通过再生液循环管连接再生液储备箱;所述的CANON反应器还连接曝气泵。The whole process autotrophic denitrification unit includes a CANON reactor, the inlet of the CANON reactor is connected to the regeneration liquid storage tank through a pipeline, and an inlet water pump and a first pH regulator are arranged on the connecting pipeline of the two, and the outlet of the CANON reactor is provided. The regeneration liquid storage tank is connected through the regeneration liquid circulation pipe; the CANON reactor is also connected with the aeration pump.
所述的氨氮吸附单元多组并联,共用一个升温再生单元。Multiple groups of the ammonia nitrogen adsorption units are connected in parallel and share a heating regeneration unit.
采用上述三种不同的再生液脱氮模块进行再生液脱氮方案分别具体描述如下:Using the above three different regenerative liquid denitrification modules to carry out regenerative liquid denitrification schemes are described in detail as follows:
第一种再生液脱氮方案:部分亚硝化-厌氧氨氧化单元The first regenerative liquid denitrification scheme: partial nitrification-anammox unit
本再生液脱氮方案采用PN-ANAMMOX工艺。所述的部分亚硝化单元包括依次连接的部分亚硝化进水泵、部分亚硝化进水阀门、部分亚硝化反应器和放空阀门组,所述的部分亚硝化进水泵连接再生液储备箱与部分亚硝化反应器之间的管路,所述的部分亚硝化反应器装填有硝化污泥,所述的部分亚硝化反应器连接曝气泵,所述的部分亚硝化反应器进水管路上连接第一pH调节器,所述的第一pH调节器内装有pH缓冲剂。所述的ANAMMOX脱氮单元包括依次连接的进水阀门、ANAMMOX反应器和放空阀门组,所述的放空阀门组包括放空阀门和再生液回流阀门,所述的再生液回流阀门连接再生液储备箱,所述的ANAMMOX进水管路上连接第二pH调节器,所述的第二pH调节器内装有pH缓冲剂。This regenerative liquid denitrification scheme adopts PN-ANAMMOX process. The partial nitrosation unit includes a partial nitrosation feed pump, a partial nitrosation feedwater valve, a partial nitrosation reactor and a vent valve group connected in sequence, and the partial nitrosation feedwater pump is connected to the regeneration liquid storage tank and the partial nitrosation. The pipeline between the nitrification reactors, the part of the nitrosation reactor is filled with nitrification sludge, the part of the nitrosation reactor is connected to the aeration pump, and the water inlet pipeline of the part of the nitrosation reactor is connected to the first pH regulator, the first pH regulator is equipped with a pH buffer. The ANAMMOX denitrification unit includes a water inlet valve, an ANAMMOX reactor and a venting valve group connected in sequence, the venting valve group includes a venting valve and a regeneration liquid return valve, and the regeneration liquid return valve is connected to the regeneration liquid storage tank. , the ANAMMOX water inlet pipeline is connected with a second pH regulator, and the second pH regulator is equipped with a pH buffer.
进一步地,部分亚硝化反应器中的接种污泥为短程硝化污泥或好氧池前端污泥中的一种或两种。Further, the seeded sludge in some nitrosation reactors is one or both of short-path nitrification sludge or front-end sludge of aerobic tank.
进一步地,部分亚硝化反应器的进水NH4 +-N浓度为50-2000mg/L。Further, the NH 4 + -N concentration of the influent of some nitrosation reactors is 50-2000 mg/L.
进一步地,待处理再生液在部分亚硝化反应器中的HRT为2-48h。Further, the HRT of the regenerated liquid to be treated in the partial nitrosation reactor is 2-48h.
进一步地,部分亚硝化反应器的SRT为5-200d。Further, the SRT of the partial nitrosation reactor is 5-200d.
进一步地,部分亚硝化反应器的DO控制在0.2-3.0mg/L。Further, the DO of part of the nitrosation reactor is controlled at 0.2-3.0 mg/L.
进一步地,部分亚硝化反应器中的pH控制在6.5-8.5。Further, the pH in the partial nitrosation reactor is controlled at 6.5-8.5.
进一步地,部分亚硝化反应器中的温度控制在25-40℃。Further, the temperature in the partial nitrosation reactor is controlled at 25-40°C.
进一步地,ANAMMOX反应器中的接种污泥为ANAMMOX颗粒污泥,已挂好膜的ANAMMOX填料中的一种或两种。Further, the inoculated sludge in the ANAMMOX reactor is one or both of ANAMMOX granular sludge and ANAMMOX fillers that have been hung with membranes.
进一步地,待处理再生液在ANAMMOX反应器中的HRT为2-72h。Further, the HRT of the regenerated liquid to be treated in the ANAMMOX reactor is 2-72h.
进一步地,ANAMMOX反应器的进水NH4 +-N浓度为50-2000mg/L。Further, the influent NH 4 + -N concentration of the ANAMMOX reactor is 50-2000 mg/L.
进一步地,所述的第一和第二pH调节器内的pH缓冲剂选自碳酸盐、碳酸氢盐、氢氧化钠、石灰中的一种或几种。Further, the pH buffers in the first and second pH regulators are selected from one or more of carbonate, bicarbonate, sodium hydroxide, and lime.
第二种再生液脱氮方案:短程硝化-厌氧氨氧化单元The second denitrification scheme of regenerated liquid: short-path nitrification-anammox unit
本再生液脱氮方案采用SHARON-ANAMMOX工艺。所述的短程硝化单元包括依次连接的短程硝化进水泵、短程硝化进水阀门、短程硝化反应器和放空阀门组,所述的短程硝化进水泵连接再生液储备箱与短程硝化反应器之间的管路,所述的短程硝化反应器装填有硝化污泥,所述的短程硝化反应器还连接曝气泵,所述的短程硝化单元还配备引流泵,引流泵连接再生液储备箱与ANAMMOX反应器之间的管路,所述的短程硝化反应器进水管路上连接第一pH调节器,所述的第一pH调节器内装有pH缓冲剂。所述的ANAMMOX脱氮单元包括依次连接的进水阀门、ANAMMOX反应器和放空阀门组,所述的ANAMMOX反应器内装填有厌氧颗粒污泥,所述的放空阀门组包括放空阀门和再生液回流阀门,所述的再生液回流阀门连接再生液储备箱,所述的ANAMMOX进水管路上连接第二pH调节器,所述的第二pH调节器内装有pH缓冲剂。This regenerative liquid denitrification scheme adopts SHARON-ANAMMOX process. The short-path nitrification unit includes a short-path nitrification feed pump, a short-path nitrification feed water valve, a short-path nitrification reactor and a venting valve group connected in sequence, and the short-path nitrification feed pump is connected between the regenerating liquid reserve tank and the short-path nitrification reactor. Pipeline, the short-path nitrification reactor is filled with nitrification sludge, the short-path nitrification reactor is also connected to an aeration pump, the short-path nitrification unit is also equipped with a drainage pump, and the drainage pump is connected to the regeneration liquid reserve tank and ANAMMOX reaction A first pH regulator is connected to the water inlet pipeline of the short-range nitrification reactor, and a pH buffer is installed in the first pH regulator. The ANAMMOX denitrification unit includes a water inlet valve, an ANAMMOX reactor and a venting valve group connected in sequence, the ANAMMOX reactor is filled with anaerobic granular sludge, and the venting valve group includes a venting valve and a regeneration liquid. Return valve, the regeneration liquid return valve is connected to the regeneration liquid storage tank, the ANAMMOX water inlet pipeline is connected to a second pH regulator, and the second pH regulator is filled with a pH buffer.
进一步地,短程硝化反应器中的接种污泥为短程硝化污泥或好氧池前端污泥中的一种或两种。Further, the inoculated sludge in the short-path nitrification reactor is one or both of the short-path nitrification sludge or the front-end sludge of the aerobic tank.
进一步地,短程硝化反应器的进水NH4 +-N浓度为50-2000mg/L。Further, the influent NH 4 + -N concentration of the short-path nitrification reactor is 50-2000 mg/L.
进一步地,短程硝化单元引流泵引流流量为待处理再生液的25%-75%。Further, the drainage flow rate of the drainage pump of the short-range nitrification unit is 25%-75% of the regeneration liquid to be treated.
进一步地,待处理再生液在短程硝化反应器中的HRT为2-48h。Further, the HRT of the regenerated liquid to be treated in the short-path nitrification reactor is 2-48h.
进一步地,短程硝化反应器的SRT为1-200d。Further, the SRT of the short-path nitrification reactor is 1-200 d.
进一步地,短程硝化反应器中的DO控制在0.3-3.0mg/L。Further, the DO in the short-path nitrification reactor is controlled at 0.3-3.0 mg/L.
进一步地,短程硝化反应器中的pH控制在6.5-8.5。Further, the pH in the short-path nitrification reactor is controlled at 6.5-8.5.
进一步地,短程硝化反应器中的温度控制在25-40℃。Further, the temperature in the short-path nitrification reactor is controlled at 25-40°C.
进一步地,ANAMMOX反应器中的接种污泥为ANAMMOX颗粒污泥,已挂好膜的ANAMMOX填料中的一种或两种。Further, the inoculated sludge in the ANAMMOX reactor is one or both of ANAMMOX granular sludge and ANAMMOX fillers that have been hung with membranes.
进一步地,待处理再生液在ANAMMOX反应器中的HRT为2-72h。Further, the HRT of the regenerated liquid to be treated in the ANAMMOX reactor is 2-72h.
进一步地,ANAMMOX反应器的进水NH4 +-N浓度为50-2000mg/L。Further, the influent NH 4 + -N concentration of the ANAMMOX reactor is 50-2000 mg/L.
进一步地,所述的第一和第二pH调节器内的pH缓冲剂选自碳酸盐、碳酸氢盐、氢氧化钠、石灰中的一种或几种。Further, the pH buffers in the first and second pH regulators are selected from one or more of carbonate, bicarbonate, sodium hydroxide, and lime.
第三种再生液脱氮方案:全程自养脱氮单元The third regenerative liquid denitrification scheme: autotrophic denitrification unit in the whole process
本再生液脱氮方案采用CANON工艺。所述的CANON脱氮单元包括依次连接的CANON进水泵、CANON进水阀门、CANON反应器和放空阀门组,所述的CANON进水泵连接再生液储备箱与CANON反应器之间的管路,所述的放空阀门组包括放空阀门和再生液回流阀门,所述的再生液回流阀门连接再生液储备箱,所述CANON进水管路上连接第二pH调节器,所述的第二pH调节器内装有pH缓冲剂。This regenerative liquid denitrification scheme adopts CANON process. Described CANON denitrification unit comprises CANON water inlet pump, CANON water inlet valve, CANON reactor and venting valve group connected successively, described CANON inlet water pump is connected with the pipeline between regeneration liquid storage tank and CANON reactor, so Described venting valve group comprises venting valve and regeneration liquid return valve, described regeneration liquid return valve is connected with regeneration liquid storage tank, described CANON water inlet pipeline is connected with the second pH regulator, and described second pH regulator is equipped with inside. pH buffer.
进一步地,CANON反应器的进水NH4 +-N浓度为50-2000mg/L。Further, the influent NH 4 + -N concentration of the CANON reactor is 50-2000 mg/L.
进一步地,待处理再生液在CANON反应器中的HRT为3-72h。Further, the HRT of the regenerated liquid to be treated in the CANON reactor is 3-72h.
进一步地,CANON反应器中的DO控制在0.2-3.0mg/L。Further, the DO in the CANON reactor was controlled at 0.2-3.0 mg/L.
进一步地,CANON反应器中的pH控制在6.5-8.5。Further, the pH in the CANON reactor was controlled at 6.5-8.5.
进一步地,CANON反应器内温度维持范围为25-40℃。Further, the temperature in the CANON reactor is maintained in the range of 25-40°C.
进一步地,CANNON反应器内接种污泥为ANAMMOX颗粒污泥,已挂好膜的ANAMMOX填料中的一种或两种。Further, the inoculated sludge in the CANNON reactor is one or both of ANAMMOX granular sludge and ANAMMOX fillers with membranes already attached.
进一步地,所述的第二pH调节器内的pH缓冲剂为碳酸盐、碳酸氢盐、氢氧化钠、石灰中的一种或几种。Further, the pH buffer in the second pH regulator is one or more of carbonate, bicarbonate, sodium hydroxide, and lime.
采用所述的系统进行氨氮高效去除的方法,其特征在于,包括以下步骤:The method for efficiently removing ammonia nitrogen using the described system is characterized in that, comprising the following steps:
1)待处理的含氨氮污水由污水进水泵连续泵入氨氮吸附单元,经氨氮吸附单元出口排出,直至氨氮吸附单元出水达到设定浓度(满足相关排放标准的设定值)后停止污水进水泵运行。1) The ammonia nitrogen-containing sewage to be treated is continuously pumped into the ammonia nitrogen adsorption unit by the sewage water inlet pump, and discharged through the outlet of the ammonia nitrogen adsorption unit until the effluent of the ammonia nitrogen adsorption unit reaches the set concentration (the set value that meets the relevant discharge standards), and then the sewage water intake pump is stopped. run.
2)启动再生液进水泵,经污水源热泵加热的再生液由再生液储备箱中泵入氨氮吸附单元,对氨氮吸附材料充分浸泡进行再生处理,再生液回流至再生液储备箱中,完成一个吸附再生循环。2) Start the regeneration liquid inlet pump, the regeneration liquid heated by the sewage source heat pump is pumped into the ammonia nitrogen adsorption unit from the regeneration liquid storage tank, and the ammonia nitrogen adsorption material is fully soaked for regeneration treatment, and the regeneration liquid is returned to the regeneration liquid storage tank to complete a Adsorption regeneration cycle.
3)在第一种再生液脱氮方案中,含有高浓度氨氮的再生液通过部分亚硝化进水泵打入部分亚硝化反应器,在部分亚硝化反应器中反应完成后通过ANAMMOX脱氮进水泵打入ANAMMOX反应器。3) In the first regenerated liquid denitrification scheme, the regenerated liquid containing high-concentration ammonia nitrogen is pumped into the partial nitrosation reactor through the partial nitrosation feed pump, and after the reaction in the partial nitrosation reactor is completed, it is passed through the ANAMMOX denitrification feed pump. Into the ANAMMOX reactor.
4)在第二种再生液脱氮方案中,含有高浓度氨氮的再生液通过短程硝化进水泵打入短程硝化反应器,同时,引流泵引流部分待处理再生液,与完成短程硝化的再生液混合后泵入ANAMMOX反应器。4) In the second regeneration liquid denitrification scheme, the regeneration liquid containing high-concentration ammonia nitrogen is pumped into the short-path nitrification reactor through the short-path nitrification feed pump, and at the same time, the drainage pump diverts part of the regeneration liquid to be treated, and the regeneration liquid that completes the short-path nitrification is separated. After mixing, it was pumped into the ANAMMOX reactor.
5)在第三种再生液脱氮方案中,含有高浓度氨氮的再生液通过CANON进水泵直接泵入CANON反应器。5) In the third denitrification scheme of the regeneration liquid, the regeneration liquid containing high concentration of ammonia nitrogen is directly pumped into the CANON reactor through the CANON inlet water pump.
6)在第一种再生液脱氮方案和第二种再生液脱氮方案中,pH缓冲剂先通过第一pH调节器加入到部分亚硝化和短程硝化反应器中,再通过第二pH调节器加入到完成部分亚硝化和短程硝化处理的再生液当中,通过ANAMMOX脱氮进水泵同时打入ANAMMOX反应器,在ANAMMOX反应器内完成脱氮,处理后的再生液经排水阀门排出至再生液储备箱回用;在第三种再生液脱氮方案中,pH缓冲剂直接加入待处理再生液,通过CANON进水泵同时打入CANON反应器,在CANON反应器内进行全程自养脱氮,处理后的再生液经排水阀门排出至再生液储备箱回用。6) In the first regenerated liquid denitrification scheme and the second regeneration liquid denitrification scheme, the pH buffer is first added to the partial nitrification and short-range nitrification reactors through the first pH regulator, and then adjusted through the second pH regulator. It is added to the regeneration liquid that has completed partial nitrification and short-range nitrification, and is simultaneously pumped into the ANAMMOX reactor through the ANAMMOX denitrification feed pump, where the denitrification is completed in the ANAMMOX reactor, and the treated regeneration liquid is discharged to the regeneration liquid through the drain valve. The reserve tank is reused; in the third denitrification scheme of the regeneration liquid, the pH buffer is directly added to the regeneration liquid to be treated, and is simultaneously pumped into the CANON reactor through the CANON inlet pump, and the whole process of autotrophic denitrification is carried out in the CANON reactor. The regenerated liquid is discharged to the regeneration liquid storage tank through the drain valve for reuse.
7)氨氮吸附单元可多组并联,共用一个升温再生单元。7) Multiple groups of ammonia nitrogen adsorption units can be connected in parallel, sharing a heating regeneration unit.
本实用新型基于短程硝化-厌氧氨氧化工艺,通过对高浓度再生液进行脱氮处理,从而实现了氨氮吸附-再生-短程硝化-厌氧氨氧化工艺流程的完整脱氮。污水中的氨氮通过氨氮吸附单元进行吸附去除,出水氨氮浓度可达到GB18918-2002国家一级A排放标准甚至更为严格的类IV类数标准。再生时,通过污水源热泵对再生液进行加热,一方面升高温度使再生速率加快,再生效果显著提升;另一方面,对再生液升温,为短程硝化、部分亚硝化、ANAMMOX脱氮和CANON脱氮单元提供合适的反应温度。短程硝化和部分亚硝化单元将待处理再生液中高浓度氨氮部分转化成亚硝氮,为ANAMMOX脱氮单元的进水提供适宜基质浓度。通过向部分亚硝化、短程硝化、ANAMMOX脱氮和CANON脱氮单元的进水中投加pH缓冲剂以实现进水pH的稳定,ANAMMOX脱氮和CANON脱氮单元的出水为去除氨氮后的再生液,可直接流入再生液储备箱进行再生液的回用。当再生液中的干扰离子达到一定浓度之后,通过投加沉淀剂将干扰离子转化为沉淀并固液分离,达到去除干扰离子的目的。The utility model is based on the short-range nitrification-anammox process, and realizes the complete denitrification of the ammonia nitrogen adsorption-regeneration-short-range nitrification-anammox process by denitrifying the high-concentration regeneration liquid. The ammonia nitrogen in the sewage is adsorbed and removed by the ammonia nitrogen adsorption unit, and the ammonia nitrogen concentration in the effluent can reach the GB18918-2002 national first-level A emission standard or even the more stringent category IV standard. During regeneration, the regeneration liquid is heated by the sewage source heat pump. On the one hand, increasing the temperature makes the regeneration rate faster, and the regeneration effect is significantly improved; A denitrification unit provides suitable reaction temperatures. The short-range nitrification and partial nitrification unit converts the high concentration of ammonia nitrogen in the regenerated liquid to be treated into nitrous nitrogen, which provides suitable substrate concentration for the influent of the ANAMMOX denitrification unit. The pH of the influent is stabilized by adding a pH buffer to the influent of the partial nitrification, short-range nitrification, ANAMMOX denitrification and CANON denitrification units. The effluent of the ANAMMOX denitrification and CANON denitrification units is the regeneration after removal of ammonia nitrogen The regenerated liquid can be directly flowed into the regeneration liquid storage tank for reuse of the regeneration liquid. When the interfering ions in the regeneration solution reach a certain concentration, the interfering ions are converted into precipitation by adding a precipitant and separated into solid-liquid to achieve the purpose of removing the interfering ions.
与现有技术相比,本实用新型具有以下有益效果:Compared with the prior art, the utility model has the following beneficial effects:
本实用新型可用于城镇污水、工业废水、初期雨水和黑臭水体的氨氮和总氮去除。与现有技术相比,本实用新型具有以下优点:The utility model can be used for the removal of ammonia nitrogen and total nitrogen from urban sewage, industrial waste water, initial rainwater and black and odorous water bodies. Compared with the prior art, the utility model has the following advantages:
(1)通过氨氮快速吸附-活化再生的工艺单元设计,实现了低占地、短HRT下快速去除氨氮和总氮的目的,能够有效控制污水处理系统出水和污染水体的氨氮和总氮浓度;(1) Through the design of the process unit of rapid adsorption-activation regeneration of ammonia nitrogen, the purpose of quickly removing ammonia nitrogen and total nitrogen under low occupation and short HRT is realized, and the concentration of ammonia nitrogen and total nitrogen in the effluent of sewage treatment system and polluted water can be effectively controlled;
(2)将ANAMMOX工艺应用到再生液的侧流氨氮去除,避免了原有的吹脱、次氯酸钠氧化、硝化再生-外加碳源反硝化等工艺的高成本问题;(2) The ANAMMOX process is applied to the side stream ammonia nitrogen removal of the regenerated liquid, avoiding the high cost problems of the original stripping, sodium hypochlorite oxidation, nitrification regeneration-additional carbon source denitrification and other processes;
(3)氨氮吸附-再生-短程硝化-厌氧氨氧化的整体工艺设计具有显著创新,既能利用吸附-再生单元实现氨氮富集,避免ANAMMOX工艺应用于主流系统氨氮浓度过低的问题,又能避免污水中毒性物质对ANAMMOX菌的抑制作用,还能规避ANAMMOX系统反应后硝酸盐或者亚硝酸盐残留造成出水总氮超标的问题(50-70mg/L),且残留硝酸盐或者亚硝酸盐可在后续循环中继续利用。(3) The overall process design of ammonia nitrogen adsorption-regeneration-short-path nitrification-anaerobic ammonia oxidation has significant innovation, which can not only use the adsorption-regeneration unit to achieve ammonia nitrogen enrichment, avoid the problem of too low ammonia nitrogen concentration in mainstream systems, but also It can avoid the inhibitory effect of toxic substances in sewage on ANAMMOX bacteria, and also avoid the problem that the total nitrogen in the effluent exceeds the standard (50-70mg/L) caused by the residual nitrate or nitrite after the ANAMMOX system reaction, and the residual nitrate or nitrite It can be used in subsequent cycles.
(4)升温再生与AOB及ANAMMOX菌的最适温度环境有机耦合。本实用新型利用污水源提升再生液温度,既有助于提高氨氮吸附材料的再生效率,加快再生速率,又为AOB和ANAMMOX菌的生长增殖提供了有利的环境条件,在提高工艺运行效率的同时有效降低了污水处理能耗。(4) The temperature-warming regeneration is organically coupled with the optimal temperature environment of AOB and ANAMMOX bacteria. The utility model uses the sewage source to increase the temperature of the regeneration liquid, which not only helps to improve the regeneration efficiency of the ammonia nitrogen adsorption material, accelerates the regeneration rate, but also provides favorable environmental conditions for the growth and proliferation of AOB and ANAMMOX bacteria. Effectively reduce the energy consumption of sewage treatment.
(5)适当的盐分浓度既有助于提高氨氮再生效率,又对AOB及ANAMMOX菌具有促进作用,提高脱氮性能。(5) Appropriate salt concentration not only helps to improve the regeneration efficiency of ammonia nitrogen, but also promotes AOB and ANAMMOX bacteria and improves the denitrification performance.
(6)通过外加碱度,实现了维持进入部分亚硝化、短程硝化、ANAMMOX脱氮和CANON脱氮元适宜的pH范围。ANAMMOX菌以CO2为碳源,通过外加碱度调节pH的同时可为ANAMMOX菌提供CO2,提高ANAMMOX脱氮单元和CANON脱氮单元的处理效率。(6) By adding alkalinity, a suitable pH range for partial nitrification, short-range nitrification, ANAMMOX denitrification and CANON denitrification was achieved. The ANAMMOX bacteria use CO 2 as the carbon source, and can provide CO 2 to the ANAMMOX bacteria while adjusting the pH by adding alkalinity to improve the treatment efficiency of the ANAMMOX denitrification unit and the CANON denitrification unit.
附图说明Description of drawings
图1为第一种基于短程硝化-厌氧氨氧化工艺的氨氮高效去除技术的流程示意图;Fig. 1 is the schematic flow sheet of the first kind of ammonia nitrogen efficient removal technology based on short-path nitrification-anammox process;
图2为第二种基于短程硝化-厌氧氨氧化工艺的氨氮高效去除技术的流程示意图;Fig. 2 is the schematic flow sheet of the second kind of ammonia nitrogen high-efficiency removal technology based on short-path nitrification-anammox process;
图3为第三种基于短程硝化-厌氧氨氧化工艺的氨氮高效去除技术的流程示意图;3 is a schematic flow diagram of a third type of high-efficiency ammonia nitrogen removal technology based on short-path nitrification-anammox process;
图4为实施例2中试期间进出系统的水质情况图;Fig. 4 is the water quality situation diagram of entering and leaving the system during the pilot test of
图5为实施例2中试期间进出部分亚硝化反应器的部分亚硝化进出水水质情况图;Fig. 5 is the partial nitrosation inflow and outflow water quality situation diagram of entering and exiting part of the nitrosation reactor during the pilot test of
图6为实施例2中试期间进出ANAMMOX反应器的进出水水质情况图;Fig. 6 is the water quality situation diagram of the inlet and outlet water entering and leaving the ANAMMOX reactor during the pilot test of Example 2;
图7为中试期间CANON反应器内填料示意图。Figure 7 is a schematic diagram of the packing in the CANON reactor during the pilot test.
图中标识如下:The figure is marked as follows:
氨氮吸附柱1、再生液储备箱2、部分亚硝化反应器3、短程硝化反应器3’、CANON反应器3”、ANAMMOX反应器4、沉淀剂加药器5、第一pH调节器6、第二pH调节器7、污水进水泵8、再生液进水泵9、部分亚硝化进水泵10、短程硝化进水泵10’、CANON进水泵10”、进水阀门11、再生液进水阀门12、部分亚硝化进水阀门13、短程硝化进水阀门13’、CANON进水阀门13”、ANAMMOX脱氮进水阀门14、氨氮吸附柱排水阀门15、ANAMMOX反应器排水阀门16、CANON反应器排水阀门16’、再生液回流阀门17、放空阀门18、排气阀门19、污水源热泵20、曝气泵21、引流泵22。Ammonia nitrogen adsorption column 1, regeneration
图中线段标识如下:The line segments in the figure are identified as follows:
具体实施方式Detailed ways
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中作简单地介绍,显而易见地,下面描述中的实施例仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些实施例获得其他的方案。下面结合附图和具体实施例对本实用新型进行详细说明。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the embodiments or the description of the prior art. Obviously, the embodiments in the following description are only of the present invention. In some embodiments, for those of ordinary skill in the art, other solutions can also be obtained according to these embodiments without any creative effort. The present utility model will be described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
一种基于短程硝化-厌氧氨氧化工艺的氨氮高效去除系统,流程图如图1所示,包括氨氮吸附单元、升温再生单元、部分亚硝化单元以及ANAMMOX脱氮单元。氨氮吸附单元包括依次连接的污水进水泵8、进水阀门11、装填有吸附材料的氨氮吸附柱1和氨氮吸附柱排水阀门15。An efficient ammonia nitrogen removal system based on short-path nitrification-anammox process, the flow chart is shown in Figure 1, including ammonia nitrogen adsorption unit, heating regeneration unit, partial nitrosation unit and ANAMMOX denitrification unit. The ammonia nitrogen adsorption unit includes a sewage water inlet pump 8 , a
升温再生单元包括再生液储备箱2,该再生液储备箱2通过管道连接氨氮吸附柱1,并在两者的连接管道上依次设有再生液进水泵9和再生液进水阀门12,再生液储备箱2内装有再生液,再生液储备箱2还连接污水源热泵20和沉淀剂加药器5,再生液储备箱2连接氨氮吸附柱1并回收从氨氮吸附柱1流出的再生液,再生液储备箱2与氨氮吸附柱1之间还设有再生液回流阀门17和放空阀18,再生液为10g/L氯化钠溶液。The heating regeneration unit includes a regeneration
部分亚硝化单元包括依次连接的部分亚硝化进水泵10、进水阀门13、部分亚硝化反应器3,所述的部分亚硝化进水泵10连接再生液储备箱2和部分亚硝化进水阀门13之间的管路,且该管路上还设有第一pH调节器6,同时部分亚硝化反应器3还与曝气泵21连接,所述的部分亚硝化反应器3内接种污泥采用硝化污泥。The partial nitrosation unit comprises the partial nitrosation
ANAMMOX脱氮单元包括依次连接的第二pH调节器7、ANAMMOX进水阀门14、ANAMMOX反应器4、ANAMMOX反应器排水阀门16,所述的ANAMMOX反应器4内接种污泥为厌氧颗粒污泥,ANAMMOX反应器4与再生液储备箱2之间通过再生液循环管路连接,并在该再生液循环管路上设置ANAMMOX反应器排水阀门16,回用再生液,ANAMMOX反应器4所产生的气体通过排气阀门19排出。pH缓冲剂通过第二pH调节器7加到部分亚硝化反应器3的出水中,缓冲剂选自碳酸钠或者碳酸氢钠中的至少一种。The ANAMMOX denitrification unit includes a second pH regulator 7, an ANAMMOX water inlet valve 14, an ANAMMOX reactor 4, and an ANAMMOX reactor drain valve 16, which are connected in sequence. The inoculated sludge in the ANAMMOX reactor 4 is anaerobic granular sludge. , the ANAMMOX reactor 4 and the regeneration
具体步骤如下:待处理的氨氮污水由污水进水泵8经由进水阀门11打入氨氮吸附柱1,氨氮吸附1中的吸附材料充分吸附污水中的氨氮,达到预设运行时间后,关闭污水进水泵8,打开氨氮吸附柱排水阀门15和放空阀门18,排出所有已处理水后对氨氮吸附柱1进行再生。再生时,打开再生液回流阀门17,关闭排水阀门15和放空阀门18,再生液经污水源热泵20加热后,由再生液进水泵9经由再生液进水阀门12将再生液从储备箱2中打入氨氮吸附柱1,当再生液充满氨氮吸附柱1后经再生液回流阀门17回到再生液储备箱2,形成循环再生处理系统,再生结束后关闭再生液进水泵9和再生液进水阀门12,让再生液完全回流至再生液储备箱2中,完成再生。再生完毕后再泵入待处理的高浓度氨氮污水进行吸附,每再生4-10次后,通过沉淀剂加药器5向再生液储备箱2中投加沉淀剂并搅拌,充分反应后沉降,最后沉淀物经泥斗排出。经处理后的再生液由部分亚硝化进水泵10经过部分亚硝化进水阀门13打入部分亚硝化反应器3,同时调节第一pH调节器6流速。完成部分亚硝化反应的待处理再生液由ANAMMOX脱氮进水泵经过ANAMMOX进水阀门14泵入ANAMMOX反应器4,打开ANAMMOX排水阀门16,同时调节第二pH调节器7流速,使其按比例与待处理再生液混合进入反应器,处理后的再生液回流至再生液储备箱2,形成循环处理系统,完成再生液的回用,ANAMMOX反应器4所产生的气体经由排气阀门19排出。The specific steps are as follows: the ammonia nitrogen sewage to be treated is injected into the ammonia nitrogen adsorption column 1 by the sewage water inlet pump 8 through the
实施例2Example 2
针对某污水处理厂氨氮浓度为25mg/L的污水,需要处理后达到GB18918-2002一级A标准(5mg/L)的要求。采用上述系统进行中试研究,中试处理水量为2.2吨/日。For the sewage with ammonia nitrogen concentration of 25mg/L in a sewage treatment plant, it needs to meet the requirements of GB18918-2002 Grade A standard (5mg/L) after treatment. The above-mentioned system is used for pilot-scale research, and the pilot-scale water treatment capacity is 2.2 tons/day.
污水由污水进水泵8经进水阀门11进入氨氮吸附柱1,氨氮吸附柱1体积为1L,内部填充天然沸石。水力停留时间为5min,吸附运行时间为4h,一次运行可处理水量48L,每小时可处理水量为12L/h,每天可处理水量为264L/d(按22h计算),采用8组氨氮吸附柱并联运行,2组氨氮吸附柱备用。达到预设运行时间后,关闭污水进水泵8,打开排水阀门15和放空阀18,排出所有已处理水后进行再生。再生时,关闭氨氮吸附柱排水阀门15和放空阀门18,再生液经污水源热泵20加热后,由再生液进水泵9经由再生液进水阀门12从再生液储备箱2中打入8组并联运行的氨氮吸附单元,再生液体积为100L。当再生液淹没吸附材料后关闭再生液进水泵9及再生液进水阀门12,使吸附材料充分浸泡在再生液中。再生完成后,打开再生液回流阀门17,再生液回流至再生液储备箱2中,完成再生,再生完毕后再次进入氨氮吸附阶段,4次再生后对再生液进行净化处理,通过沉淀剂加药器5加入碳酸钠溶液。净化完毕后的再生液中的NH4 +-N浓度为418mg/L,待处理再生液由部分亚硝化进水泵10经过部分亚硝化进水阀门13进入部分亚硝化反应器3,同时通过调节第一pH调节器6加入碳酸氢钠溶液。部分亚硝化反应器3体积为150L,部分亚硝化反应器3的运行工况:HRT为12h,SRT为15d,DO控制在1mg/L,温度控制在32℃。部分亚硝化反应器出水NH4 +-N浓度为189.4mg/L,NO2 --N浓度为227.2mg/L,NH4 +-N/NO2 --N=1:1.2。经过部分亚硝化处理的再生液经由ANAMMOX脱氮进水阀门14进入ANAMMOX反应器4,同时通过调节第二调节器7加入碳酸氢钠溶液。ANAMMOX反应器4体积为50L,内部填有厌氧颗粒污泥,水力停留时间为8h,温度控制在32℃。待处理再生液进入反应器后,打开ANAMMOX反应器排水阀门16和排气阀门19,处理完成的再生液经由ANAMMOX反应器排水阀门16回流至再生液储备箱2进行回用,ANAMMOX反应过程中所产生的气体经由气体阀门19排出。中试期间进出水水质及再生液脱氮情况见附图4~图6,可以看出,氨氮吸附柱1的出水氨氮浓度始终低于5mg/L,满足GB18918-2002一级A标准(5mg/L)的要求,同时ANAMMOX反应器4出水中NH4 +-N浓度为9.33mg/L,NO2 --N浓度为1.89mg/L,NO3 --N浓度为31.38mg/L,NH4 +-N负荷为0.56kg/m3/d,NO2 --N负荷为0.67kg/m3/d,再生液脱氮效果显著。The sewage enters the ammonia nitrogen adsorption column 1 from the sewage water inlet pump 8 through the
与专利CN107804890A相比,本实用新型在侧流使用短程硝化-厌氧氨氧化工艺,解决了再生液中氨氮无法去除,再生液难以重复利用的问题,同时所采用的再生方法成本低廉,成本可节省56.8%,经济效果显著。与传统A2/O工艺相比,本工艺可节省100%的碳源以及61.2%的曝气量,占地面积减少42.3%,污泥产量少,同时本工艺通过污水源热泵对再生液进行原位加热,充分利用了污水中的热能,实现了能源的再次利用,并且减少了CO2的排放,具有显著的经济和环境效益。Compared with the patent CN107804890A, the utility model uses the short-range nitrification-anaerobic ammonia oxidation process in the side stream, which solves the problems that the ammonia nitrogen in the regeneration solution cannot be removed and the regeneration solution is difficult to reuse. Saving 56.8%, the economic effect is remarkable. Compared with the traditional A 2 /O process, this process can save 100% of the carbon source and 61.2% of the aeration volume, reduce the floor space by 42.3%, and reduce the sludge output. The in-situ heating fully utilizes the thermal energy in the sewage, realizes the reuse of energy, and reduces the emission of CO2 , which has significant economic and environmental benefits.
实施例3Example 3
针对氨氮浓度为15mg/L的某污水处理厂尾水,需要处理后达到GB18918-2002一级A标准(5mg/L)的要求。采用侧流SHARON-ANAMMOX系统进行中试研究,中试处理水量为2.5吨/日。For the tail water of a sewage treatment plant with an ammonia nitrogen concentration of 15mg/L, it needs to meet the requirements of GB18918-2002 Grade A standard (5mg/L) after treatment. The pilot-scale study was carried out using the lateral flow SHARON-ANAMMOX system, and the pilot-scale water treatment capacity was 2.5 tons/day.
本实施例与实施例1大致相同,不同之处在于,再生液脱氮模块为由短程硝化单元与厌氧氨氧化单元组合而成的短程硝化-厌氧氨氧化单元。如图2所示:This embodiment is substantially the same as Embodiment 1, except that the denitrification module of the regenerated liquid is a short-path nitrification-anammox unit composed of a short-path nitrification unit and an anammox unit. as shown in picture 2:
短程硝化单元包括短程硝化反应器3’,该短程硝化反应器3’通过管道连接再生液储备箱2,并在两者的连接管道上设有短程硝化进水泵10’以及第一pH调节器6,所述的短程硝化反应器3’连接曝气泵21,所述的短程硝化反应器3’的出水口通过回流管连接再生液储备箱2,并在回流管上设有引流泵22,引流泵22和短程硝化进水泵10’并联后的管道上设置短程硝化进水阀门13’。The short-path nitrification unit includes a short-path nitrification reactor 3', the short-path nitrification reactor 3' is connected to the regeneration
本实施例中,氨氮吸附柱1中的氨氮吸附材料为天然沸石,采用8组氨氮吸附单元并联运行,2组备用。再生液体积为100L。待处理再生液中的NH4 +-N浓度为324.6mg/L。引流泵22引流50%待处理再生液,通过调节第一pH调节器6加入碳酸氢钠和碳酸钠混合溶液。短程硝化反应器3’体积为20L,运行工况:HRT为8h,SRT为4d,DO控制在1.0mg/L,温度控制在32℃。ANAMMOX反应器4进水NH4 +-N=142.9mg/L,NO2 --N浓度为181.6mg/L,NH4 +-N/NO2 --N=1:1.27,接近理论值1.32。通过调节第二pH调节器7加入碳酸氢钠和碳酸钠混合溶液。ANAMMOX反应器4体积为30L,内部填有厌氧颗粒污泥,水力停留时间为8h,温度控制在32℃。ANAMMOX反应器4出水NH4 +-N浓度为7.52mg/L,NH4 +-N负荷为0.54kg/m3/d,NO2 --N浓度为1.83mg/L,NO2 --N负荷为0.69kg/m3/d,NO3 --N浓度为16.61mg/L,处理完成的再生液直接流入再生液储备箱2回用。In this embodiment, the ammonia nitrogen adsorption material in the ammonia nitrogen adsorption column 1 is natural zeolite, and 8 groups of ammonia nitrogen adsorption units are used to operate in parallel, and 2 groups are used for standby. The volume of regeneration solution is 100L. The NH 4 + -N concentration in the regeneration solution to be treated was 324.6 mg/L. The drainage pump 22 drains 50% of the regeneration liquid to be treated, and the mixed solution of sodium bicarbonate and sodium carbonate is added by adjusting the first pH regulator 6 . The volume of the short-path nitrification reactor 3' is 20L, operating conditions: HRT is 8h, SRT is 4d, DO is controlled at 1.0mg/L, and temperature is controlled at 32°C. The influent NH 4 + -N of ANAMMOX reactor 4 is 142.9 mg/L, the NO 2 - -N concentration is 181.6 mg/L, and the NH 4 + -N/NO 2 - -N=1:1.27, which is close to the theoretical value of 1.32. The mixed solution of sodium bicarbonate and sodium carbonate is added by adjusting the second pH regulator 7 . The volume of ANAMMOX reactor 4 is 30L, filled with anaerobic granular sludge, the hydraulic retention time is 8h, and the temperature is controlled at 32°C. The NH 4 + -N concentration in the effluent of ANAMMOX reactor 4 is 7.52mg/L, the NH 4 + -N load is 0.54kg/m 3 /d, the NO 2 - -N concentration is 1.83mg/L, and the NO 2 - -N load is 1.83mg/L. It is 0.69kg/m 3 /d, the NO 3 - -N concentration is 16.61mg/L, and the treated regeneration solution directly flows into the regeneration
与现行的污水处理厂尾水处理工艺相比,本工艺具有短时高效,投资少,低占地等优点,可有效解决污水处理厂尾水氨氮超标的问题,与MBR处理工艺相比,投资成本可降低61.7%,对污水处理厂提标改造具有实际效益。Compared with the current sewage treatment plant tail water treatment process, this process has the advantages of short-term high efficiency, low investment and low land occupation, and can effectively solve the problem of excessive ammonia nitrogen in the sewage treatment plant tail water. Compared with the MBR treatment process, the investment The cost can be reduced by 61.7%, which has practical benefits for the upgrading of sewage treatment plants.
实施例4Example 4
针对氨氮浓度为15mg/L的泵站排污口出水,需要处理后达到GB18918-2002一级A标准(5mg/L)的要求。采用侧流CANON系统进行中试研究,中试处理水量为1吨/日。For the effluent from the sewage outlet of the pump station with an ammonia nitrogen concentration of 15mg/L, it needs to meet the requirements of GB18918-2002 Grade A standard (5mg/L) after treatment. The lateral flow CANON system is used for pilot-scale research, and the pilot-scale water treatment capacity is 1 ton/day.
本实施例与实施例1大致相同,不同之处在于,再生液脱氮模块为全程自养脱氮单元。如图3所示:This embodiment is roughly the same as Embodiment 1, except that the regeneration liquid denitrification module is an autotrophic denitrification unit in the whole process. As shown in Figure 3:
所述的全程自养脱氮单元包括CANON反应器3”,该CANON反应器3”入口通过管道连接再生液储备箱2,并在两者的连接管道上设有CANON进水泵10”、CANON进水阀门13”以及第二pH调节器7,CANON反应器3”出口通过再生液循环管连接再生液储备箱2,在再生液循环管上设有CANON反应器排水阀门16’;所述的CANON反应器3”还连接曝气泵21。The whole process autotrophic denitrification unit includes
本实施例中,氨氮吸附柱1中的氨氮吸附材料为天然沸石和分子筛组合,采用4组氨氮吸附单元并联运行,1组备用。再生液体积为50L。待处理再生液中NH4 +-N浓度为233.1mg/L。通过第二pH调节器7加入碳酸氢钠和碳酸钠混合溶液。CANON反应器3”体积为25L,内部填充有挂好膜的填料,运行工况为:HRT为12h,pH为8.0,DO控制在1.0mg/L,温度控制在32℃。CANON反应器3”出水中NH4 +-N浓度为7.93mg/L,NH4 +-N负荷为0.92kg/m3/d,NO2 --N浓度为1.62mg/L,NO3 --N浓度为21.12mg/L,处理完成的再生液直接流入再生液储备箱回用。中试期间CANON反应器内填料见附图7。In this embodiment, the ammonia nitrogen adsorption material in the ammonia nitrogen adsorption column 1 is a combination of natural zeolite and molecular sieve, and 4 groups of ammonia nitrogen adsorption units are used to operate in parallel, and one group is used for standby. The volume of regeneration solution is 50L. The concentration of NH 4 + -N in the regeneration solution to be treated was 233.1 mg/L. A mixed solution of sodium bicarbonate and sodium carbonate was added through the second pH regulator 7 . The volume of the
与现行的处理工艺相比,本工艺具有氨氮去除效率高,占地面积小的优点,可以有效去除旱时污水和初期雨水中的氨氮,对排污口截污以及黑臭水体的治理有显著的效果。Compared with the current treatment process, this process has the advantages of high ammonia nitrogen removal efficiency and small footprint, which can effectively remove ammonia nitrogen in sewage during drought and initial rainwater, and has significant effects on sewage interception at sewage outlets and the treatment of black and odorous water bodies. Effect.
此外,需要说明的是,本说明书中所描述的具体实施例,其零、部件的形状、所取名称等可以不同。凡依本实用新型专利构思所述的构造、特征及原理所做的等效或简单变化,均包括于本实用新型专利的保护范围内。本实用新型所属技术领域的技术人员可以对所描述的具体实例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本实用新型的结构或超越本权利要求书所定义的范围,均应属于本实用新型的保护范围。In addition, it should be noted that, in the specific embodiments described in this specification, the shapes and names of parts and components thereof may be different. All equivalent or simple changes made according to the structure, features and principles described in the patent concept of the present utility model are included in the protection scope of the present utility model patent. Those skilled in the art to which the present invention pertains can make various modifications or supplements to the specific examples described or substitute in similar ways, as long as they do not deviate from the structure of the present invention or go beyond the scope defined by the claims , should belong to the protection scope of the present utility model.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921823972.5U CN211734093U (en) | 2019-10-28 | 2019-10-28 | Efficient removal system of ammonia nitrogen based on side-stream short-path nitrification-anammox process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921823972.5U CN211734093U (en) | 2019-10-28 | 2019-10-28 | Efficient removal system of ammonia nitrogen based on side-stream short-path nitrification-anammox process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211734093U true CN211734093U (en) | 2020-10-23 |
Family
ID=72873055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921823972.5U Active CN211734093U (en) | 2019-10-28 | 2019-10-28 | Efficient removal system of ammonia nitrogen based on side-stream short-path nitrification-anammox process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211734093U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110981077A (en) * | 2019-10-28 | 2020-04-10 | 上海电力大学 | Ammonia nitrogen efficient removal system and method based on side-stream short-path nitrification-anammox process |
-
2019
- 2019-10-28 CN CN201921823972.5U patent/CN211734093U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110981077A (en) * | 2019-10-28 | 2020-04-10 | 上海电力大学 | Ammonia nitrogen efficient removal system and method based on side-stream short-path nitrification-anammox process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101525179B (en) | A method for treating low-concentration ammonia-nitrogen wastewater by anaerobic ammonium oxidation | |
CN110028155B (en) | Anaerobic ammonia oxidation coupling sulfur autotrophic denitrification device and wastewater treatment method | |
CN103723893B (en) | A kind of remove the method for nitrate nitrogen in water | |
CN101708926B (en) | Method for biologically treating wastewater by simultaneously desulfurizing, denitrifying and decoloring | |
CN100422096C (en) | Method for treating municipal solid waste leachate by two-stage UASB+A/O process | |
CN103086568A (en) | Continuous flow urban sewage partial nitrification and anaerobic ammonia oxidation denitrification method | |
CN102775029A (en) | Advanced municipal wastewater treatment system and method | |
CN103288311B (en) | Slack coal pressure gasification wastewater resourceful treatment method and treatment system as well as application | |
CN109650543B (en) | SPNA integrated denitrification method for treating low-matrix wastewater under continuous flow condition | |
CN110642478B (en) | Biochemical method and physical and chemical method coupling treatment system and method for coking phenol-cyanogen wastewater | |
CN104801166A (en) | Method and device for cooperative flue gas desulfurization and sewage organic matter degradation and denitrification | |
CN104276657B (en) | ANAMMOX-PD synchronous processing height nitrogen waste water and municipal effluent apparatus and method | |
CN101289247B (en) | Single-stage aerobic biological denitrification operation method of sequencing batch reactor | |
CN107804890A (en) | A kind of processing system and its method for improving ammonia nitrogen absorption material absorption property | |
CN108383235A (en) | A method of realizing efficient nitrosation for Low Concentration Ammonia Containing Wastewater | |
CN108217934B (en) | Low-carbon treatment method and device for low-carbon/nitrogen ratio medium-low concentration wastewater | |
CN104609651B (en) | A large-scale pig farm wastewater advanced treatment system | |
CN110526504B (en) | System and method for treating regenerated waste liquid of targeted denitrification and dephosphorization resin | |
CN211445412U (en) | Biochemical method and physicochemical method coupling treatment system for coking phenol-cyanogen wastewater | |
CN110981077A (en) | Ammonia nitrogen efficient removal system and method based on side-stream short-path nitrification-anammox process | |
CN211734093U (en) | Efficient removal system of ammonia nitrogen based on side-stream short-path nitrification-anammox process | |
CN110342750A (en) | Sewage treatment device and process for synchronously realizing sludge in-situ reduction and nitrogen and phosphorus removal | |
CN1686872A (en) | Method for removing ammonia nitrogen from sewage in subzone | |
CN210481144U (en) | A sewage treatment device that simultaneously realizes in-situ sludge reduction and denitrification and phosphorus removal | |
CN216614109U (en) | A device for alleviating ion exchanger pollution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |