[go: up one dir, main page]

CN211718436U - High-temperature gas dielectric breakdown voltage detection device - Google Patents

High-temperature gas dielectric breakdown voltage detection device Download PDF

Info

Publication number
CN211718436U
CN211718436U CN201921568371.4U CN201921568371U CN211718436U CN 211718436 U CN211718436 U CN 211718436U CN 201921568371 U CN201921568371 U CN 201921568371U CN 211718436 U CN211718436 U CN 211718436U
Authority
CN
China
Prior art keywords
gas
breakdown voltage
test bench
input end
voltage test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921568371.4U
Other languages
Chinese (zh)
Inventor
王飞鸣
赵义松
刘爱民
孔剑虹
王成钧
宋进良
赵明江
赵琦
刘馨然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201921568371.4U priority Critical patent/CN211718436U/en
Application granted granted Critical
Publication of CN211718436U publication Critical patent/CN211718436U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

本实用新型属于电气工程领域,尤其涉及一种高温气体介质击穿电压检测装置。由交流电压输出端与气体击穿电压试验台连接,气体击穿电压试验台输出端与交流引弧电极输入端连接;直流电压输出端与气体击穿电压试验台输入端连接,气体击穿电压试验台输出端与试验电极输入端连接;电子式压力传感器输入端与气体击穿电压试验台连接,电子式压力传感器输出端与多通道信号采集示波器输入端A连接;阻容分压器输入端与气体击穿电压试验台连接,阻容分压器输出端与多通道信号采集示波器输入端B连接;气体温度检测探针传感器布置于交流引弧电极与试验电极中间。本实用新型可以检测不同气体在不同流速、不同压强、不同温度下的动态击穿电压值,检测准确率高。

Figure 201921568371

The utility model belongs to the field of electrical engineering, in particular to a high temperature gas medium breakdown voltage detection device. The AC voltage output terminal is connected with the gas breakdown voltage test bench, the gas breakdown voltage test bench output terminal is connected with the AC arc striking electrode input terminal; the DC voltage output terminal is connected with the gas breakdown voltage test bench input terminal, and the gas breakdown voltage The output end of the test bench is connected to the input end of the test electrode; the input end of the electronic pressure sensor is connected to the gas breakdown voltage test bench, the output end of the electronic pressure sensor is connected to the input end A of the multi-channel signal acquisition oscilloscope; the input end of the resistance-capacity voltage divider It is connected to the gas breakdown voltage test bench, and the output end of the resistance-capacitance voltage divider is connected to the input end B of the multi-channel signal acquisition oscilloscope; the gas temperature detection probe sensor is arranged between the AC arc striking electrode and the test electrode. The utility model can detect the dynamic breakdown voltage values of different gases under different flow rates, different pressures and different temperatures, and the detection accuracy is high.

Figure 201921568371

Description

一种高温气体介质击穿电压检测装置A high temperature gas dielectric breakdown voltage detection device

技术领域technical field

本实用新型属于电气工程领域,尤其涉及一种高温气体介质击穿电压检测装置,具体是一种高压气体断路器弧后介质绝缘特性检测的装置。The utility model belongs to the field of electrical engineering, in particular to a device for detecting the breakdown voltage of a high-temperature gas medium, in particular to a device for detecting the dielectric insulation characteristics of a high-voltage gas circuit breaker after the arc.

背景技术Background technique

气体绝缘是普遍应用在电力系统GIS、GIL及断路器等电力设备中,绝缘气体随着温度的升高,绝缘性能会逐渐下降,特别是断路器在开断电弧熄灭后,电弧残余能量会保持断口间气体绝缘介质在很高的温度范围内,如果弧后介质恢复速度低于触头间电压恢复速度,极易产生弧后重击穿。如何检测高温气体的绝缘特性,已成为保证气体绝缘设备弧后绝缘水平的关键技术问题。因此,急需一种可操作性强,检测准确的装置及方法对高温气体介质击穿电压进行检测。Gas insulation is widely used in power systems such as GIS, GIL and circuit breakers. As the temperature of insulating gas increases, the insulation performance will gradually decrease, especially after the circuit breaker is switched off and the arc is extinguished, the residual energy of the arc will be reduced. Keep the gas insulating medium between the fractures in a very high temperature range. If the recovery speed of the medium after the arc is lower than the recovery speed of the voltage between the contacts, it is very easy to produce a heavy breakdown after the arc. How to detect the insulating properties of high-temperature gas has become a key technical issue to ensure the insulation level of gas-insulated equipment after arc arc. Therefore, there is an urgent need for a device and method with strong operability and accurate detection to detect the breakdown voltage of a high temperature gas medium.

发明内容SUMMARY OF THE INVENTION

本实用新型针对上述现有技术中存在的问题,提供了一种高温气体介质击穿电压检测装置及方法,是基于外接电源的绝缘气体加热及电压检测装置。目的是为了解决以往的检测预期绝缘气体高温状态下击穿电压测量等方面存在的问题。Aiming at the above-mentioned problems in the prior art, the utility model provides a high temperature gas dielectric breakdown voltage detection device and method, which is an insulating gas heating and voltage detection device based on an external power supply. The purpose is to solve the problems existing in the previous detection of the breakdown voltage measurement under the high temperature state of the expected insulating gas.

本实用新型解决其技术问题所采用的技术方案是:The technical scheme adopted by the utility model to solve its technical problems is:

一种高温气体介质击穿电压检测装置,由交流电压输出端分别与气体击穿电压试验台的输入端连接,气体击穿电压试验台的输出端分别与交流引弧电极的输入端连接;直流电压输出端分别与气体击穿电压试验台的输入端连接,气体击穿电压试验台的输出端分别与试验电极的输入端连接;通过C1电容器和C2电容器组成的动态击穿直流电源对试验电极进行供电;电子式压力传感器的输入端与气体击穿电压试验台连接,电子式压力传感器的输出端与多通道信号采集示波器的输入端A连接;阻容分压器的输入端与气体击穿电压试验台连接,阻容分压器的输出端与多通道信号采集示波器输入端B连接;气体温度检测探针传感器布置于交流引弧电极与试验电极中间,气体温度检测探针传感器的输出端与多通道信号采集示波器输入端连接;气体回收装置的出气端通过气道与气体击穿电压试验台的进气口连接,气体击穿电压试验台的出气端通过气道与气体回收装置的回气端连接;气流速度测试仪的进线端通过气道与气体回收装置的出线端连接,气流速度测试仪的出线端通过气道与气体击穿电压试验台的进线端连接。A high-temperature gas medium breakdown voltage detection device, the AC voltage output ends are respectively connected with the input ends of the gas breakdown voltage test bench, and the output ends of the gas breakdown voltage test bench are respectively connected with the input ends of the AC arc striking electrodes; The voltage output terminals are respectively connected with the input terminals of the gas breakdown voltage test bench, and the output terminals of the gas breakdown voltage test bench are respectively connected with the input terminals of the test electrodes. Power supply; the input end of the electronic pressure sensor is connected to the gas breakdown voltage test bench, and the output end of the electronic pressure sensor is connected to the input end A of the multi-channel signal acquisition oscilloscope; the input end of the resistance-capacity voltage divider is connected to the gas breakdown voltage The voltage test bench is connected, and the output end of the resistance-capacitance voltage divider is connected to the input end B of the multi-channel signal acquisition oscilloscope; the gas temperature detection probe sensor is arranged between the AC arc striking electrode and the test electrode, and the output end of the gas temperature detection probe sensor Connect with the input end of the multi-channel signal acquisition oscilloscope; the gas outlet end of the gas recovery device is connected to the air inlet of the gas breakdown voltage test bench through the air channel, and the gas outlet end of the gas breakdown voltage test bench passes through the air channel and the return of the gas recovery device. The gas end is connected; the inlet end of the air velocity tester is connected to the outlet end of the gas recovery device through the air passage, and the outlet end of the air velocity tester is connected to the inlet end of the gas breakdown voltage test bench through the air passage.

所述交流电压输出端的XT1_INPUTT1和XT1_INPUTT2分别与气体击穿电压试验台的XT1_INPUTT1和XT1_INPUTT2的输入端电气连接,XT1_INPUTT1和XT1_INPUTT2的输出端分别与交流引弧电极的输入端电气连接,通过交流电压输出端对交流引弧电极进行供电。The XT1_INPUTT1 and XT1_INPUTT2 of the AC voltage output terminal are respectively electrically connected to the input terminals of XT1_INPUTT1 and XT1_INPUTT2 of the gas breakdown voltage test bench, and the output terminals of XT1_INPUTT1 and XT1_INPUTT2 are respectively electrically connected to the input terminal of the AC arc striking electrode, and the output terminal of the AC voltage is electrically connected to the input terminal of the AC arc striking electrode. Supply power to the AC ignition electrode.

所述直流电压输出端的XT2_INPUTT1和XT2_INPUTT2分别与气体击穿电压试验台的XT2_INPUTT1和XT2_INPUTT2的输入端电气连接,XT1_INPUTT1和XT1_INPUTT2的输出端分别与试验电极的输入端电气连接;通过C1电容器和C2电容器组成的动态击穿直流电源对试验电极进行供电。The XT2_INPUTT1 and XT2_INPUTT2 of the DC voltage output terminal are respectively electrically connected to the input terminals of XT2_INPUTT1 and XT2_INPUTT2 of the gas breakdown voltage test bench, and the output terminals of XT1_INPUTT1 and XT1_INPUTT2 are respectively electrically connected to the input terminal of the test electrode; composed of a C1 capacitor and a C2 capacitor The dynamic breakdown DC power supply powers the test electrodes.

所述电子式压力传感器的输入端与气体击穿电压试验台连接,电子式压力传感器的输出端与多通道信号采集示波器的输入端A连接,时刻检测气体击穿电压试验台内部的气体压力。The input end of the electronic pressure sensor is connected to the gas breakdown voltage test bench, the output end of the electronic pressure sensor is connected to the input end A of the multi-channel signal acquisition oscilloscope, and the gas pressure inside the gas breakdown voltage test bench is always detected.

所述阻容分压器的输入端与气体击穿电压试验台的XT2_INPUTT1连接,阻容分压器的输出端与多通道信号采集示波器输入端B连接,时刻检测气体击穿电压试验台的XT2_INPUTT1的动态电压变化。The input end of the resistance-capacitance voltage divider is connected to the XT2_INPUTT1 of the gas breakdown voltage test bench, and the output end of the resistance-capacity voltage divider is connected to the input end B of the multi-channel signal acquisition oscilloscope, and the XT2_INPUTT1 of the gas breakdown voltage test bench is always detected. dynamic voltage changes.

所述C1电容器为100kV/0.5uF;C2电容器为100kV/0.001uF。The C1 capacitor is 100kV/0.5uF; the C2 capacitor is 100kV/0.001uF.

所述R1限流电阻为100Ω;R3限流电阻为100Ω;R2调频电阻为1MΩ。The R1 current-limiting resistance is 100Ω; the R3 current-limiting resistance is 100Ω; and the R2 frequency modulation resistance is 1MΩ.

本实用新型的优点及效果是:The advantages and effects of the present utility model are:

1、结构简单,设计合理,可以准确检测不同气体在不同流速、不同压强、不同温度下的动态击穿电压值。1. The structure is simple and the design is reasonable, which can accurately detect the dynamic breakdown voltage value of different gases at different flow rates, different pressures and different temperatures.

2、试验系统稳定可靠,检测准确率高。2. The test system is stable and reliable, and the detection accuracy is high.

3、具有很好的气体加热效率,检测气体可回收。3. It has good gas heating efficiency, and the detected gas can be recovered.

4、检测结果是高电压与绝缘技术气体击穿电压数值计算的有效验证。4. The test result is an effective verification for the numerical calculation of gas breakdown voltage of high voltage and insulation technology.

5、实现了多维变量下击穿电压的测量,对分析气体绝缘性能及弧后介质恢复特性给予试验支持。5. Realize the measurement of breakdown voltage under multi-dimensional variables, and provide experimental support for the analysis of gas insulation performance and after-arc dielectric recovery characteristics.

6、该装置可以作为产品广泛生产,效益可观。6. The device can be widely produced as a product with considerable benefits.

附图说明Description of drawings

为了便于本领域普通技术人员理解和实施本实用新型,下面结合附图及具体实施方式对本实用新型作进一步的详细描述,但应当理解本实用新型的保护范围并不受具体实施方式的限制。In order to facilitate those skilled in the art to understand and implement the present utility model, the present utility model is further described in detail below with reference to the accompanying drawings and specific embodiments, but it should be understood that the protection scope of the present utility model is not limited by the specific embodiments.

图1是本实用新型电气系统部分结构示意图;Fig. 1 is the partial structural representation of the electrical system of the present utility model;

图2是本实用新型检测结构原理示意图;Fig. 2 is the schematic diagram of the detection structure principle of the present utility model;

图3是本实用新型实际测量的动态击穿电压曲线图。Fig. 3 is a dynamic breakdown voltage curve diagram actually measured by the utility model.

图中:工频升压变压器1;K1保护断路器2;R1限流电阻3;C1电容器4;C2电容器5;K3保护断路器6;R3限流电阻7;R2调频电阻8;K2控制开关9;直流电压输出端10;交流电压输出端11;多通道信号采集示波器12;气体回收装置13;气体击穿电压试验台14;电子式压力传感器15;气道16;气流速度测试仪17;交流引弧电极18;试验电极19;气体温度检测探针传感器20;阻容分压器21。In the figure: power frequency step-up transformer 1; K1 protection circuit breaker 2; R1 current limiting resistor 3; C1 capacitor 4; C2 capacitor 5; K3 protection circuit breaker 6; R3 current limiting resistor 7; R2 frequency modulation resistor 8; K2 control switch 9; DC voltage output terminal 10; AC voltage output terminal 11; multi-channel signal acquisition oscilloscope 12; gas recovery device 13; gas breakdown voltage test bench 14; electronic pressure sensor 15; AC arc ignition electrode 18 ; test electrode 19 ; gas temperature detection probe sensor 20 ;

具体实施方式Detailed ways

本实用新型是一种高温气体介质击穿电压检测装置,如图1所示,图1是本实用新型电气系统部分结构示意图。它包括工频升压变压器1、具备快速充放电功能的C1电容器4和C2电容器5、气体回收装置13、气体击穿电压试验台14、电子式压力传感器15、气流速度测试仪17、气体温度检测探针传感器20、多通道信号采集示波器12和阻容分压器21。The utility model is a high-temperature gas dielectric breakdown voltage detection device, as shown in FIG. It includes a power frequency step-up transformer 1, a C1 capacitor 4 and a C2 capacitor 5 with fast charging and discharging functions, a gas recovery device 13, a gas breakdown voltage test bench 14, an electronic pressure sensor 15, an air velocity tester 17, and a gas temperature Detection probe sensor 20 , multi-channel signal acquisition oscilloscope 12 and resistance-capacitance voltage divider 21 .

如图2所示,图2是本实用新型检测结构原理示意图,本实用新型一种高温气体介质击穿电压检测装置在检测时的具体连接方式如下:As shown in FIG. 2, FIG. 2 is a schematic diagram of the detection structure principle of the present invention. The specific connection mode of a high-temperature gas medium breakdown voltage detection device of the present invention during detection is as follows:

a.将图1中交流电压输出端11的XT1_INPUTT1和XT1_INPUTT2分别与图2中气体击穿电压试验台14的XT1_INPUTT1和XT1_INPUTT2的输入端进行电气连接,气体击穿电压试验台14的XT1_INPUTT1和XT1_INPUTT2的输出端分别与交流引弧电极18的输入端进行电气连接。通过交流电压输出端对交流引弧电极18进行供电,当引弧电极间被击穿产生电弧后,电弧能量对气体击穿电压试验平台内的气体介质进行加热。a. Connect the XT1_INPUTT1 and XT1_INPUTT2 of the AC voltage output terminal 11 in FIG. 1 to the input terminals of XT1_INPUTT1 and XT1_INPUTT2 of the gas breakdown voltage test bench 14 in FIG. The output ends are respectively electrically connected to the input ends of the AC arc striking electrodes 18 . The AC arc-striking electrode 18 is powered through the AC voltage output terminal. When the arc-striking electrodes are broken down to generate an arc, the arc energy heats the gas medium in the gas breakdown voltage test platform.

b.将图1中直流电压输出端10的XT2_INPUTT1和XT2_INPUTT2分别与图2中气体击穿电压试验台14的XT2_INPUTT1和XT2_INPUTT2的输入端进行电气连接,气体击穿电压试验台14的XT1_INPUTT1和XT1_INPUTT2的输出端分别与试验电极19的输入端进行电气连接。通过C1电容器4和C2电容器5组成的动态击穿直流电源对试验电极进行供电,当高温高速的气体介质流过试验电极间发生动态击穿时,检测试验击穿电压。b. Electrically connect XT2_INPUTT1 and XT2_INPUTT2 of DC voltage output terminal 10 in FIG. 1 to the input terminals of XT2_INPUTT1 and XT2_INPUTT2 of gas breakdown voltage test bench 14 in FIG. The output terminals are respectively electrically connected to the input terminals of the test electrodes 19 . The test electrode is powered by the dynamic breakdown DC power supply composed of C1 capacitor 4 and C2 capacitor 5. When dynamic breakdown occurs when the high temperature and high speed gas medium flows between the test electrodes, the test breakdown voltage is detected.

c.图2中电子式压力传感器15的输入端与气体击穿电压试验台14连接,电子式压力传感器15的输出端与多通道信号采集示波器12的输入端A连接,时刻检测气体击穿电压试验台14内部的气体压力。c. In FIG. 2, the input end of the electronic pressure sensor 15 is connected to the gas breakdown voltage test bench 14, and the output end of the electronic pressure sensor 15 is connected to the input end A of the multi-channel signal acquisition oscilloscope 12 to detect the gas breakdown voltage at all times. Gas pressure inside the test stand 14 .

d.图2中阻容分压器21的输入端与气体击穿电压试验台14的XT2_INPUTT1连接,阻容分压器21的输出端与多通道信号采集示波器12输入端B连接,时刻检测气体击穿电压试验台14的XT2_INPUTT1的动态电压变化。d. In Figure 2, the input end of the RC divider 21 is connected to XT2_INPUTT1 of the gas breakdown voltage test bench 14, and the output end of the RC divider 21 is connected to the input end B of the multi-channel signal acquisition oscilloscope 12 to detect gas at all times The dynamic voltage change of XT2_INPUTT1 of the breakdown voltage test bench 14 .

e.图2中气体温度检测探针传感器20布置于交流引弧电极18与试验电极19中间位置,气体温度检测探针传感器20的输出端与多通道信号采集示波器12输入端3连接,时刻检测交流引弧电极18中流出的高温气体介质温度。e. In FIG. 2, the gas temperature detection probe sensor 20 is arranged in the middle of the AC arc striking electrode 18 and the test electrode 19. The output end of the gas temperature detection probe sensor 20 is connected to the input end 3 of the multi-channel signal acquisition oscilloscope 12, and the detection is performed at all times. The temperature of the high temperature gas medium flowing out of the AC arc ignition electrode 18 .

f.图2中气体回收装置13的出气端通过气道16与气体击穿电压试验台14的进气口连接,气体击穿电压试验台14的出气端通过气道与气体回收装置13的回气端连接,气流速度测试仪17进线端通过气道与气体回收装置13的出线端连接,气流速度测试仪17出线端通过气道与气体击穿电压试验台14的进线端连接,时刻检测流入气体击穿电压试验台14中的气流速度。f. In FIG. 2, the gas outlet end of the gas recovery device 13 is connected to the air inlet of the gas breakdown voltage test bench 14 through the gas channel 16, and the gas outlet end of the gas breakdown voltage test bench 14 passes through the air channel and returns to the gas recovery device 13. The gas end is connected, the inlet end of the air velocity tester 17 is connected to the outlet end of the gas recovery device 13 through the air passage, and the outlet end of the air velocity tester 17 is connected to the inlet end of the gas breakdown voltage test bench 14 through the air passage. The velocity of the gas flow into the gas breakdown voltage test stand 14 was detected.

g.C1电容器4为100kV/0.5uF;C2电容器5为100kV/0.001uF;R1限流电阻3为100Ω;R3限流电阻7为100Ω;R2调频电阻8为1MΩ。g. C1 capacitor 4 is 100kV/0.5uF; C2 capacitor 5 is 100kV/0.001uF; R1 current limiting resistor 3 is 100Ω; R3 current limiting resistor 7 is 100Ω; R2 frequency modulation resistor 8 is 1MΩ.

利用本实用新型一种高温气体介质击穿电压检测装置进行检测的操作过程,包括以下步骤:The operation process of using the high-temperature gas medium breakdown voltage detection device of the present utility model for detection includes the following steps:

步骤1.首先确定K1保护断路器2、K2控制开关9和K3保护断路器6处于断开状态。Step 1. First, make sure that the K1 protection circuit breaker 2, the K2 control switch 9 and the K3 protection circuit breaker 6 are in the disconnected state.

步骤2.调整交流引弧电极18和试验电极19的间距,极间距值根据气体压强及属性确定。Step 2. Adjust the distance between the AC arc striking electrode 18 and the test electrode 19. The value of the electrode distance is determined according to the gas pressure and properties.

步骤3.通过气体回收装置13对气体击穿电压试验台14进行充气,调整气体压强为预先设定值。Step 3. Inflate the gas breakdown voltage test bench 14 through the gas recovery device 13, and adjust the gas pressure to a preset value.

步骤4.关合K1保护断路器2,工频升压变压器1升压至C1电容器4和C2电容器5的额定电压,之后断开K1保护断路器2,工频升压变压器1电压归零。Step 4. Close the K1 protection circuit breaker 2, the power frequency step-up transformer 1 boosts the voltage to the rated voltage of the C1 capacitor 4 and the C2 capacitor 5, then open the K1 protection circuit breaker 2, and the power frequency step-up transformer 1 voltage returns to zero.

步骤5.关合K3保护断路器6,通过气体回收装置13调整通过交流引弧电极18与试验电极19气流的速度,应用气流速度测试仪17记录初始气流速度值。Step 5. Close the K3 protection circuit breaker 6, adjust the speed of the airflow through the AC arc ignition electrode 18 and the test electrode 19 through the gas recovery device 13, and use the airflow velocity tester 17 to record the initial airflow velocity value.

步骤6.打开气流速度测试仪17,时刻记录试验电极19两端电压及气体击穿电压试验台14内气体压强及温度值。Step 6. Turn on the airflow velocity tester 17, and record the voltage across the test electrode 19 and the gas pressure and temperature values in the test bench 14 at all times.

步骤7.工频升压变压器1升压至交流引弧电极18间燃弧,并维持电弧燃烧,通过气体温度检测探针传感器20检测流出交流引弧电极18气流的温度。Step 7. The power frequency step-up transformer 1 boosts the voltage between the AC arc-striking electrodes 18 for arcing, and maintains the arc combustion. The gas temperature detection probe sensor 20 detects the temperature of the airflow flowing out of the AC arc-striking electrodes 18 .

步骤8.当高速高温气流通过试验电极19后,在C2电容器5两端电压作用下,试验电极19击穿,C2电容器5放电,放电完成后,试验电极电弧熄灭,通过阻容分压器21记录第一次击穿电压值。Step 8. When the high-speed and high-temperature airflow passes through the test electrode 19, under the action of the voltage across the C2 capacitor 5, the test electrode 19 breaks down, and the C2 capacitor 5 discharges. Record the first breakdown voltage value.

步骤9.C2电容器5放电完成后,C1电容器4通过R2调频电阻8对C2电容器5进行快速充电,当C2电容器5的电压升至试验电极19间介质击穿电压时,试验电极19再次被击穿,记录第二次击穿电压值。依次反复,试验电极19间介质出现动态击穿过程,试验持续1s,结束试验,记录多次击穿电压值,取算数平均根值为最终击穿电压值。Step 9. After the discharge of the C2 capacitor 5 is completed, the C1 capacitor 4 rapidly charges the C2 capacitor 5 through the R2 frequency modulation resistor 8. When the voltage of the C2 capacitor 5 rises to the dielectric breakdown voltage between the test electrodes 19, the test electrode 19 is struck again. Break through, record the second breakdown voltage value. Repeatedly in sequence, the medium between the test electrodes 19 appeared dynamic breakdown process, the test lasted for 1s, ended the test, recorded multiple breakdown voltage values, and took the arithmetic mean root value as the final breakdown voltage value.

步骤10.整理试验数据,根据多通道信号采集示波器12和气流速度测试仪17记录的气流温度、气体压强、气流速度、击穿电压值,给出多维状态下的气体击穿电压值,如表1所示。Step 10. Arrange the test data, and according to the multi-channel signal acquisition oscilloscope 12 and the airflow velocity tester 17 recorded airflow temperature, gas pressure, airflow velocity, breakdown voltage value, give the gas breakdown voltage value in the multi-dimensional state, as shown in the table 1 shown.

步骤11.依次调整试验电极19的极间距值,每次调整后重复试验步骤1-步骤10,记录不同试验电极间距下的高速高温气体击穿电压值。Step 11. Adjust the electrode spacing values of the test electrodes 19 in sequence, repeat the test steps 1-10 after each adjustment, and record the high-speed high-temperature gas breakdown voltage values under different test electrode spacings.

步骤12.依次调整气体压强,每次调整后重复试验步骤1-步骤10,记录不同气体压强下的高速高温气体击穿电压值。Step 12. Adjust the gas pressure in sequence, repeat the test steps 1-10 after each adjustment, and record the breakdown voltage values of the high-speed and high-temperature gas under different gas pressures.

步骤13.依次调整流过试验电极19的气流速度,每次调整后重复试验步骤1-步骤10,记录不同气流速度下的高速高温气体击穿电压值。Step 13. Sequentially adjust the gas flow rate flowing through the test electrode 19, repeat the test steps 1-10 after each adjustment, and record the breakdown voltage values of high-speed and high-temperature gas under different gas flow rates.

步骤14.依次调整交流引弧电极18的电弧电流,通过调整电弧能量,调整流过试验电极19极间气流温度,每次调整后重复试验步骤1-步骤10,记录不同气流温度下的高速高温气体击穿电压值。Step 14. Adjust the arc current of the AC arc striking electrode 18 in turn, adjust the temperature of the air flow between the electrodes of the test electrode 19 by adjusting the arc energy, repeat the test steps 1-10 after each adjustment, and record the high speed and high temperature under different airflow temperatures Gas breakdown voltage value.

步骤15.通过以上多次更改试验变量,给出多维状态下气体击穿特性曲线。Step 15. By changing the test variables several times above, the gas breakdown characteristic curve in the multi-dimensional state is given.

如图3所示,图3是本实用新型实际测量的动态击穿电压曲线图。As shown in FIG. 3 , FIG. 3 is a graph of the dynamic breakdown voltage actually measured by the utility model.

表1试验结果汇总Table 1 Summary of test results

气体属性gas properties 极间距Pole spacing 压强pressure 温度temperature 气流速度Air velocity 击穿电压breakdown voltage SF6SF6 10mm10mm 0.1MPa0.1MPa 5000K5000K 2m/s2m/s 3.6kV3.6kV

Claims (8)

1.一种高温气体介质击穿电压检测装置,其特征是:交流电压输出端分别与气体击穿电压试验台的输入端连接,气体击穿电压试验台的输出端分别与交流引弧电极的输入端连接;直流电压输出端分别与气体击穿电压试验台的输入端连接,气体击穿电压试验台的输出端分别与试验电极的输入端连接;通过C1电容器和C2电容器组成的动态击穿直流电源对试验电极进行供电;电子式压力传感器的输入端与气体击穿电压试验台连接,电子式压力传感器的输出端与多通道信号采集示波器的输入端A连接;阻容分压器的输入端与气体击穿电压试验台连接,阻容分压器的输出端与多通道信号采集示波器输入端B连接;气体温度检测探针传感器布置于交流引弧电极与试验电极中间,气体温度检测探针传感器的输出端与多通道信号采集示波器输入端连接;气体回收装置的出气端通过气道与气体击穿电压试验台的进气口连接,气体击穿电压试验台的出气端通过气道与气体回收装置的回气端连接;气流速度测试仪的进线端通过气道与气体回收装置的出线端连接,气流速度测试仪的出线端通过气道与气体击穿电压试验台的进线端连接。1. a high temperature gas medium breakdown voltage detection device, it is characterized in that: the alternating voltage output end is connected with the input end of the gas breakdown voltage test stand respectively, and the output end of the gas breakdown voltage test stand is respectively connected with the The input end is connected; the DC voltage output end is respectively connected with the input end of the gas breakdown voltage test bench, and the output end of the gas breakdown voltage test bench is respectively connected with the input end of the test electrode; the dynamic breakdown through the C1 capacitor and the C2 capacitor The DC power supply supplies power to the test electrodes; the input end of the electronic pressure sensor is connected to the gas breakdown voltage test bench, and the output end of the electronic pressure sensor is connected to the input end A of the multi-channel signal acquisition oscilloscope; the input end of the resistance-capacitance voltage divider is connected The terminal is connected to the gas breakdown voltage test bench, and the output terminal of the resistance-capacitance voltage divider is connected to the input terminal B of the multi-channel signal acquisition oscilloscope; the gas temperature detection probe sensor is arranged between the AC arc striking electrode and the test electrode, and the gas temperature detection probe The output end of the needle sensor is connected to the input end of the multi-channel signal acquisition oscilloscope; the gas outlet end of the gas recovery device is connected to the air inlet of the gas breakdown voltage test bench through the air channel, and the gas outlet end of the gas breakdown voltage test bench is connected to the gas breakdown voltage test bench through the air channel. The return end of the gas recovery device is connected; the inlet end of the air velocity tester is connected to the outlet end of the gas recovery device through the air passage, and the outlet end of the air velocity tester is connected to the inlet end of the gas breakdown voltage test bench through the air passage connect. 2.根据权利要求1所述的一种高温气体介质击穿电压检测装置,其特征是:所述交流电压输出端的XT1_INPUTT1和XT1_INPUTT2分别与气体击穿电压试验台的XT1_INPUTT1和XT1_INPUTT2的输入端电气连接,XT1_INPUTT1和XT1_INPUTT2的输出端分别与交流引弧电极的输入端电气连接,通过交流电压输出端对交流引弧电极进行供电。2. A high-temperature gas dielectric breakdown voltage detection device according to claim 1, wherein the XT1_INPUTT1 and XT1_INPUTT2 of the AC voltage output terminal are respectively electrically connected to the input terminals of the XT1_INPUTT1 and XT1_INPUTT2 of the gas breakdown voltage test bench , the output terminals of XT1_INPUTT1 and XT1_INPUTT2 are respectively electrically connected with the input terminal of the AC arc striking electrode, and the AC arc striking electrode is powered by the AC voltage output terminal. 3.根据权利要求1所述的一种高温气体介质击穿电压检测装置,其特征是:所述直流电压输出端的XT2_INPUTT1和XT2_INPUTT2分别与气体击穿电压试验台的XT2_INPUTT1和XT2_INPUTT2的输入端电气连接,XT1_INPUTT1和XT1_INPUTT2的输出端分别与试验电极的输入端电气连接;通过C1电容器和C2电容器组成的动态击穿直流电源对试验电极进行供电。3. A high-temperature gas dielectric breakdown voltage detection device according to claim 1, wherein the XT2_INPUTT1 and XT2_INPUTT2 of the DC voltage output terminal are respectively electrically connected to the input terminals of the XT2_INPUTT1 and XT2_INPUTT2 of the gas breakdown voltage test bench , the output terminals of XT1_INPUTT1 and XT1_INPUTT2 are respectively electrically connected with the input terminal of the test electrode; the test electrode is powered by the dynamic breakdown DC power supply composed of the C1 capacitor and the C2 capacitor. 4.根据权利要求1所述的一种高温气体介质击穿电压检测装置,其特征是:所述电子式压力传感器的输入端与气体击穿电压试验台连接,电子式压力传感器的输出端与多通道信号采集示波器的输入端A连接,时刻检测气体击穿电压试验台内部的气体压力。4. A high-temperature gas medium breakdown voltage detection device according to claim 1, wherein the input end of the electronic pressure sensor is connected to the gas breakdown voltage test bench, and the output end of the electronic pressure sensor is connected to the gas breakdown voltage test bench. The input terminal A of the multi-channel signal acquisition oscilloscope is connected to detect the gas pressure inside the gas breakdown voltage test bench at all times. 5.根据权利要求1所述的一种高温气体介质击穿电压检测装置,其特征是:所述阻容分压器的输入端与气体击穿电压试验台的XT2_INPUTT1连接,阻容分压器的输出端与多通道信号采集示波器输入端B连接,时刻检测气体击穿电压试验台的XT2_INPUTT1的动态电压变化。5. a kind of high temperature gas dielectric breakdown voltage detection device according to claim 1 is characterized in that: the input end of described resistance-capacitance voltage divider is connected with XT2_INPUTT1 of gas breakdown voltage test bench, and the resistance-capacitance voltage divider The output end of the oscilloscope is connected to the input end B of the multi-channel signal acquisition oscilloscope, and the dynamic voltage change of XT2_INPUTT1 of the gas breakdown voltage test bench is always detected. 6.根据权利要求1所述的一种高温气体介质击穿电压检测装置,其特征是:所述气体温度检测探针传感器时刻检测交流引弧电极中流出的高温气体介质温度。6 . The high-temperature gas medium breakdown voltage detection device according to claim 1 , wherein the gas temperature detection probe sensor constantly detects the temperature of the high-temperature gas medium flowing out of the AC arc ignition electrode. 7 . 7.根据权利要求1所述的一种高温气体介质击穿电压检测装置,其特征是:所述气流速度测试仪时刻检测流入气体击穿电压试验台(14)中的气流速度。7 . The device for detecting the breakdown voltage of a high temperature gas medium according to claim 1 , wherein the airflow velocity tester detects the velocity of the airflow flowing into the gas breakdown voltage test bench ( 14 ) at all times. 8 . 8.根据权利要求1所述的一种高温气体介质击穿电压检测装置,其特征是:所述C1电容器为100kV/0.5uF;C2电容器为100kV/0.001uF。8 . The high-temperature gas dielectric breakdown voltage detection device according to claim 1 , wherein the C1 capacitor is 100kV/0.5uF; the C2 capacitor is 100kV/0.001uF. 9 .
CN201921568371.4U 2019-09-20 2019-09-20 High-temperature gas dielectric breakdown voltage detection device Active CN211718436U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921568371.4U CN211718436U (en) 2019-09-20 2019-09-20 High-temperature gas dielectric breakdown voltage detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921568371.4U CN211718436U (en) 2019-09-20 2019-09-20 High-temperature gas dielectric breakdown voltage detection device

Publications (1)

Publication Number Publication Date
CN211718436U true CN211718436U (en) 2020-10-20

Family

ID=72813301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921568371.4U Active CN211718436U (en) 2019-09-20 2019-09-20 High-temperature gas dielectric breakdown voltage detection device

Country Status (1)

Country Link
CN (1) CN211718436U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672990A (en) * 2019-09-20 2020-01-10 国网辽宁省电力有限公司电力科学研究院 High-temperature gas dielectric breakdown voltage detection device and method
CN112485614A (en) * 2020-11-23 2021-03-12 国网北京市电力公司 Voltage withstand test method and device for cable insulating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672990A (en) * 2019-09-20 2020-01-10 国网辽宁省电力有限公司电力科学研究院 High-temperature gas dielectric breakdown voltage detection device and method
CN110672990B (en) * 2019-09-20 2024-04-19 国网辽宁省电力有限公司电力科学研究院 A high temperature gas dielectric breakdown voltage detection device and method
CN112485614A (en) * 2020-11-23 2021-03-12 国网北京市电力公司 Voltage withstand test method and device for cable insulating material

Similar Documents

Publication Publication Date Title
CN109254242B (en) Ablation test loop and method for testing ablation state of arc contact of circuit breaker
CN107797034A (en) The detection means and method of dielectric recovery property after a kind of high-voltage sf6 circuit breaker arc
CN103048595B (en) A kind of thyristor opens stress test method and device
CN211718436U (en) High-temperature gas dielectric breakdown voltage detection device
CN103400019B (en) AC fault electric arc emulation mode based on Matlab/Simulink
CN108919073B (en) Device and method for measuring insulator surface flashover discharge energy
CN101598757A (en) A controllable metal oxide arrester residual voltage test circuit and method
CN103823098A (en) Pre-discharge current detection device
CN205229344U (en) Series Arc Fault Detection Circuit
CN105403790A (en) series arc fault detection circuit and method
CN106885976B (en) Electric field-sensitive type insulating materials static properties test device and system
Li et al. Series Arc fault studies and modeling for a DC distribution system
CN110672990B (en) A high temperature gas dielectric breakdown voltage detection device and method
CN110514955B (en) A method for locating single-phase intermittent arc grounding faults in small-current grounded power grids
CN104931849B (en) A method for distance measurement of arc-flash ground faults in power supply lines
CN107355817A (en) A kind of low energy single electric spark production method
CN111521964A (en) Electromagnetic Field Test Platform for Simulating Event Disturbance in Power Grid
CN110514976A (en) A GIS insulation defect monitoring device, system and detection method
CN203572917U (en) Sulfur hexafluoride decomposition experiment system
CN104714172A (en) Direct current arc generating device
CN201307152Y (en) Aging test device of movable vacuum breaker
CN104007360A (en) Alternating current testing device and method for phase-controllable on-off capacitor inner fuse wire
CN112415355B (en) Method and circuit for evaluating blocking state of thyristor of high-voltage converter valve
CN111044810A (en) A simulation test method for the effect of ground fault handling device protection against lightning strike and disconnection
CN107607787B (en) Loop resistance detection system and method based on supercapacitor group

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant