CN211718436U - High-temperature gas dielectric breakdown voltage detection device - Google Patents
High-temperature gas dielectric breakdown voltage detection device Download PDFInfo
- Publication number
- CN211718436U CN211718436U CN201921568371.4U CN201921568371U CN211718436U CN 211718436 U CN211718436 U CN 211718436U CN 201921568371 U CN201921568371 U CN 201921568371U CN 211718436 U CN211718436 U CN 211718436U
- Authority
- CN
- China
- Prior art keywords
- gas
- breakdown voltage
- test bench
- input end
- voltage test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Testing Relating To Insulation (AREA)
Abstract
本实用新型属于电气工程领域,尤其涉及一种高温气体介质击穿电压检测装置。由交流电压输出端与气体击穿电压试验台连接,气体击穿电压试验台输出端与交流引弧电极输入端连接;直流电压输出端与气体击穿电压试验台输入端连接,气体击穿电压试验台输出端与试验电极输入端连接;电子式压力传感器输入端与气体击穿电压试验台连接,电子式压力传感器输出端与多通道信号采集示波器输入端A连接;阻容分压器输入端与气体击穿电压试验台连接,阻容分压器输出端与多通道信号采集示波器输入端B连接;气体温度检测探针传感器布置于交流引弧电极与试验电极中间。本实用新型可以检测不同气体在不同流速、不同压强、不同温度下的动态击穿电压值,检测准确率高。
The utility model belongs to the field of electrical engineering, in particular to a high temperature gas medium breakdown voltage detection device. The AC voltage output terminal is connected with the gas breakdown voltage test bench, the gas breakdown voltage test bench output terminal is connected with the AC arc striking electrode input terminal; the DC voltage output terminal is connected with the gas breakdown voltage test bench input terminal, and the gas breakdown voltage The output end of the test bench is connected to the input end of the test electrode; the input end of the electronic pressure sensor is connected to the gas breakdown voltage test bench, the output end of the electronic pressure sensor is connected to the input end A of the multi-channel signal acquisition oscilloscope; the input end of the resistance-capacity voltage divider It is connected to the gas breakdown voltage test bench, and the output end of the resistance-capacitance voltage divider is connected to the input end B of the multi-channel signal acquisition oscilloscope; the gas temperature detection probe sensor is arranged between the AC arc striking electrode and the test electrode. The utility model can detect the dynamic breakdown voltage values of different gases under different flow rates, different pressures and different temperatures, and the detection accuracy is high.
Description
技术领域technical field
本实用新型属于电气工程领域,尤其涉及一种高温气体介质击穿电压检测装置,具体是一种高压气体断路器弧后介质绝缘特性检测的装置。The utility model belongs to the field of electrical engineering, in particular to a device for detecting the breakdown voltage of a high-temperature gas medium, in particular to a device for detecting the dielectric insulation characteristics of a high-voltage gas circuit breaker after the arc.
背景技术Background technique
气体绝缘是普遍应用在电力系统GIS、GIL及断路器等电力设备中,绝缘气体随着温度的升高,绝缘性能会逐渐下降,特别是断路器在开断电弧熄灭后,电弧残余能量会保持断口间气体绝缘介质在很高的温度范围内,如果弧后介质恢复速度低于触头间电压恢复速度,极易产生弧后重击穿。如何检测高温气体的绝缘特性,已成为保证气体绝缘设备弧后绝缘水平的关键技术问题。因此,急需一种可操作性强,检测准确的装置及方法对高温气体介质击穿电压进行检测。Gas insulation is widely used in power systems such as GIS, GIL and circuit breakers. As the temperature of insulating gas increases, the insulation performance will gradually decrease, especially after the circuit breaker is switched off and the arc is extinguished, the residual energy of the arc will be reduced. Keep the gas insulating medium between the fractures in a very high temperature range. If the recovery speed of the medium after the arc is lower than the recovery speed of the voltage between the contacts, it is very easy to produce a heavy breakdown after the arc. How to detect the insulating properties of high-temperature gas has become a key technical issue to ensure the insulation level of gas-insulated equipment after arc arc. Therefore, there is an urgent need for a device and method with strong operability and accurate detection to detect the breakdown voltage of a high temperature gas medium.
发明内容SUMMARY OF THE INVENTION
本实用新型针对上述现有技术中存在的问题,提供了一种高温气体介质击穿电压检测装置及方法,是基于外接电源的绝缘气体加热及电压检测装置。目的是为了解决以往的检测预期绝缘气体高温状态下击穿电压测量等方面存在的问题。Aiming at the above-mentioned problems in the prior art, the utility model provides a high temperature gas dielectric breakdown voltage detection device and method, which is an insulating gas heating and voltage detection device based on an external power supply. The purpose is to solve the problems existing in the previous detection of the breakdown voltage measurement under the high temperature state of the expected insulating gas.
本实用新型解决其技术问题所采用的技术方案是:The technical scheme adopted by the utility model to solve its technical problems is:
一种高温气体介质击穿电压检测装置,由交流电压输出端分别与气体击穿电压试验台的输入端连接,气体击穿电压试验台的输出端分别与交流引弧电极的输入端连接;直流电压输出端分别与气体击穿电压试验台的输入端连接,气体击穿电压试验台的输出端分别与试验电极的输入端连接;通过C1电容器和C2电容器组成的动态击穿直流电源对试验电极进行供电;电子式压力传感器的输入端与气体击穿电压试验台连接,电子式压力传感器的输出端与多通道信号采集示波器的输入端A连接;阻容分压器的输入端与气体击穿电压试验台连接,阻容分压器的输出端与多通道信号采集示波器输入端B连接;气体温度检测探针传感器布置于交流引弧电极与试验电极中间,气体温度检测探针传感器的输出端与多通道信号采集示波器输入端连接;气体回收装置的出气端通过气道与气体击穿电压试验台的进气口连接,气体击穿电压试验台的出气端通过气道与气体回收装置的回气端连接;气流速度测试仪的进线端通过气道与气体回收装置的出线端连接,气流速度测试仪的出线端通过气道与气体击穿电压试验台的进线端连接。A high-temperature gas medium breakdown voltage detection device, the AC voltage output ends are respectively connected with the input ends of the gas breakdown voltage test bench, and the output ends of the gas breakdown voltage test bench are respectively connected with the input ends of the AC arc striking electrodes; The voltage output terminals are respectively connected with the input terminals of the gas breakdown voltage test bench, and the output terminals of the gas breakdown voltage test bench are respectively connected with the input terminals of the test electrodes. Power supply; the input end of the electronic pressure sensor is connected to the gas breakdown voltage test bench, and the output end of the electronic pressure sensor is connected to the input end A of the multi-channel signal acquisition oscilloscope; the input end of the resistance-capacity voltage divider is connected to the gas breakdown voltage The voltage test bench is connected, and the output end of the resistance-capacitance voltage divider is connected to the input end B of the multi-channel signal acquisition oscilloscope; the gas temperature detection probe sensor is arranged between the AC arc striking electrode and the test electrode, and the output end of the gas temperature detection probe sensor Connect with the input end of the multi-channel signal acquisition oscilloscope; the gas outlet end of the gas recovery device is connected to the air inlet of the gas breakdown voltage test bench through the air channel, and the gas outlet end of the gas breakdown voltage test bench passes through the air channel and the return of the gas recovery device. The gas end is connected; the inlet end of the air velocity tester is connected to the outlet end of the gas recovery device through the air passage, and the outlet end of the air velocity tester is connected to the inlet end of the gas breakdown voltage test bench through the air passage.
所述交流电压输出端的XT1_INPUTT1和XT1_INPUTT2分别与气体击穿电压试验台的XT1_INPUTT1和XT1_INPUTT2的输入端电气连接,XT1_INPUTT1和XT1_INPUTT2的输出端分别与交流引弧电极的输入端电气连接,通过交流电压输出端对交流引弧电极进行供电。The XT1_INPUTT1 and XT1_INPUTT2 of the AC voltage output terminal are respectively electrically connected to the input terminals of XT1_INPUTT1 and XT1_INPUTT2 of the gas breakdown voltage test bench, and the output terminals of XT1_INPUTT1 and XT1_INPUTT2 are respectively electrically connected to the input terminal of the AC arc striking electrode, and the output terminal of the AC voltage is electrically connected to the input terminal of the AC arc striking electrode. Supply power to the AC ignition electrode.
所述直流电压输出端的XT2_INPUTT1和XT2_INPUTT2分别与气体击穿电压试验台的XT2_INPUTT1和XT2_INPUTT2的输入端电气连接,XT1_INPUTT1和XT1_INPUTT2的输出端分别与试验电极的输入端电气连接;通过C1电容器和C2电容器组成的动态击穿直流电源对试验电极进行供电。The XT2_INPUTT1 and XT2_INPUTT2 of the DC voltage output terminal are respectively electrically connected to the input terminals of XT2_INPUTT1 and XT2_INPUTT2 of the gas breakdown voltage test bench, and the output terminals of XT1_INPUTT1 and XT1_INPUTT2 are respectively electrically connected to the input terminal of the test electrode; composed of a C1 capacitor and a C2 capacitor The dynamic breakdown DC power supply powers the test electrodes.
所述电子式压力传感器的输入端与气体击穿电压试验台连接,电子式压力传感器的输出端与多通道信号采集示波器的输入端A连接,时刻检测气体击穿电压试验台内部的气体压力。The input end of the electronic pressure sensor is connected to the gas breakdown voltage test bench, the output end of the electronic pressure sensor is connected to the input end A of the multi-channel signal acquisition oscilloscope, and the gas pressure inside the gas breakdown voltage test bench is always detected.
所述阻容分压器的输入端与气体击穿电压试验台的XT2_INPUTT1连接,阻容分压器的输出端与多通道信号采集示波器输入端B连接,时刻检测气体击穿电压试验台的XT2_INPUTT1的动态电压变化。The input end of the resistance-capacitance voltage divider is connected to the XT2_INPUTT1 of the gas breakdown voltage test bench, and the output end of the resistance-capacity voltage divider is connected to the input end B of the multi-channel signal acquisition oscilloscope, and the XT2_INPUTT1 of the gas breakdown voltage test bench is always detected. dynamic voltage changes.
所述C1电容器为100kV/0.5uF;C2电容器为100kV/0.001uF。The C1 capacitor is 100kV/0.5uF; the C2 capacitor is 100kV/0.001uF.
所述R1限流电阻为100Ω;R3限流电阻为100Ω;R2调频电阻为1MΩ。The R1 current-limiting resistance is 100Ω; the R3 current-limiting resistance is 100Ω; and the R2 frequency modulation resistance is 1MΩ.
本实用新型的优点及效果是:The advantages and effects of the present utility model are:
1、结构简单,设计合理,可以准确检测不同气体在不同流速、不同压强、不同温度下的动态击穿电压值。1. The structure is simple and the design is reasonable, which can accurately detect the dynamic breakdown voltage value of different gases at different flow rates, different pressures and different temperatures.
2、试验系统稳定可靠,检测准确率高。2. The test system is stable and reliable, and the detection accuracy is high.
3、具有很好的气体加热效率,检测气体可回收。3. It has good gas heating efficiency, and the detected gas can be recovered.
4、检测结果是高电压与绝缘技术气体击穿电压数值计算的有效验证。4. The test result is an effective verification for the numerical calculation of gas breakdown voltage of high voltage and insulation technology.
5、实现了多维变量下击穿电压的测量,对分析气体绝缘性能及弧后介质恢复特性给予试验支持。5. Realize the measurement of breakdown voltage under multi-dimensional variables, and provide experimental support for the analysis of gas insulation performance and after-arc dielectric recovery characteristics.
6、该装置可以作为产品广泛生产,效益可观。6. The device can be widely produced as a product with considerable benefits.
附图说明Description of drawings
为了便于本领域普通技术人员理解和实施本实用新型,下面结合附图及具体实施方式对本实用新型作进一步的详细描述,但应当理解本实用新型的保护范围并不受具体实施方式的限制。In order to facilitate those skilled in the art to understand and implement the present utility model, the present utility model is further described in detail below with reference to the accompanying drawings and specific embodiments, but it should be understood that the protection scope of the present utility model is not limited by the specific embodiments.
图1是本实用新型电气系统部分结构示意图;Fig. 1 is the partial structural representation of the electrical system of the present utility model;
图2是本实用新型检测结构原理示意图;Fig. 2 is the schematic diagram of the detection structure principle of the present utility model;
图3是本实用新型实际测量的动态击穿电压曲线图。Fig. 3 is a dynamic breakdown voltage curve diagram actually measured by the utility model.
图中:工频升压变压器1;K1保护断路器2;R1限流电阻3;C1电容器4;C2电容器5;K3保护断路器6;R3限流电阻7;R2调频电阻8;K2控制开关9;直流电压输出端10;交流电压输出端11;多通道信号采集示波器12;气体回收装置13;气体击穿电压试验台14;电子式压力传感器15;气道16;气流速度测试仪17;交流引弧电极18;试验电极19;气体温度检测探针传感器20;阻容分压器21。In the figure: power frequency step-up transformer 1; K1
具体实施方式Detailed ways
本实用新型是一种高温气体介质击穿电压检测装置,如图1所示,图1是本实用新型电气系统部分结构示意图。它包括工频升压变压器1、具备快速充放电功能的C1电容器4和C2电容器5、气体回收装置13、气体击穿电压试验台14、电子式压力传感器15、气流速度测试仪17、气体温度检测探针传感器20、多通道信号采集示波器12和阻容分压器21。The utility model is a high-temperature gas dielectric breakdown voltage detection device, as shown in FIG. It includes a power frequency step-up transformer 1, a C1 capacitor 4 and a
如图2所示,图2是本实用新型检测结构原理示意图,本实用新型一种高温气体介质击穿电压检测装置在检测时的具体连接方式如下:As shown in FIG. 2, FIG. 2 is a schematic diagram of the detection structure principle of the present invention. The specific connection mode of a high-temperature gas medium breakdown voltage detection device of the present invention during detection is as follows:
a.将图1中交流电压输出端11的XT1_INPUTT1和XT1_INPUTT2分别与图2中气体击穿电压试验台14的XT1_INPUTT1和XT1_INPUTT2的输入端进行电气连接,气体击穿电压试验台14的XT1_INPUTT1和XT1_INPUTT2的输出端分别与交流引弧电极18的输入端进行电气连接。通过交流电压输出端对交流引弧电极18进行供电,当引弧电极间被击穿产生电弧后,电弧能量对气体击穿电压试验平台内的气体介质进行加热。a. Connect the XT1_INPUTT1 and XT1_INPUTT2 of the AC
b.将图1中直流电压输出端10的XT2_INPUTT1和XT2_INPUTT2分别与图2中气体击穿电压试验台14的XT2_INPUTT1和XT2_INPUTT2的输入端进行电气连接,气体击穿电压试验台14的XT1_INPUTT1和XT1_INPUTT2的输出端分别与试验电极19的输入端进行电气连接。通过C1电容器4和C2电容器5组成的动态击穿直流电源对试验电极进行供电,当高温高速的气体介质流过试验电极间发生动态击穿时,检测试验击穿电压。b. Electrically connect XT2_INPUTT1 and XT2_INPUTT2 of DC
c.图2中电子式压力传感器15的输入端与气体击穿电压试验台14连接,电子式压力传感器15的输出端与多通道信号采集示波器12的输入端A连接,时刻检测气体击穿电压试验台14内部的气体压力。c. In FIG. 2, the input end of the
d.图2中阻容分压器21的输入端与气体击穿电压试验台14的XT2_INPUTT1连接,阻容分压器21的输出端与多通道信号采集示波器12输入端B连接,时刻检测气体击穿电压试验台14的XT2_INPUTT1的动态电压变化。d. In Figure 2, the input end of the
e.图2中气体温度检测探针传感器20布置于交流引弧电极18与试验电极19中间位置,气体温度检测探针传感器20的输出端与多通道信号采集示波器12输入端3连接,时刻检测交流引弧电极18中流出的高温气体介质温度。e. In FIG. 2, the gas temperature
f.图2中气体回收装置13的出气端通过气道16与气体击穿电压试验台14的进气口连接,气体击穿电压试验台14的出气端通过气道与气体回收装置13的回气端连接,气流速度测试仪17进线端通过气道与气体回收装置13的出线端连接,气流速度测试仪17出线端通过气道与气体击穿电压试验台14的进线端连接,时刻检测流入气体击穿电压试验台14中的气流速度。f. In FIG. 2, the gas outlet end of the
g.C1电容器4为100kV/0.5uF;C2电容器5为100kV/0.001uF;R1限流电阻3为100Ω;R3限流电阻7为100Ω;R2调频电阻8为1MΩ。g. C1 capacitor 4 is 100kV/0.5uF;
利用本实用新型一种高温气体介质击穿电压检测装置进行检测的操作过程,包括以下步骤:The operation process of using the high-temperature gas medium breakdown voltage detection device of the present utility model for detection includes the following steps:
步骤1.首先确定K1保护断路器2、K2控制开关9和K3保护断路器6处于断开状态。Step 1. First, make sure that the K1
步骤2.调整交流引弧电极18和试验电极19的间距,极间距值根据气体压强及属性确定。
步骤3.通过气体回收装置13对气体击穿电压试验台14进行充气,调整气体压强为预先设定值。
步骤4.关合K1保护断路器2,工频升压变压器1升压至C1电容器4和C2电容器5的额定电压,之后断开K1保护断路器2,工频升压变压器1电压归零。Step 4. Close the K1
步骤5.关合K3保护断路器6,通过气体回收装置13调整通过交流引弧电极18与试验电极19气流的速度,应用气流速度测试仪17记录初始气流速度值。
步骤6.打开气流速度测试仪17,时刻记录试验电极19两端电压及气体击穿电压试验台14内气体压强及温度值。Step 6. Turn on the
步骤7.工频升压变压器1升压至交流引弧电极18间燃弧,并维持电弧燃烧,通过气体温度检测探针传感器20检测流出交流引弧电极18气流的温度。
步骤8.当高速高温气流通过试验电极19后,在C2电容器5两端电压作用下,试验电极19击穿,C2电容器5放电,放电完成后,试验电极电弧熄灭,通过阻容分压器21记录第一次击穿电压值。
步骤9.C2电容器5放电完成后,C1电容器4通过R2调频电阻8对C2电容器5进行快速充电,当C2电容器5的电压升至试验电极19间介质击穿电压时,试验电极19再次被击穿,记录第二次击穿电压值。依次反复,试验电极19间介质出现动态击穿过程,试验持续1s,结束试验,记录多次击穿电压值,取算数平均根值为最终击穿电压值。Step 9. After the discharge of the
步骤10.整理试验数据,根据多通道信号采集示波器12和气流速度测试仪17记录的气流温度、气体压强、气流速度、击穿电压值,给出多维状态下的气体击穿电压值,如表1所示。
步骤11.依次调整试验电极19的极间距值,每次调整后重复试验步骤1-步骤10,记录不同试验电极间距下的高速高温气体击穿电压值。
步骤12.依次调整气体压强,每次调整后重复试验步骤1-步骤10,记录不同气体压强下的高速高温气体击穿电压值。Step 12. Adjust the gas pressure in sequence, repeat the test steps 1-10 after each adjustment, and record the breakdown voltage values of the high-speed and high-temperature gas under different gas pressures.
步骤13.依次调整流过试验电极19的气流速度,每次调整后重复试验步骤1-步骤10,记录不同气流速度下的高速高温气体击穿电压值。
步骤14.依次调整交流引弧电极18的电弧电流,通过调整电弧能量,调整流过试验电极19极间气流温度,每次调整后重复试验步骤1-步骤10,记录不同气流温度下的高速高温气体击穿电压值。
步骤15.通过以上多次更改试验变量,给出多维状态下气体击穿特性曲线。
如图3所示,图3是本实用新型实际测量的动态击穿电压曲线图。As shown in FIG. 3 , FIG. 3 is a graph of the dynamic breakdown voltage actually measured by the utility model.
表1试验结果汇总Table 1 Summary of test results
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921568371.4U CN211718436U (en) | 2019-09-20 | 2019-09-20 | High-temperature gas dielectric breakdown voltage detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921568371.4U CN211718436U (en) | 2019-09-20 | 2019-09-20 | High-temperature gas dielectric breakdown voltage detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211718436U true CN211718436U (en) | 2020-10-20 |
Family
ID=72813301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921568371.4U Active CN211718436U (en) | 2019-09-20 | 2019-09-20 | High-temperature gas dielectric breakdown voltage detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211718436U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110672990A (en) * | 2019-09-20 | 2020-01-10 | 国网辽宁省电力有限公司电力科学研究院 | High-temperature gas dielectric breakdown voltage detection device and method |
CN112485614A (en) * | 2020-11-23 | 2021-03-12 | 国网北京市电力公司 | Voltage withstand test method and device for cable insulating material |
-
2019
- 2019-09-20 CN CN201921568371.4U patent/CN211718436U/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110672990A (en) * | 2019-09-20 | 2020-01-10 | 国网辽宁省电力有限公司电力科学研究院 | High-temperature gas dielectric breakdown voltage detection device and method |
CN110672990B (en) * | 2019-09-20 | 2024-04-19 | 国网辽宁省电力有限公司电力科学研究院 | A high temperature gas dielectric breakdown voltage detection device and method |
CN112485614A (en) * | 2020-11-23 | 2021-03-12 | 国网北京市电力公司 | Voltage withstand test method and device for cable insulating material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109254242B (en) | Ablation test loop and method for testing ablation state of arc contact of circuit breaker | |
CN107797034A (en) | The detection means and method of dielectric recovery property after a kind of high-voltage sf6 circuit breaker arc | |
CN103048595B (en) | A kind of thyristor opens stress test method and device | |
CN211718436U (en) | High-temperature gas dielectric breakdown voltage detection device | |
CN103400019B (en) | AC fault electric arc emulation mode based on Matlab/Simulink | |
CN108919073B (en) | Device and method for measuring insulator surface flashover discharge energy | |
CN101598757A (en) | A controllable metal oxide arrester residual voltage test circuit and method | |
CN103823098A (en) | Pre-discharge current detection device | |
CN205229344U (en) | Series Arc Fault Detection Circuit | |
CN105403790A (en) | series arc fault detection circuit and method | |
CN106885976B (en) | Electric field-sensitive type insulating materials static properties test device and system | |
Li et al. | Series Arc fault studies and modeling for a DC distribution system | |
CN110672990B (en) | A high temperature gas dielectric breakdown voltage detection device and method | |
CN110514955B (en) | A method for locating single-phase intermittent arc grounding faults in small-current grounded power grids | |
CN104931849B (en) | A method for distance measurement of arc-flash ground faults in power supply lines | |
CN107355817A (en) | A kind of low energy single electric spark production method | |
CN111521964A (en) | Electromagnetic Field Test Platform for Simulating Event Disturbance in Power Grid | |
CN110514976A (en) | A GIS insulation defect monitoring device, system and detection method | |
CN203572917U (en) | Sulfur hexafluoride decomposition experiment system | |
CN104714172A (en) | Direct current arc generating device | |
CN201307152Y (en) | Aging test device of movable vacuum breaker | |
CN104007360A (en) | Alternating current testing device and method for phase-controllable on-off capacitor inner fuse wire | |
CN112415355B (en) | Method and circuit for evaluating blocking state of thyristor of high-voltage converter valve | |
CN111044810A (en) | A simulation test method for the effect of ground fault handling device protection against lightning strike and disconnection | |
CN107607787B (en) | Loop resistance detection system and method based on supercapacitor group |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |